Refactor energy init

This commit is contained in:
Theo Arends 2021-04-06 15:23:07 +02:00
parent f50c3f8f62
commit 36288037a8
7 changed files with 92 additions and 78 deletions

View File

@ -781,12 +781,7 @@ void MqttPublishTeleState(void)
ResponseClear();
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), Settings.flag5.mqtt_state_retain);
#ifdef USE_DT_VARS
DTVarsTeleperiod();
#endif // USE_DT_VARS
XdrvRulesProcess(1); // Allow rule based HA messages
XdrvRulesProcess(1);
}
void TempHumDewShow(bool json, bool pass_on, const char *types, float f_temperature, float f_humidity)
@ -1900,15 +1895,6 @@ void GpioInit(void)
if (PWM_DIMMER == TasmotaGlobal.module_type && PinUsed(GPIO_REL1)) { TasmotaGlobal.devices_present--; }
#endif // USE_PWM_DIMMER
ButtonInit();
SwitchInit();
#ifdef ROTARY_V1
RotaryInit();
#endif
SetLedPower(Settings.ledstate &8);
SetLedLink(Settings.ledstate &8);
XdrvCall(FUNC_PRE_INIT);
XsnsCall(FUNC_PRE_INIT);
}

View File

@ -344,10 +344,17 @@ void setup(void) {
}
RtcInit();
GpioInit();
SetPowerOnState();
ButtonInit();
SwitchInit();
#ifdef ROTARY_V1
RotaryInit();
#endif // ROTARY_V1
XdrvCall(FUNC_PRE_INIT);
XsnsCall(FUNC_PRE_INIT);
SetPowerOnState();
WifiConnect();
AddLog(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s %s " D_VERSION " %s%s-" ARDUINO_CORE_RELEASE "(%s)"),
@ -356,8 +363,6 @@ void setup(void) {
AddLog(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION));
#endif // FIRMWARE_MINIMAL
// RtcInit();
#ifdef USE_ARDUINO_OTA
ArduinoOTAInit();
#endif // USE_ARDUINO_OTA

View File

@ -30,6 +30,7 @@
#define ENERGY_NONE 0
#define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present
#define ENERGY_MAX_PHASES 3
#include <Ticker.h>
@ -73,58 +74,57 @@ void (* const EnergyCommand[])(void) PROGMEM = {
const char kEnergyPhases[] PROGMEM = "|%s / %s|%s / %s / %s||[%s,%s]|[%s,%s,%s]";
struct ENERGY {
float voltage[3] = { 0, 0, 0 }; // 123.1 V
float current[3] = { 0, 0, 0 }; // 123.123 A
float active_power[3] = { 0, 0, 0 }; // 123.1 W
float apparent_power[3] = { NAN, NAN, NAN }; // 123.1 VA
float reactive_power[3] = { NAN, NAN, NAN }; // 123.1 VAr
float power_factor[3] = { NAN, NAN, NAN }; // 0.12
float frequency[3] = { NAN, NAN, NAN }; // 123.1 Hz
float voltage[ENERGY_MAX_PHASES]; // 123.1 V
float current[ENERGY_MAX_PHASES]; // 123.123 A
float active_power[ENERGY_MAX_PHASES]; // 123.1 W
float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA
float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr
float power_factor[ENERGY_MAX_PHASES]; // 0.12
float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
float import_active[3] = { NAN, NAN, NAN }; // 123.123 kWh
float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh
#endif // SDM630_IMPORT || SDM72_IMPEXP
float export_active[3] = { NAN, NAN, NAN }; // 123.123 kWh
float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh
float start_energy = 0; // 12345.12345 kWh total previous
float daily = 0; // 123.123 kWh
float total = 0; // 12345.12345 kWh total energy
float start_energy; // 12345.12345 kWh total previous
float daily; // 123.123 kWh
float total; // 12345.12345 kWh total energy
unsigned long kWhtoday_delta = 0; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
unsigned long kWhtoday_offset = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
unsigned long kWhtoday_delta; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
unsigned long kWhtoday_offset; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
unsigned long kWhtoday; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
unsigned long period = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
unsigned long period; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
uint8_t fifth_second = 0;
uint8_t command_code = 0;
uint8_t data_valid[3] = { 0, 0, 0 };
uint8_t fifth_second;
uint8_t command_code;
uint8_t data_valid[ENERGY_MAX_PHASES];
uint8_t phase_count = 1; // Number of phases active
bool voltage_common = false; // Use single voltage
bool frequency_common = false; // Use single frequency
bool kWhtoday_offset_init = false;
uint8_t phase_count; // Number of phases active
bool voltage_common; // Use single voltage
bool frequency_common; // Use single frequency
bool kWhtoday_offset_init;
bool voltage_available = true; // Enable if voltage is measured
bool current_available = true; // Enable if current is measured
bool voltage_available; // Enable if voltage is measured
bool current_available; // Enable if current is measured
bool type_dc = false;
bool power_on = true;
bool type_dc;
bool power_on;
#ifdef USE_ENERGY_MARGIN_DETECTION
uint16_t power_history[3][3] = {{ 0 }, { 0 }, { 0 }};
uint8_t power_steady_counter = 8; // Allow for power on stabilization
bool min_power_flag = false;
bool max_power_flag = false;
bool min_voltage_flag = false;
bool max_voltage_flag = false;
bool min_current_flag = false;
bool max_current_flag = false;
uint16_t power_history[ENERGY_MAX_PHASES][3];
uint8_t power_steady_counter; // Allow for power on stabilization
bool min_power_flag;
bool max_power_flag;
bool min_voltage_flag;
bool max_voltage_flag;
bool min_current_flag;
bool max_current_flag;
#ifdef USE_ENERGY_POWER_LIMIT
uint16_t mplh_counter = 0;
uint16_t mplw_counter = 0;
uint8_t mplr_counter = 0;
uint8_t max_energy_state = 0;
uint16_t mplh_counter;
uint16_t mplw_counter;
uint8_t mplr_counter;
uint8_t max_energy_state;
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
} Energy;
@ -136,16 +136,16 @@ Ticker ticker_energy;
char* EnergyFormatIndex(char* result, char* input, bool json, uint32_t index, bool single = false)
{
char layout[16];
GetTextIndexed(layout, sizeof(layout), (index -1) + (3 * json), kEnergyPhases);
GetTextIndexed(layout, sizeof(layout), (index -1) + (ENERGY_MAX_PHASES * json), kEnergyPhases);
switch (index) {
case 2:
snprintf_P(result, FLOATSZ *3, layout, input, input + FLOATSZ); // Dirty
snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, input, input + FLOATSZ); // Dirty
break;
case 3:
snprintf_P(result, FLOATSZ *3, layout, input, input + FLOATSZ, input + FLOATSZ + FLOATSZ); // Even dirtier
snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, input, input + FLOATSZ, input + FLOATSZ + FLOATSZ); // Even dirtier
break;
default:
snprintf_P(result, FLOATSZ *3, input);
snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, input);
}
return result;
}
@ -333,7 +333,7 @@ void EnergyMarginCheck(void)
bool jsonflg = false;
Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));
int16_t power_diff[3] = { 0 };
int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
uint16_t active_power = (uint16_t)(Energy.active_power[phase]);
@ -374,7 +374,7 @@ void EnergyMarginCheck(void)
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
dtostrfd(power_diff[phase], 0, power_diff_chr[phase]);
}
char value_chr[FLOATSZ *3];
char value_chr[FLOATSZ * ENERGY_MAX_PHASES];
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_chr[0], 1));
}
@ -763,7 +763,7 @@ void CmndModuleAddress(void) {
#ifdef USE_ENERGY_MARGIN_DETECTION
void CmndPowerDelta(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 3)) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32000)) {
Settings.energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
@ -873,19 +873,43 @@ void CmndMaxEnergyStart(void) {
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
void EnergyDrvInit(void) {
memset(&Energy, 0, sizeof(Energy)); // Reset all to 0 and false;
for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
Energy.apparent_power[phase] = NAN;
Energy.reactive_power[phase] = NAN;
Energy.power_factor[phase] = NAN;
Energy.frequency[phase] = NAN;
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
Energy.import_active[phase] = NAN;
#endif // SDM630_IMPORT || SDM72_IMPEXP
Energy.export_active[phase] = NAN;
}
Energy.phase_count = 1; // Number of phases active
Energy.voltage_available = true; // Enable if voltage is measured
Energy.current_available = true; // Enable if current is measured
Energy.power_on = true;
#ifdef USE_ENERGY_MARGIN_DETECTION
Energy.power_steady_counter = 8; // Allow for power on stabilization
#endif // USE_ENERGY_MARGIN_DETECTION
TasmotaGlobal.energy_driver = ENERGY_NONE;
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
}
void EnergySnsInit(void)
{
XnrgCall(FUNC_INIT);
if (TasmotaGlobal.energy_driver) {
Energy.kWhtoday_offset = 0;
// Energy.kWhtoday_offset = 0;
// Do not use at Power On as Rtc was invalid (but has been restored from Settings already)
if ((ResetReason() != REASON_DEFAULT_RST) && RtcSettingsValid()) {
Energy.kWhtoday_offset = RtcSettings.energy_kWhtoday;
Energy.kWhtoday_offset_init = true;
}
Energy.kWhtoday = 0;
Energy.kWhtoday_delta = 0;
// Energy.kWhtoday = 0;
// Energy.kWhtoday_delta = 0;
Energy.period = Energy.kWhtoday_offset;
EnergyUpdateToday();
ticker_energy.attach_ms(200, Energy200ms);
@ -1007,9 +1031,9 @@ void EnergyShow(bool json)
energy_tariff = true;
}
char value_chr[FLOATSZ *3]; // Used by EnergyFormatIndex
char value2_chr[FLOATSZ *3];
char value3_chr[FLOATSZ *3];
char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex
char value2_chr[FLOATSZ * ENERGY_MAX_PHASES];
char value3_chr[FLOATSZ * ENERGY_MAX_PHASES];
if (json) {
bool show_energy_period = (0 == TasmotaGlobal.tele_period);
@ -1159,8 +1183,7 @@ bool Xdrv03(uint8_t function)
bool result = false;
if (FUNC_PRE_INIT == function) {
TasmotaGlobal.energy_driver = ENERGY_NONE;
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
EnergyDrvInit();
}
else if (TasmotaGlobal.energy_driver) {
switch (function) {

View File

@ -246,7 +246,7 @@ void PzemSnsInit(void)
if (PzemSerial->hardwareSerial()) {
ClaimSerial();
}
Energy.phase_count = 3; // Start off with three phases
Energy.phase_count = ENERGY_MAX_PHASES; // Start off with three phases
Pzem.phase = 0;
Pzem.read_state = 1;
} else {
@ -266,7 +266,7 @@ bool PzemCommand(void)
bool serviced = true;
if (CMND_MODULEADDRESS == Energy.command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4)) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= ENERGY_MAX_PHASES)) {
Pzem.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3
}
}

View File

@ -121,7 +121,7 @@ void PzemAcSnsInit(void)
uint8_t result = PzemAcModbus->Begin(9600);
if (result) {
if (2 == result) { ClaimSerial(); }
Energy.phase_count = 3; // Start off with three phases
Energy.phase_count = ENERGY_MAX_PHASES; // Start off with three phases
PzemAc.phase = 0;
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;

View File

@ -118,7 +118,7 @@ void PzemDcSnsInit(void)
if (result) {
if (2 == result) { ClaimSerial(); }
Energy.type_dc = true;
Energy.phase_count = 3; // Start off with three channels
Energy.phase_count = ENERGY_MAX_PHASES; // Start off with three channels
PzemDc.channel = 0;
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;

View File

@ -113,7 +113,7 @@ void NrgDummyDrvInit(void) {
Settings.energy_power_calibration = NRG_DUMMY_PREF;
}
Energy.phase_count = (TasmotaGlobal.devices_present < 3) ? TasmotaGlobal.devices_present : 3;
Energy.phase_count = (TasmotaGlobal.devices_present < ENERGY_MAX_PHASES) ? TasmotaGlobal.devices_present : ENERGY_MAX_PHASES;
Energy.voltage_common = NRG_DUMMY_U_COMMON; // Phase voltage = false, Common voltage = true
Energy.frequency_common = NRG_DUMMY_F_COMMON; // Phase frequency = false, Common frequency = true
Energy.type_dc = NRG_DUMMY_DC; // AC = false, DC = true;