Add initial support for up to three PZEM-014/-016

Add initial support for up to three PZEM-014/-016 on serial modbus connection with addresses 1 (default), 2 and 3 (#2315)
This commit is contained in:
Theo Arends 2019-09-15 15:19:19 +02:00
parent 5eb85075e5
commit 098a2b27c3
2 changed files with 33 additions and 14 deletions

View File

@ -7,7 +7,8 @@
* Change JSON output format for commands Adc, Adcs, Modules, Gpio and Gpios from list to dictionary (#6407)
* Add Zigbee support phase 3 - support for Xiaomi lumi.weather air quality sensor, Osram mini-switch
* Change energy sensors for three phase/channel support
* Add Shelly 2.5 energy dual channel support (#6160)
* Add support for Shelly 2.5 dual energy (#6160)
* Add initial support for up to three PZEM-014/-016 on serial modbus connection with addresses 1 (default), 2 and 3 (#2315)
*
* 6.6.0.11 20190907
* Change Settings crc calculation allowing short term backward compatibility

View File

@ -36,7 +36,11 @@
#include <TasmotaModbus.h>
TasmotaModbus *PzemAcModbus;
uint8_t PzemAc_send_retry = 0;
struct PZEMAC {
float energy = 0;
uint8_t send_retry = 0;
uint8_t phase = 0;
} PzemAc;
void PzemAcEverySecond(void)
{
@ -49,30 +53,40 @@ void PzemAcEverySecond(void)
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, (buffer[2]) ? buffer[2] +5 : sizeof(buffer));
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "PzemAc response error %d"), error);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PAC: PzemAc %d response error %d"), PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, error);
} else {
Energy.data_valid = 0;
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// 01 04 14 08 D1 00 6C 00 00 00 F4 00 00 00 26 00 00 01 F4 00 64 00 00 51 34
// Id Cc Sz Volt- Current---- Power------ Energy----- Frequ PFact Alarm Crc--
Energy.voltage[0] = (float)((buffer[3] << 8) + buffer[4]) / 10.0; // 6553.0 V
Energy.current[0] = (float)((buffer[7] << 24) + (buffer[8] << 16) + (buffer[5] << 8) + buffer[6]) / 1000.0; // 4294967.000 A
Energy.active_power[0] = (float)((buffer[11] << 24) + (buffer[12] << 16) + (buffer[9] << 8) + buffer[10]) / 10.0; // 429496729.0 W
Energy.frequency[0] = (float)((buffer[17] << 8) + buffer[18]) / 10.0; // 50.0 Hz
Energy.power_factor[0] = (float)((buffer[19] << 8) + buffer[20]) / 100.0; // 1.00
float energy = (float)((buffer[15] << 24) + (buffer[16] << 16) + (buffer[13] << 8) + buffer[14]); // 4294967295 Wh
Energy.voltage[PzemAc.phase] = (float)((buffer[3] << 8) + buffer[4]) / 10.0; // 6553.0 V
Energy.current[PzemAc.phase] = (float)((buffer[7] << 24) + (buffer[8] << 16) + (buffer[5] << 8) + buffer[6]) / 1000.0; // 4294967.000 A
Energy.active_power[PzemAc.phase] = (float)((buffer[11] << 24) + (buffer[12] << 16) + (buffer[9] << 8) + buffer[10]) / 10.0; // 429496729.0 W
Energy.frequency[PzemAc.phase] = (float)((buffer[17] << 8) + buffer[18]) / 10.0; // 50.0 Hz
Energy.power_factor[PzemAc.phase] = (float)((buffer[19] << 8) + buffer[20]) / 100.0; // 1.00
EnergyUpdateTotal(energy, false);
PzemAc.energy += (float)((buffer[15] << 24) + (buffer[16] << 16) + (buffer[13] << 8) + buffer[14]); // 4294967295 Wh
if (PzemAc.phase == Energy.phase_count -1) {
EnergyUpdateTotal(PzemAc.energy, false);
PzemAc.energy = 0;
}
}
}
if (0 == PzemAc_send_retry || data_ready) {
PzemAc_send_retry = 5;
PzemAcModbus->Send(PZEM_AC_DEVICE_ADDRESS, 0x04, 0, 10);
if (0 == PzemAc.send_retry || data_ready) {
PzemAc.phase++;
if (PzemAc.phase >= Energy.phase_count) {
PzemAc.phase = 0;
}
PzemAc.send_retry = ENERGY_WATCHDOG;
PzemAcModbus->Send(PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, 0x04, 0, 10);
}
else {
PzemAc_send_retry--;
PzemAc.send_retry--;
if ((Energy.phase_count > 1) && (0 == PzemAc.send_retry)) {
Energy.phase_count--; // Decrement phases if no response after retry
}
}
}
@ -82,6 +96,10 @@ void PzemAcSnsInit(void)
uint8_t result = PzemAcModbus->Begin(9600);
if (result) {
if (2 == result) { ClaimSerial(); }
Energy.phase_count = 3; // Start off with three phases
PzemAc.phase = 2;
} else {
energy_flg = ENERGY_NONE;
}