Adding HRE interface for en-GB

This commit is contained in:
Jon Little 2019-03-23 18:26:03 -05:00
parent feb11dd49e
commit 3ad8046166
4 changed files with 319 additions and 2 deletions

View File

@ -69,6 +69,7 @@
#define D_JSON_FLASHCHIPID "FlashChipId"
#define D_JSON_FLASHMODE "FlashMode"
#define D_JSON_FLASHSIZE "FlashSize"
#define D_JSON_FLOWRATE "FlowRate"
#define D_JSON_FREEMEMORY "Free"
#define D_JSON_FREQUENCY "Frequency"
#define D_JSON_FROM "from"
@ -143,6 +144,7 @@
#define D_JSON_TIME "Time"
#define D_JSON_TODAY "Today"
#define D_JSON_TOTAL "Total"
#define D_JSON_TOTAL_USAGE "TotalUsage"
#define D_JSON_TOTAL_REACTIVE "TotalReactivePower"
#define D_JSON_TOTAL_START_TIME "TotalStartTime"
#define D_JSON_TVOC "TVOC"
@ -515,6 +517,8 @@ const char S_JSON_DRIVER_INDEX_SVALUE[] PROGMEM = "{\"" D_CMND_DRIVE
const char JSON_SNS_TEMP[] PROGMEM = ",\"%s\":{\"" D_JSON_TEMPERATURE "\":%s}";
const char JSON_SNS_TEMPHUM[] PROGMEM = ",\"%s\":{\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_HUMIDITY "\":%s}";
const char JSON_SNS_GNGPM[] PROGMEM = "%s,\"%s\":{\"" D_JSON_TOTAL_USAGE "\":%s,\"" D_JSON_FLOWRATE "\":%s}";
const char S_LOG_I2C_FOUND_AT[] PROGMEM = D_LOG_I2C "%s " D_FOUND_AT " 0x%x";
const char S_LOG_HTTP[] PROGMEM = D_LOG_HTTP;
@ -569,6 +573,8 @@ const char HTTP_SNS_ANALOG[] PROGMEM = "{s}%s " D_ANALOG_INPUT "%d{m}%d{e}";
const char HTTP_SNS_ILLUMINANCE[] PROGMEM = "{s}%s " D_ILLUMINANCE "{m}%d " D_UNIT_LUX "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_SNS_CO2[] PROGMEM = "{s}%s " D_CO2 "{m}%d " D_UNIT_PARTS_PER_MILLION "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_SNS_CO2EAVG[] PROGMEM = "{s}%s " D_ECO2 "{m}%d " D_UNIT_PARTS_PER_MILLION "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_SNS_GALLONS[] PROGMEM = "{s}%s " D_TOTAL_USAGE "{m}%s " D_UNIT_GALLONS " {e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_SNS_GPM[] PROGMEM = "{s}%s " D_FLOW_RATE "{m}%s " D_UNIT_GALLONS_PER_MIN" {e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char S_MAIN_MENU[] PROGMEM = D_MAIN_MENU;
const char S_CONFIGURATION[] PROGMEM = D_CONFIGURATION;

View File

@ -93,6 +93,7 @@
#define D_FALLBACK_TOPIC "Fallback Topic"
#define D_FALSE "False"
#define D_FILE "File"
#define D_FLOW_RATE "Flow rate"
#define D_FREE_MEMORY "Free Memory"
#define D_FREQUENCY "Frequency"
#define D_GAS "Gas"
@ -156,6 +157,7 @@
#define D_TO "to"
#define D_TOGGLE "Toggle"
#define D_TOPIC "Topic"
#define D_TOTAL_USAGE "Total Usage"
#define D_TRANSMIT "Transmit"
#define D_TRUE "True"
#define D_TVOC "TVOC"
@ -576,12 +578,15 @@
#define D_SENSOR_TXD "Serial Tx"
#define D_SENSOR_RXD "Serial Rx"
#define D_SENSOR_ROTARY "Rotary" // Suffix "1A"
#define D_SENSOR_HRE_CLOCK "HRE Clock"
#define D_SENSOR_HRE_DATA "HRE Data"
// Units
#define D_UNIT_AMPERE "A"
#define D_UNIT_CENTIMETER "cm"
#define D_UNIT_HERTZ "Hz"
#define D_UNIT_HOUR "Hr"
#define D_UNIT_GALLONS "gal"
#define D_UNIT_GALLONS_PER_MIN "g/m"
#define D_UNIT_INCREMENTS "inc"
#define D_UNIT_KILOGRAM "kg"
#define D_UNIT_KILOMETER_PER_HOUR "km/h" // or "km/h"

View File

@ -178,6 +178,8 @@ enum UserSelectablePins {
GPIO_ROT1B, // Rotary switch1 B Pin
GPIO_ROT2A, // Rotary switch2 A Pin
GPIO_ROT2B, // Rotary switch2 B Pin
GPIO_HRE_CLOCK, // Clock/Power line for HR-E Water Meter
GPIO_HRE_DATA, // Data line for HR-E Water Meter
GPIO_SENSOR_END };
// Programmer selectable GPIO functionality
@ -241,6 +243,7 @@ const char kSensorNames[] PROGMEM =
D_SENSOR_CSE7766_TX "|" D_SENSOR_CSE7766_RX "|"
D_SENSOR_ARIRFRCV "|" D_SENSOR_TXD "|" D_SENSOR_RXD "|"
D_SENSOR_ROTARY "1a|" D_SENSOR_ROTARY "1b|" D_SENSOR_ROTARY "2a|" D_SENSOR_ROTARY "2b|"
D_SENSOR_HRE_CLOCK "|" D_SENSOR_HRE_DATA "|"
;
/********************************************************************************************/
@ -584,7 +587,11 @@ const uint8_t kGpioNiceList[] PROGMEM = {
GPIO_ROT1B, // Rotary switch1 B Pin
GPIO_ROT2A, // Rotary switch2 A Pin
GPIO_ROT2B, // Rotary switch2 B Pin
GPIO_ARIRFRCV // AliLux RF Receive input
GPIO_ARIRFRCV, // AliLux RF Receive input
#ifdef USE_HRE
GPIO_HRE_CLOCK,
GPIO_HRE_DATA
#endif
};
const uint8_t kModuleNiceList[MAXMODULE] PROGMEM = {

299
sonoff/xsns_91_hre.ino Normal file
View File

@ -0,0 +1,299 @@
/*
xsns_07_sht1x.ino - SHT1x temperature and sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* HR-E LCD Water meter register interface
*
* https://www.badgermeter.com/business-lines/utility/high-resolution-lcd-encoders-hr-e-lcd/
* Source: Jon Little, https://github.com/burundiocibu/particle/blob/master/water_meter/src/HRE_Reader.cpp
*
* This code marches the bits out the data line as ASCII characters with the form
* KG44?Q45484=0444444V;RB000000022;IB018435683
* where the RB...; is the miligalons used
*
* Note that this sensor takes a _long_ time to read. 62 bits * 4 ms/bit for the
* sync sequence plus 46 bytes * 40 ms/byte = 2088 ms minimum. If we aren't alligned
* to the sync sequence, it could be almost twice that.
* To keep from bogging the kernel down, we read 8 bits at a time on the 50 ms callback.
* It will take seconds to discover if the device is there.
*
* In lieu of an actual schematic to describe the electrical interface, here is a description:
*
* hre_clock_pin: drives the power/clock for the water meter through a 1k resister to
* the base of a pnp transistor
* hre_data_pin: is the data and has a 1 k pulldown
*
* The pnp transitor has the collector connected to the power/clock and is pulled up
* to +5 via a 1 k resistor.
* The emitter is connected to ground
*
\*********************************************************************************************/
#ifdef USE_HRE
#define XSNS_91 91
enum hre_states {
hre_idle, // Initial state,
hre_sync, // Start search for sync sequence
hre_syncing, // Searching for sync sequence
hre_read, // Start reading data block
hre_reading, // Reading data
hre_sleep, // Start sleeping
hre_sleeping // pausing before reading again
};
hre_states hre_state = hre_idle;
float hre_usage = 0; // total water usage, in gal
float hre_rate = 0; // flow rate, in gal/min
uint32_t hre_usage_time = 0; // uptime associated with hre_usage and hre_rate
int hre_read_errors = 0; // total number of read errors since boot
bool hre_good = false;
// The settling times here were determined using a single unit hooked to a scope
int hreReadBit()
{
digitalWrite(pin[GPIO_HRE_CLOCK], HIGH);
delay(1);
int bit = digitalRead(pin[GPIO_HRE_DATA]);
digitalWrite(pin[GPIO_HRE_CLOCK], LOW);
delay(1);
return bit;
}
// With the times in the HreReadBit routine, a characer will take
// 20 ms plus io time.
char hreReadChar(int &parity_errors)
{
// start bit
hreReadBit();
unsigned ch=0;
int sum=0;
for (int i=0; i<7; i++)
{
int b = hreReadBit();
ch |= b << i;
sum += b;
}
// parity
if ( (sum & 0x1) != hreReadBit())
parity_errors++;
// stop bit
hreReadBit();
return ch;
}
void hreInit(void)
{
hre_read_errors = 0;
hre_good = false;
pinMode(pin[GPIO_HRE_CLOCK], OUTPUT);
pinMode(pin[GPIO_HRE_DATA], INPUT);
// Note that the level shifter inverts this line and we want to leave it
// high when not being read.
digitalWrite(pin[GPIO_HRE_CLOCK], LOW);
hre_state = hre_sync;
}
void hreEvery50ms(void)
{
static int sync_counter = 0; // Number of sync bit reads
static int sync_run = 0; // Number of consecutive '1's read
static uint32_t curr_start = 0; // uptime when entered hre_reading for current read
static int read_counter = 0; // number of bytes in the current read
static int parity_errors = 0; // Number of parity errors in current read
static char buff[46]; // 8 char and a term
static char aux[46]; // 8 char and a term
static char ch;
static size_t i;
switch (hre_state)
{
case hre_sync:
if (uptime < 15)
break;
sync_run = 0;
sync_counter = 0;
hre_state = hre_syncing;
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: state:syncing"));
AddLog(LOG_LEVEL_DEBUG);
break;
case hre_syncing:
// Find the header, a string of 62 '1's
// Note that on startup, this could take a a whole block (46 bytes)
// before we start seeing the header
for (int i=0; i<8; i++)
{
if (hreReadBit())
sync_run++;
else
sync_run = 0;
if (sync_run == 62)
{
hre_state = hre_read;
break;
}
sync_counter++;
}
// If the meter doesn't get in sync within 1000 bits, give up for now
if (sync_counter > 1000)
{
hre_state = hre_sleep;
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: sync error"));
AddLog(LOG_LEVEL_DEBUG);
}
break;
// Start reading the data block
case hre_read:
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: sync_run:%d, sync_counter:%d"), sync_run, sync_counter);
AddLog(LOG_LEVEL_DEBUG);
read_counter = 0;
parity_errors = 0;
curr_start = uptime;
memset(buff, 0, sizeof(buff));
hre_state = hre_reading;
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: state:reading"));
AddLog(LOG_LEVEL_DEBUG);
// So this is intended to fall through to the hre_reading section.
// it seems that if there is much of a delay between getting the sync
// bits and starting the read, the HRE won't output the message we
// are looking for...
case hre_reading:
//ch = hreReadChar(parity_errors);
//i = read_counter - 24; // The water usage reading starts 24 bytes into the block
//if (i>=0 && i<sizeof(buff))
// buff[i] = ch;
buff[read_counter] = hreReadChar(parity_errors);
read_counter++;
if (read_counter == 46)
{
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: pe:%d, buff:%s"), parity_errors, buff);
AddLog(LOG_LEVEL_DEBUG);
if (parity_errors == 0)
{
float curr_usage;
curr_usage = 0.01 * atol(buff+24); // useage in gal
if (hre_usage_time)
{
double dt = 1.666e-2 * (curr_start - hre_usage_time); // dt in minutes
hre_rate = (curr_usage - hre_usage)/dt; // gallons/min
}
hre_usage = curr_usage;
hre_usage_time = curr_start;
hre_good = true;
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: usage:%.2f, rate:%.3f"), hre_usage, hre_rate);
AddLog(LOG_LEVEL_DEBUG);
hre_state = hre_sleep;
}
else
{
hre_read_errors++;
hre_state = hre_sleep;
}
}
break;
case hre_sleep:
hre_usage_time = curr_start;
hre_state = hre_sleeping;
snprintf_P(log_data, sizeof(log_data), PSTR("HRE: state:sleeping"));
AddLog(LOG_LEVEL_DEBUG);
case hre_sleeping:
if (uptime - hre_usage_time > 27)
hre_state = hre_sync;
}
}
void hreShow(boolean json)
{
if (!hre_good)
return;
const char hre_types[] = "HRE";
char usage[33];
char rate[33];
dtostrfd(hre_usage, 2, usage);
dtostrfd(hre_rate, 3, rate);
if (json)
{
snprintf_P(mqtt_data, sizeof(mqtt_data), JSON_SNS_GNGPM, mqtt_data, hre_types, usage, rate);
#ifdef USE_WEBSERVER
}
else
{
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_GALLONS, mqtt_data, hre_types, usage);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_GPM, mqtt_data, hre_types, rate);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns91(byte function)
{
// If we don't have pins assigned give up quickly.
if (pin[GPIO_HRE_CLOCK] >= 99 || pin[GPIO_HRE_DATA] >= 99)
return false;
switch (function)
{
case FUNC_INIT:
hreInit();
break;
case FUNC_EVERY_50_MSECOND:
hreEvery50ms();
break;
case FUNC_EVERY_SECOND:
break;
case FUNC_JSON_APPEND:
hreShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
hreShow(0);
break;
#endif // USE_WEBSERVER
}
return false;
}
#endif // USE_HRE