Support for Modbus Energy Monitoring devices

Support for Modbus Energy Monitoring devices using a rule file. See ``xnrg_29_modbus.ino`` for more information
This commit is contained in:
Theo Arends 2022-10-08 16:14:11 +02:00
parent b101c7ab62
commit 3427e1bee3
5 changed files with 299 additions and 41 deletions

View File

@ -6,10 +6,11 @@ All notable changes to this project will be documented in this file.
## [12.1.1.4] ## [12.1.1.4]
### Added ### Added
- Support for Shelly Plus 2PM using template ``{"NAME":"Shelly Plus 2PM PCB v0.1.9","GPIO":[320,0,0,0,32,192,0,0,225,224,0,0,0,0,193,0,0,0,0,0,0,608,640,3458,0,0,0,0,0,9472,0,4736,0,0,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"}`` - Support for Shelly Plus 2PM using template ``{"NAME":"Shelly Plus 2PM PCB v0.1.9","GPIO":[320,0,0,0,32,192,0,0,225,224,0,0,0,0,193,0,0,0,0,0,0,608,640,3458,0,0,0,0,0,9472,0,4736,0,0,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"}``
- Zigbee Alexa/Hue emulation, support multiple switches on separate endpoints - Zigbee Alexa/Hue emulation, support multiple switches on separate endpoints (#16718)
- Support for QMC5883L magnetic induction sensor by Helge Scheunemann (#16714) - Support for QMC5883L magnetic induction sensor by Helge Scheunemann (#16714)
- LVGL/HASPmota add tiny "pixel perfect" fonts for small screens - LVGL/HASPmota add tiny "pixel perfect" fonts for small screens (#16758)
- HASPmota support for TTF fonts - HASPmota support for TTF fonts (#16759)
- Support for Modbus Energy Monitoring devices using a rule file. See ``xnrg_29_modbus.ino`` for more information
### Changed ### Changed
- ESP32 LVGL library from v8.3.0 to v8.3.2 - ESP32 LVGL library from v8.3.0 to v8.3.2

View File

@ -124,6 +124,7 @@ The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmo
- Zigbee device plugin mechanism with commands ``ZbLoad``, ``ZbUnload`` and ``ZbLoadDump`` [#16252](https://github.com/arendst/Tasmota/issues/16252) - Zigbee device plugin mechanism with commands ``ZbLoad``, ``ZbUnload`` and ``ZbLoadDump`` [#16252](https://github.com/arendst/Tasmota/issues/16252)
- Zigbee basic support for Green Power [#16407](https://github.com/arendst/Tasmota/issues/16407) - Zigbee basic support for Green Power [#16407](https://github.com/arendst/Tasmota/issues/16407)
- Zigbee friendly names per endpoint - Zigbee friendly names per endpoint
- Zigbee Alexa/Hue emulation, support multiple switches on separate endpoints [#16718](https://github.com/arendst/Tasmota/issues/16718)
- Flowrate meter flow amount/duration, show values in table format [#16385](https://github.com/arendst/Tasmota/issues/16385) - Flowrate meter flow amount/duration, show values in table format [#16385](https://github.com/arendst/Tasmota/issues/16385)
- Support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM [#16486](https://github.com/arendst/Tasmota/issues/16486) - Support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM [#16486](https://github.com/arendst/Tasmota/issues/16486)
- Support for Ethernet in ESP32 safeboot firmware [#16388](https://github.com/arendst/Tasmota/issues/16388) - Support for Ethernet in ESP32 safeboot firmware [#16388](https://github.com/arendst/Tasmota/issues/16388)
@ -131,14 +132,17 @@ The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmo
- ESP32-S2 and ESP32-S3 touch button support - ESP32-S2 and ESP32-S3 touch button support
- Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection - Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection
- Berry automated solidification of code - Berry automated solidification of code
- LVGL/HASPmota add tiny "pixel perfect" fonts for small screens [#16758](https://github.com/arendst/Tasmota/issues/16758)
- HASPmota support for TTF fonts [#16759](https://github.com/arendst/Tasmota/issues/16759)
### Breaking Changed ### Breaking Changed
### Changed ### Changed
- ESP32 NimBLE library from v1.3.6 to v1.4.0
- IRremoteESP8266 library from v2.8.2 to v2.8.4 - IRremoteESP8266 library from v2.8.2 to v2.8.4
- Tasmota Core32 from 2.0.4.1 to 2.0.5
- TasmotaModbus library from v3.5.0 to v3.6.0 [#16351](https://github.com/arendst/Tasmota/issues/16351) - TasmotaModbus library from v3.5.0 to v3.6.0 [#16351](https://github.com/arendst/Tasmota/issues/16351)
- ESP32 NimBLE library from v1.3.6 to v1.4.0
- ESP32 LVGL library from v8.3.0 to v8.3.2
- ESP32 Tasmota Core32 from 2.0.4.1 to 2.0.5
- Button debouncing V3 by adopting switch debounce code [#16339](https://github.com/arendst/Tasmota/issues/16339) - Button debouncing V3 by adopting switch debounce code [#16339](https://github.com/arendst/Tasmota/issues/16339)
- Thermostat max allowed temperature from 100 to 200C [#16363](https://github.com/arendst/Tasmota/issues/16363) - Thermostat max allowed temperature from 100 to 200C [#16363](https://github.com/arendst/Tasmota/issues/16363)
- Using command ``SerialBuffer`` raise max allowed buffer size to 2048 characters [#16374](https://github.com/arendst/Tasmota/issues/16374) - Using command ``SerialBuffer`` raise max allowed buffer size to 2048 characters [#16374](https://github.com/arendst/Tasmota/issues/16374)

View File

@ -837,7 +837,9 @@ void ResponseAppendFeatures(void)
#if defined(USE_I2C) && defined(USE_QMC5883L) #if defined(USE_I2C) && defined(USE_QMC5883L)
feature9 |= 0x00000008; // xsns_33_qmc5882l.ino feature9 |= 0x00000008; // xsns_33_qmc5882l.ino
#endif #endif
// feature9 |= 0x00000010; #if defined(USE_ENERGY_SENSOR) && defined(USE_MODBUS_ENERGY)
feature9 |= 0x00000010; // xnrg_29_modbus.ino
#endif
// feature9 |= 0x00000020; // feature9 |= 0x00000020;
// feature9 |= 0x00000040; // feature9 |= 0x00000040;
// feature9 |= 0x00000080; // feature9 |= 0x00000080;

View File

@ -20,19 +20,64 @@
#ifdef USE_ENERGY_SENSOR #ifdef USE_ENERGY_SENSOR
#ifdef USE_MODBUS_ENERGY #ifdef USE_MODBUS_ENERGY
/*********************************************************************************************\ /*********************************************************************************************\
* Generic Modbus energy meter - experimental (but works on my SDM230) * Generic Modbus energy meter
* *
* Using a rule file called modbus allows to easy configure modbus energy monitor devices. * Using a rule file called modbus allows to easy configure modbus energy monitor devices up to three phases.
* *
* Works: * Value pair description:
* rule3 on file#modbus do {"Name":"SDM230","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"ImportActive":342,"ExportActive":0x004A} endon * {"Name":"SDM230","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A}
* rule3 on file#modbus do {"Name":"SDM230","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0x0000,"Current":0x0006,"Power":0x000C,"ApparentPower":0x0012,"ReactivePower":0x0018,"Factor":0x001E,"Frequency":0x0046,"ImportActive":0x0156,"ExportActive":0x004A} endon * Modbus config parameters:
* Name - Name of energy monitoring device
* Baud - Baudrate of device modbus interface
* Config - Serial config parameters like 8N1 - 8 databits, No parity, 1 stop bit
* Address - Modbus device address entered as decimal (1) or hexadecimal (0x01))
* Function - Modbus function code to access two registers
* Tasmota default embedded register names:
* Voltage - Voltage register entered as decimal or hexadecimal for one phase (0x0000) or up to three phases ([0x0000,0x0002,0x0004])
* Current - Current register entered as decimal or hexadecimal for one phase (0x0006) or up to three phases ([0x0006,0x0008,0x000A])
* Power - Active power register entered as decimal or hexadecimal for one phase (0x000C) or up to three phases ([0x000C,0x000E,0x0010])
* ApparentPower - Apparent power register entered as decimal or hexadecimal for one phase (0x000C) or up to three phases ([0x000C,0x000E,0x0010])
* ReactivePower - Reactive power register entered as decimal or hexadecimal for one phase (0x0018) or up to three phases ([0x0018,0x001A,0x001C])
* Factor - Power factor register entered as decimal or hexadecimal for one phase (0x001E) or up to three phases ([0x001E,0x0020,0x0022])
* Frequency - Frequency register entered as decimal or hexadecimal for one phase (0x0046) or up to three phases ([0x0046,0x0048,0x004A])
* Total - Total active energy register entered as decimal or hexadecimal for one phase (0x0156) or up to three phases ([0x015A,0x015C,0x015E])
* ExportActive - Export active energy register entered as decimal or hexadecimal for one phase (0x0160) or up to three phases ([0x0160,0x0162,0x0164])
* Optional user defined registers:
* User - Additional user defined registers
* Value pair description:
* "User":{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}
* R - Modbus register entered as decimal or hexadecimal for one phase (0x0160) or up to three phases ([0x0160,0x0162,0x0164])
* J - JSON register name (preferrably without spaces like "PhaseAngle")
* G - GUI register name
* U - GUI unit name
* D - Number of decimals for floating point presentation
* *
* Example using default Energy registers:
* rule3 on file#modbus do {"Name":"SDM230","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A} endon
* rule3 on file#modbus do {"Name":"SDM230 with hex registers","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0x0000,"Current":0x0006,"Power":0x000C,"ApparentPower":0x0012,"ReactivePower":0x0018,"Factor":0x001E,"Frequency":0x0046,"Total":0x0156,"ExportActive":0x004A} endon
*
* Example using default Energy registers and some user defined registers:
* rule3 on file#modbus do {"Name":"SDM230 with one user register","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}} endon
* rule3 on file#modbus do {"Name":"SDM230 with two user registers","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
*
* Note:
* - To enter long rules using a serial console and solve error "Serial buffer overrun" you might need to enlarge the serial input buffer with command serialbuffer 512.
* - Changes to rule file are only executed on restart
*
* Restrictions:
* - Supports Modbus floating point registers
* - Max number of uer defined registers is defined by one rule buffer (511 characters uncompressed, around 800 characters compressed)
*
* To do:
* - Support all three rule slots
* - Support other modbus register like integers
* *
* Test set: * Test set:
* rule3 on file#modbus do {"Name":"SDM230 test1","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":[70,70,70],"ImportActive":[342,342,342]} endon * rule3 on file#modbus do {"Name":"SDM230 test1","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":[70,70,70],"Total":[342,342,342]} endon
* rule3 on file#modbus do {"Name":"SDM230 test2","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":70,"ImportActive":[342,342,342]} endon * rule3 on file#modbus do {"Name":"SDM230 test2","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":70,"Total":[342,342,342]} endon
* rule3 on file#modbus do {"Name":"SDM230 test3","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":70,"ImportActive":[342,342,342]} endon * rule3 on file#modbus do {"Name":"SDM230 test3","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":70,"Total":[342,342,342]} endon
* rule3 on file#modbus do {"Name":"SDM230 test4","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":[0x004E,0x004E,0x004E],"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM230 test5","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":[0x004E,0x004E,0x004E],"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
\*********************************************************************************************/ \*********************************************************************************************/
#define XNRG_29 29 #define XNRG_29 29
@ -53,7 +98,7 @@ enum EnergyModbusRegisters { NRG_MBS_VOLTAGE,
NRG_MBS_REACTIVE_POWER, NRG_MBS_REACTIVE_POWER,
NRG_MBS_POWER_FACTOR, NRG_MBS_POWER_FACTOR,
NRG_MBS_FREQUENCY, NRG_MBS_FREQUENCY,
NRG_MBS_IMPORT_ACTIVE_ENERGY, NRG_MBS_TOTAL_ENERGY,
NRG_MBS_EXPORT_ACTIVE_ENERGY, NRG_MBS_EXPORT_ACTIVE_ENERGY,
NRG_MBS_MAX_REGS }; NRG_MBS_MAX_REGS };
@ -64,7 +109,7 @@ const char kEnergyModbusValues[] PROGMEM = D_JSON_VOLTAGE "|" // Vo
D_JSON_REACTIVE_POWERUSAGE "|" // ReactivePower D_JSON_REACTIVE_POWERUSAGE "|" // ReactivePower
D_JSON_POWERFACTOR "|" // Factor D_JSON_POWERFACTOR "|" // Factor
D_JSON_FREQUENCY "|" // Frequency D_JSON_FREQUENCY "|" // Frequency
D_JSON_IMPORT_ACTIVE "|" // ImportActive D_JSON_TOTAL "|" // Total
D_JSON_EXPORT_ACTIVE "|" // ExportActive D_JSON_EXPORT_ACTIVE "|" // ExportActive
; ;
@ -77,14 +122,30 @@ struct NRGMODBUS {
uint16_t register_address[NRG_MBS_MAX_REGS][ENERGY_MAX_PHASES]; uint16_t register_address[NRG_MBS_MAX_REGS][ENERGY_MAX_PHASES];
uint8_t device_address; uint8_t device_address;
uint8_t function; uint8_t function;
uint8_t user_adds;
uint8_t phase; uint8_t phase;
uint8_t state; uint8_t state;
uint8_t retry; uint8_t retry;
bool mutex;
} *NrgModbus = nullptr; } *NrgModbus = nullptr;
typedef struct NRGMODBUSUSER {
float register_data[ENERGY_MAX_PHASES];
uint16_t register_address[ENERGY_MAX_PHASES];
uint8_t resolution;
String json_name;
String gui_name;
String gui_unit;
} NrgModbusUser_t;
NrgModbusUser_t* NrgModbusUser = nullptr;
/*********************************************************************************************/ /*********************************************************************************************/
void EnergyModbusLoop(void) { void EnergyModbusLoop(void) {
if (NrgModbus->mutex) { return; }
NrgModbus->mutex = 1;
uint16_t register_address;
bool data_ready = EnergyModbus->ReceiveReady(); bool data_ready = EnergyModbus->ReceiveReady();
if (data_ready) { if (data_ready) {
@ -148,12 +209,16 @@ void EnergyModbusLoop(void) {
case NRG_MBS_FREQUENCY: case NRG_MBS_FREQUENCY:
Energy.frequency[NrgModbus->phase] = value; // 50.0 Hz Energy.frequency[NrgModbus->phase] = value; // 50.0 Hz
break; break;
case NRG_MBS_IMPORT_ACTIVE_ENERGY: case NRG_MBS_TOTAL_ENERGY:
Energy.import_active[NrgModbus->phase] = value; // 6.216 kWh => used in EnergyUpdateTotal() Energy.import_active[NrgModbus->phase] = value; // 6.216 kWh => used in EnergyUpdateTotal()
break; break;
case NRG_MBS_EXPORT_ACTIVE_ENERGY: case NRG_MBS_EXPORT_ACTIVE_ENERGY:
Energy.export_active[NrgModbus->phase] = value; // 478.492 kWh Energy.export_active[NrgModbus->phase] = value; // 478.492 kWh
break; break;
default:
if (NrgModbusUser) {
NrgModbusUser[NrgModbus->state - NRG_MBS_MAX_REGS].register_data[NrgModbus->phase] = value;
}
} }
do { do {
@ -161,25 +226,94 @@ void EnergyModbusLoop(void) {
if (NrgModbus->phase == Energy.phase_count) { if (NrgModbus->phase == Energy.phase_count) {
NrgModbus->phase = 0; NrgModbus->phase = 0;
NrgModbus->state++; NrgModbus->state++;
if (NrgModbus->state == NRG_MBS_MAX_REGS) { if (NrgModbus->state == NRG_MBS_MAX_REGS + NrgModbus->user_adds) {
NrgModbus->state = 0; NrgModbus->state = 0;
NrgModbus->phase = 0; NrgModbus->phase = 0;
EnergyUpdateTotal(); // update every cycle after all registers have been read EnergyUpdateTotal(); // update every cycle after all registers have been read
break; break;
} }
} }
} while (NrgModbus->register_address[NrgModbus->state][NrgModbus->phase] == nrg_mbs_reg_not_used); delay(0);
register_address = (NrgModbus->state < NRG_MBS_MAX_REGS) ? NrgModbus->register_address[NrgModbus->state][NrgModbus->phase] :
NrgModbusUser[NrgModbus->state - NRG_MBS_MAX_REGS].register_address[NrgModbus->phase];
} while (register_address == nrg_mbs_reg_not_used);
} }
} // end data ready } // end data ready
if (0 == NrgModbus->retry || data_ready) { if (0 == NrgModbus->retry || data_ready) {
NrgModbus->retry = 5; NrgModbus->retry = 5;
EnergyModbus->Send(NrgModbus->device_address, NrgModbus->function, NrgModbus->register_address[NrgModbus->state][NrgModbus->phase], 2); register_address = (NrgModbus->state < NRG_MBS_MAX_REGS) ? NrgModbus->register_address[NrgModbus->state][NrgModbus->phase] :
NrgModbusUser[NrgModbus->state - NRG_MBS_MAX_REGS].register_address[NrgModbus->phase];
EnergyModbus->Send(NrgModbus->device_address, NrgModbus->function, register_address, 2);
} else { } else {
NrgModbus->retry--; NrgModbus->retry--;
} }
NrgModbus->mutex = 0;
} }
#ifdef USE_RULES
bool EnergyModbusReadUserRegisters(JsonParserObject user_add_value, uint32_t add_index) {
// {"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
JsonParserToken val;
val = user_add_value[PSTR("R")]; // Register address
uint32_t phase = 0;
if (val.isArray()) {
JsonParserArray address_arr = val.getArray();
for (auto value : address_arr) {
NrgModbusUser[add_index].register_address[phase] = value.getUInt();
phase++;
if (phase == ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
NrgModbusUser[add_index].register_address[0] = val.getUInt();
phase++;
} else {
return false;
}
if (phase > Energy.phase_count) {
Energy.phase_count = phase;
}
val = user_add_value[PSTR("J")]; // JSON value name
if (val) {
NrgModbusUser[add_index].json_name = val.getStr();
} else {
return false;
}
val = user_add_value[PSTR("G")]; // GUI value name
if (val) {
NrgModbusUser[add_index].gui_name = val.getStr();
} else {
return false;
}
val = user_add_value[PSTR("U")]; // GUI value Unit
if (val) {
NrgModbusUser[add_index].gui_unit = val.getStr();
} else {
return false;
}
val = user_add_value[PSTR("D")]; // Decimal resolution
if (val) {
NrgModbusUser[add_index].resolution = val.getUInt();
} else {
return false;
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], J '%s', G '%s', U '%s', D %d"),
add_index,
NrgModbusUser[add_index].register_address[0],
NrgModbusUser[add_index].register_address[1],
NrgModbusUser[add_index].register_address[2],
NrgModbusUser[add_index].json_name.c_str(),
NrgModbusUser[add_index].gui_name.c_str(),
NrgModbusUser[add_index].gui_unit.c_str(),
NrgModbusUser[add_index].resolution);
#endif
return true;
}
#endif // USE_RULES
bool EnergyModbusReadRegisters(void) { bool EnergyModbusReadRegisters(void) {
#ifdef USE_RULES #ifdef USE_RULES
String modbus = RuleLoadFile("MODBUS"); String modbus = RuleLoadFile("MODBUS");
@ -196,8 +330,8 @@ bool EnergyModbusReadRegisters(void) {
JsonParserObject root = parser.getRootObject(); JsonParserObject root = parser.getRootObject();
if (!root) { return false; } // Invalid JSON if (!root) { return false; } // Invalid JSON
NrgModbus = (NRGMODBUS *)calloc(sizeof(struct NRGMODBUS), 1); NrgModbus = (NRGMODBUS *)calloc(1, sizeof(struct NRGMODBUS));
if (NrgModbus == nullptr) { return false; } // Unable to allocate variabvles on heap if (NrgModbus == nullptr) { return false; } // Unable to allocate variables on heap
// Init defaults // Init defaults
NrgModbus->serial_bps = ENERGY_MODBUS_SPEED; NrgModbus->serial_bps = ENERGY_MODBUS_SPEED;
@ -222,32 +356,33 @@ bool EnergyModbusReadRegisters(void) {
} }
val = root[PSTR("Address")]; val = root[PSTR("Address")];
if (val) { if (val) {
NrgModbus->device_address = val.getInt(); // 1 NrgModbus->device_address = val.getUInt(); // 1
} }
val = root[PSTR("Function")]; val = root[PSTR("Function")];
if (val) { if (val) {
NrgModbus->function = val.getInt(); // 4 NrgModbus->function = val.getUInt(); // 4
} }
char register_name[32]; char register_name[32];
uint32_t phase;
Energy.voltage_available = false; // Disable voltage is measured Energy.voltage_available = false; // Disable voltage is measured
Energy.current_available = false; // Disable current is measured Energy.current_available = false; // Disable current is measured
for (uint32_t names = 0; names < NRG_MBS_MAX_REGS; names++) { for (uint32_t names = 0; names < NRG_MBS_MAX_REGS; names++) {
phase = 0;
val = root[GetTextIndexed(register_name, sizeof(register_name), names, kEnergyModbusValues)]; val = root[GetTextIndexed(register_name, sizeof(register_name), names, kEnergyModbusValues)];
if (val.isArray()) { if (val) {
JsonParserArray arr = val.getArray(); // "Voltage":0
for (auto value : arr) { // "Voltage":[0,0,0]
NrgModbus->register_address[names][phase] = value.getUInt(); uint32_t phase = 0;
if (val.isArray()) {
JsonParserArray arr = val.getArray();
for (auto value : arr) {
NrgModbus->register_address[names][phase] = value.getUInt();
phase++;
if (phase == ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
NrgModbus->register_address[names][0] = val.getUInt();
phase++; phase++;
if (phase == ENERGY_MAX_PHASES) { break; }
} }
} else if (val) {
NrgModbus->register_address[names][phase] = val.getUInt();
phase++;
}
if (phase) {
if (phase > Energy.phase_count) { if (phase > Energy.phase_count) {
Energy.phase_count = phase; Energy.phase_count = phase;
} }
@ -266,14 +401,65 @@ bool EnergyModbusReadRegisters(void) {
Energy.frequency_common = true; // Use common frequency Energy.frequency_common = true; // Use common frequency
} }
break; break;
case NRG_MBS_IMPORT_ACTIVE_ENERGY: case NRG_MBS_TOTAL_ENERGY:
Settings->flag3.hardware_energy_total = 1; // SetOption72 - Enable hardware energy total counter as reference (#6561) Settings->flag3.hardware_energy_total = 1; // SetOption72 - Enable hardware energy total counter as reference (#6561)
break; break;
} }
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X]"),
names,
NrgModbus->register_address[names][0],
NrgModbus->register_address[names][1],
NrgModbus->register_address[names][2]);
#endif
} }
} }
NrgModbus->user_adds = 0;
// "User":{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
// "User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]
val = root[PSTR("User")];
if (val) {
NrgModbus->user_adds = 1;
if (val.isArray()) {
NrgModbus->user_adds = val.size();
}
NrgModbusUser = (NrgModbusUser_t*)calloc(NrgModbus->user_adds, sizeof(NrgModbusUser_t));
if (NrgModbusUser) {
// Init defaults
for (uint32_t i = 0; i < NrgModbus->user_adds; i++) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgModbusUser[i].register_address[j] = nrg_mbs_reg_not_used;
NrgModbusUser[i].register_data[j] = NAN;
}
}
if (val.isArray()) {
JsonParserArray user_adds_arr = val.getArray();
uint32_t add_index = 0;
for (auto user_add_values : user_adds_arr) {
if (!user_add_values.isObject()) { break; }
if (EnergyModbusReadUserRegisters(user_add_values.getObject(), add_index)) {
add_index++;
} else {
NrgModbus->user_adds--;
}
}
} else if (val) {
if (val.isObject()) {
if (!EnergyModbusReadUserRegisters(val.getObject(), 0)) {
NrgModbus->user_adds--;
}
}
}
} else {
NrgModbus->user_adds = 0;
}
}
#ifdef ENERGY_MODBUS_DEBUG #ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Registers %*_H"), sizeof(NrgModbus->register_address), NrgModbus->register_address); AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: RAM usage %d + %d"), sizeof(struct NRGMODBUS), NrgModbus->user_adds * sizeof(NrgModbusUser_t));
#endif #endif
// NrgModbus->state = 0; // Set by calloc() // NrgModbus->state = 0; // Set by calloc()
@ -310,6 +496,60 @@ void EnergyModbusDrvInit(void) {
} }
} }
/*********************************************************************************************\
* Additional presentation
\*********************************************************************************************/
void EnergyModbusReset(void) {
for (uint32_t i = 0; i < NrgModbus->user_adds; i++) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
if (NrgModbusUser[i].register_address[0] != nrg_mbs_reg_not_used) {
NrgModbusUser[i].register_data[j] = 0;
}
}
}
}
void EnergyModbusShow(bool json) {
char value_chr[TOPSZ];
for (uint32_t i = 0; i < NrgModbus->user_adds; i++) {
/*
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], J '%s', G '%s', U '%s', D %d, V [%3_f,%3_f,%3_f]"),
i,
NrgModbusUser[i].register_address[0],
NrgModbusUser[i].register_address[1],
NrgModbusUser[i].register_address[2],
NrgModbusUser[i].json_name.c_str(),
NrgModbusUser[i].gui_name.c_str(),
NrgModbusUser[i].gui_unit.c_str(),
NrgModbusUser[i].resolution,
&NrgModbusUser[i].register_data[0],
&NrgModbusUser[i].register_data[1],
&NrgModbusUser[i].register_data[2]);
#endif
*/
if ((NrgModbusUser[i].register_address[0] != nrg_mbs_reg_not_used) && !isnan(NrgModbusUser[i].register_data[0])) {
float values[ENERGY_MAX_PHASES];
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
values[j] = NrgModbusUser[i].register_data[j];
}
if (json) {
ResponseAppend_P(PSTR(",\"%s\":%s"),
NrgModbusUser[i].json_name.c_str(),
EnergyFormat(value_chr, values, NrgModbusUser[i].resolution));
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(PSTR("{s}%s{m}%s %s{e}"),
NrgModbusUser[i].gui_name.c_str(),
WebEnergyFormat(value_chr, values, NrgModbusUser[i].resolution),
NrgModbusUser[i].gui_unit.c_str());
#endif // USE_WEBSERVER
}
}
}
}
/*********************************************************************************************\ /*********************************************************************************************\
* Interface * Interface
\*********************************************************************************************/ \*********************************************************************************************/
@ -318,12 +558,23 @@ bool Xnrg29(uint8_t function) {
bool result = false; bool result = false;
switch (function) { switch (function) {
// case FUNC_EVERY_250_MSECOND:
case FUNC_EVERY_200_MSECOND: case FUNC_EVERY_200_MSECOND:
EnergyModbusLoop(); EnergyModbusLoop();
break; break;
case FUNC_JSON_APPEND:
EnergyModbusShow(1);
break;
#ifdef USE_WEBSERVER
#ifdef USE_ENERGY_COLUMN_GUI
case FUNC_WEB_COL_SENSOR:
#else // not USE_ENERGY_COLUMN_GUI
case FUNC_WEB_SENSOR:
#endif // USE_ENERGY_COLUMN_GUI
EnergyModbusShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_ENERGY_RESET: case FUNC_ENERGY_RESET:
// EnergyModbusReset(); EnergyModbusReset();
break; break;
case FUNC_INIT: case FUNC_INIT:
EnergyModbusSnsInit(); EnergyModbusSnsInit();

View File

@ -287,7 +287,7 @@ a_features = [[
"USE_BP5758D","USE_HYT","USE_SM2335","USE_DISPLAY_TM1621_SONOFF" "USE_BP5758D","USE_HYT","USE_SM2335","USE_DISPLAY_TM1621_SONOFF"
],[ ],[
"USE_SGP40","USE_LUXV30B","USE_CANSNIFFER","USE_QMC5883L", "USE_SGP40","USE_LUXV30B","USE_CANSNIFFER","USE_QMC5883L",
"","","","", "USE_MODBUS_ENERGY","","","",
"","","","", "","","","",
"","","","", "","","","",
"","","","", "","","","",