Fix possible buffer overflows with exception

This commit is contained in:
Theo Arends 2022-10-11 11:10:47 +02:00
parent 7e67f33d76
commit 3c7a5ebfd3
7 changed files with 340 additions and 176 deletions

View File

@ -203,6 +203,7 @@ const uint16_t MAX_INPUT_BUFFER_SIZE = 2048; // Max number of characters in Ardu
const uint16_t FLOATSZ = 16; // Max number of characters in float result from dtostrfd (max 32)
const uint16_t CMDSZ = 24; // Max number of characters in command
const uint16_t TOPSZ = 151; // Max number of characters in topic string
const uint16_t GUISZ = 300; // Max number of characters in WebEnergyFormat string
#ifdef ESP8266
#ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED

View File

@ -237,10 +237,10 @@ void Sdm220Show(bool json) {
void Sdm220Show(bool json) {
if (isnan(Sdm120.import_active)) { return; }
char value_chr[TOPSZ];
char value2_chr[TOPSZ];
char value3_chr[TOPSZ];
char value4_chr[TOPSZ];
char value_chr[GUISZ];
char value2_chr[GUISZ];
char value3_chr[GUISZ];
char value4_chr[GUISZ];
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s,\"" D_JSON_IMPORT_REACTIVE "\":%s,\"" D_JSON_EXPORT_REACTIVE "\":%s,\"" D_JSON_PHASE_ANGLE "\":%s"),

View File

@ -262,8 +262,8 @@ void FifLEShow(bool json) {
*/
void FifLEShow(bool json) {
char value_chr[TOPSZ];
char value2_chr[TOPSZ];
char value_chr[GUISZ];
char value2_chr[GUISZ];
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL_ACTIVE "\":%s,\"" D_JSON_TOTAL_REACTIVE "\":%s"),

View File

@ -185,8 +185,8 @@ const char HTTP_ENERGY_SDM72[] PROGMEM =
void Sdm72Show(bool json) {
if (isnan(Sdm72.total_active)) { return; }
char value_chr[TOPSZ];
char value2_chr[TOPSZ];
char value_chr[GUISZ];
char value2_chr[GUISZ];
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_POWER "\":%s,\"" D_JSON_IMPORT_POWER "\":%s"),

View File

@ -244,9 +244,9 @@ void Sdm230Show(bool json) {
*/
void Sdm230Show(bool json) {
char value_chr[TOPSZ];
char value2_chr[TOPSZ];
char value3_chr[TOPSZ];
char value_chr[GUISZ];
char value2_chr[GUISZ];
char value3_chr[GUISZ];
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_PHASE_ANGLE "\":%s,\"" D_JSON_POWERMAX "\":%s,\"" D_JSON_RESETTABLE_TOTAL_ACTIVE "\":%s"),

View File

@ -738,7 +738,7 @@ const char HTTP_ADE7880_CURRENT[] PROGMEM = "{s}" D_CURRENT_NEUTRAL "{m}%s " D_U
#endif // USE_WEBSERVER
void Ade7880Show(bool json) {
char value_chr[TOPSZ];
char value_chr[GUISZ];
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT_NEUTRAL "\":%s"),

View File

@ -91,32 +91,44 @@
* rule3 on file#modbus do {"Name":"SDM230 test4","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":24},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM230 test5","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":[0x004E,0x004E,0x004E],"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM120 test1","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x0048,"J":"ImportActive","G":"Import Active","U":"kWh","D":24},{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":24},{"R":0x004C,"J":"ImportReactive","G":"Import Reactive","U":"kVArh","D":24},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
*
* rule3 on file#modbus do {"Name":"SDM230 test6","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":{"R":0,"T":0,"M":1},"Current":{"R":6,"T":0,"M":1},"Power":{"R":12,"T":0,"M":1},"Frequency":70,"Total":342} endon
* rule3 on file#modbus do {"Name":"SDM230 test6","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":{"R":0,"T":0,"M":1},"Current":{"R":6,"T":0,"M":1},"Power":{"R":12,"T":0,"M":1},"Frequency":70,"Total":342,"User":{"R":0x0048,"T":0,"M":10,"J":"ImportActive","G":"Import Active","U":"kWh","D":24}} endon
\*********************************************************************************************/
#define XNRG_29 29
#define XNRG_29 29
#define ENERGY_MODBUS_SPEED 9600 // Default Modbus baudrate
#define ENERGY_MODBUS_CONFIG TS_SERIAL_8N1 // Default Modbus serial configuration
#define ENERGY_MODBUS_ADDR 1 // Default Modbus device_address
#define ENERGY_MODBUS_FUNC 0x04 // Default Modbus function code
#define ENERGY_MODBUS_SPEED 9600 // Default Modbus baudrate
#define ENERGY_MODBUS_CONFIG TS_SERIAL_8N1 // Default Modbus serial configuration
#define ENERGY_MODBUS_ADDR 1 // Default Modbus device_address
#define ENERGY_MODBUS_FUNC 0x04 // Default Modbus function code
#define ENERGY_MODBUS_UNITS "" // Default user GUI unit
#define ENERGY_MODBUS_DECIMALS 0 // Default user decimal resolution
#define ENERGY_MODBUS_DATATYPE 0 // Default Modbus datatype is 4-byte float
#define ENERGY_MODBUS_DIVIDER 1 // Default Modbus data divider
//#define ENERGY_MODBUS_DEBUG
#define ENERGY_MODBUS_DECIMALS 0 // Default user decimal resolution
#define ENERGY_MODBUS_DEBUG
//#define ENERGY_MODBUS_DEBUG_SHOW
const uint16_t nrg_mbs_reg_not_used = 1; // Odd number 1 is unused register
const uint16_t nrg_mbs_reg_not_used = 1; // Odd number 1 is unused register
enum EnergyModbusResolutions { NRG_RES_VOLTAGE = 21, // V
NRG_RES_CURRENT, // A
NRG_RES_POWER, // W, VA, VAr
NRG_RES_ENERGY, // kWh, kVAh, kVArh
NRG_RES_FREQUENCY, // Hz
NRG_RES_TEMPERATURE, // C, F
NRG_RES_HUMIDITY, // %
NRG_RES_PRESSURE, // hPa, mmHg
NRG_RES_WEIGHT }; // Kg
enum EnergyModbusDataType { NRG_DT_FLOAT, // 4-byte float
NRG_DT_S16, // 2-byte signed
NRG_DT_S32, // 4-byte signed
NRG_DT_U16, // 2-byte unsigned
NRG_DT_U32, // 4-byte unsigned
NRG_DT_MAX };
enum EnergyModbusResolutions { NRG_RES_VOLTAGE = 21, // V
NRG_RES_CURRENT, // A
NRG_RES_POWER, // W, VA, VAr
NRG_RES_ENERGY, // kWh, kVAh, kVArh
NRG_RES_FREQUENCY, // Hz
NRG_RES_TEMPERATURE, // C, F
NRG_RES_HUMIDITY, // %
NRG_RES_PRESSURE, // hPa, mmHg
NRG_RES_WEIGHT }; // Kg
enum EnergyModbusRegisters { NRG_MBS_VOLTAGE,
NRG_MBS_CURRENT,
@ -144,11 +156,13 @@ const char kEnergyModbusValues[] PROGMEM = D_JSON_VOLTAGE "|" // Vo
TasmotaModbus *EnergyModbus;
#include <Ticker.h>
Ticker ticker_energy_modbus;
/*
struct NRGMODBUS {
uint32_t serial_bps;
uint32_t serial_config;
uint16_t register_divider[NRG_MBS_MAX_REGS];
uint16_t register_address[NRG_MBS_MAX_REGS][ENERGY_MAX_PHASES];
uint8_t register_datatype[NRG_MBS_MAX_REGS];
uint8_t device_address;
uint8_t function;
uint8_t user_adds;
@ -160,32 +174,85 @@ struct NRGMODBUS {
typedef struct NRGMODBUSUSER {
float register_data[ENERGY_MAX_PHASES];
uint16_t register_divider;
uint16_t register_address[ENERGY_MAX_PHASES];
uint8_t register_datatype;
uint8_t resolution;
String json_name;
String gui_name;
String gui_unit;
} NrgModbusUser_t;
NrgModbusUser_t* NrgModbusUser = nullptr;
*/
struct NRGMBSPARAM {
uint32_t serial_bps;
uint32_t serial_config;
uint8_t device_address;
uint8_t function;
uint8_t total_regs;
uint8_t user_adds;
uint8_t phase;
uint8_t state;
uint8_t retry;
bool mutex;
} NrgMbsParam;
typedef struct NRGMBSREGISTER {
uint16_t address[ENERGY_MAX_PHASES];
uint16_t divider;
uint32_t datatype;
} NrgMbsRegister_t;
NrgMbsRegister_t* NrgMbsReg = nullptr;
typedef struct NRGMBSUSER {
float data[ENERGY_MAX_PHASES];
char* json_name;
char* gui_name;
char* gui_unit;
uint32_t resolution;
} NrgMbsUser_t;
NrgMbsUser_t* NrgMbsUser = nullptr;
/*********************************************************************************************/
char EmptyStr[1] = { 0 };
char* SetStr(const char* str) {
if (nullptr == str) { str = PSTR(""); } // nullptr is considered empty string
size_t str_len = strlen(str);
if (0 == str_len) { return EmptyStr; } // return empty string
char* new_str = (char*) malloc(str_len + 1);
strlcpy(new_str, str, str_len + 1);
return new_str;
}
/*********************************************************************************************/
void EnergyModbusLoop(void) {
if (NrgModbus->mutex) { return; }
if (NrgMbsParam.mutex) { return; }
// AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: EnergyModbusLoop() entry"));
/*
if (TheoTest) {
AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: EnergyModbusLoop() entry"));
}
*/
NrgModbus->mutex = 1;
NrgMbsParam.mutex = 1;
uint32_t register_count;
uint16_t register_address;
bool data_ready = EnergyModbus->ReceiveReady();
if (data_ready) {
uint8_t buffer[9]; // At least 5 + (2 * 2) = 9
uint32_t error = EnergyModbus->ReceiveBuffer(buffer, 2);
uint8_t buffer[15]; // At least 5 + (2 * 2) = 9
register_count = 2 - (NrgMbsReg[NrgMbsParam.state].datatype & 1);
uint32_t error = EnergyModbus->ReceiveBuffer(buffer, register_count);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Modbus register %d, phase %d, rcvd %*_H"),
NrgModbus->state, NrgModbus->phase, EnergyModbus->ReceiveCount(), buffer);
NrgMbsParam.state, NrgMbsParam.phase, EnergyModbus->ReceiveCount(), buffer);
if (error) {
/* Return codes from TasmotaModbus.h:
@ -207,105 +274,132 @@ void EnergyModbusLoop(void) {
*/
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Modbus error %d"), error);
} else {
Energy.data_valid[NrgModbus->phase] = 0;
Energy.data_valid[NrgMbsParam.phase] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
float value;
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
switch (NrgMbsReg[NrgMbsParam.state].datatype) {
case NRG_DT_FLOAT: {
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
break;
}
case NRG_DT_S16: {
int16_t value_buff = ((int16_t)buffer[3])<<8 | buffer[4];
value = (float)value_buff;
break;
}
case NRG_DT_U16: {
uint16_t value_buff = ((uint16_t)buffer[3])<<8 | buffer[4];
value = (float)value_buff;
break;
}
case NRG_DT_S32: {
int32_t value_buff = ((int32_t)buffer[3])<<24 | ((uint32_t)buffer[4])<<16 | ((uint32_t)buffer[5])<<8 | buffer[6];
value = (float)value_buff;
break;
}
case NRG_DT_U32: {
uint32_t value_buff = ((uint32_t)buffer[3])<<24 | ((uint32_t)buffer[4])<<16 | ((uint32_t)buffer[5])<<8 | buffer[6];
value = (float)value_buff;
break;
}
}
value /= NrgMbsReg[NrgMbsParam.state].divider;
switch(NrgModbus->state) {
switch (NrgMbsParam.state) {
case NRG_MBS_VOLTAGE:
Energy.voltage[NrgModbus->phase] = value; // 230.2 V
Energy.voltage[NrgMbsParam.phase] = value; // 230.2 V
break;
case NRG_MBS_CURRENT:
Energy.current[NrgModbus->phase] = value; // 1.260 A
Energy.current[NrgMbsParam.phase] = value; // 1.260 A
break;
case NRG_MBS_ACTIVE_POWER:
Energy.active_power[NrgModbus->phase] = value; // -196.3 W
Energy.active_power[NrgMbsParam.phase] = value; // -196.3 W
break;
case NRG_MBS_APPARENT_POWER:
Energy.apparent_power[NrgModbus->phase] = value; // 223.4 VA
Energy.apparent_power[NrgMbsParam.phase] = value; // 223.4 VA
break;
case NRG_MBS_REACTIVE_POWER:
Energy.reactive_power[NrgModbus->phase] = value; // 92.2
Energy.reactive_power[NrgMbsParam.phase] = value; // 92.2
break;
case NRG_MBS_POWER_FACTOR:
Energy.power_factor[NrgModbus->phase] = value; // -0.91
Energy.power_factor[NrgMbsParam.phase] = value; // -0.91
break;
case NRG_MBS_FREQUENCY:
Energy.frequency[NrgModbus->phase] = value; // 50.0 Hz
Energy.frequency[NrgMbsParam.phase] = value; // 50.0 Hz
break;
case NRG_MBS_TOTAL_ENERGY:
Energy.import_active[NrgModbus->phase] = value; // 6.216 kWh => used in EnergyUpdateTotal()
Energy.import_active[NrgMbsParam.phase] = value; // 6.216 kWh => used in EnergyUpdateTotal()
break;
case NRG_MBS_EXPORT_ACTIVE_ENERGY:
Energy.export_active[NrgModbus->phase] = value; // 478.492 kWh
Energy.export_active[NrgMbsParam.phase] = value; // 478.492 kWh
break;
default:
if (NrgModbusUser) {
NrgModbusUser[NrgModbus->state - NRG_MBS_MAX_REGS].register_data[NrgModbus->phase] = value;
if (NrgMbsUser) {
NrgMbsUser[NrgMbsParam.state - NRG_MBS_MAX_REGS].data[NrgMbsParam.phase] = value;
}
}
do {
NrgModbus->phase++;
if (NrgModbus->phase >= Energy.phase_count) {
NrgModbus->phase = 0;
NrgModbus->state++;
if (NrgModbus->state >= NRG_MBS_MAX_REGS + NrgModbus->user_adds) {
NrgModbus->state = 0;
NrgModbus->phase = 0;
NrgMbsParam.phase++;
if (NrgMbsParam.phase >= Energy.phase_count) {
NrgMbsParam.phase = 0;
NrgMbsParam.state++;
if (NrgMbsParam.state >= NrgMbsParam.total_regs) {
NrgMbsParam.state = 0;
NrgMbsParam.phase = 0;
EnergyUpdateTotal(); // update every cycle after all registers have been read
break;
}
}
delay(0);
register_address = (NrgModbus->state < NRG_MBS_MAX_REGS) ? NrgModbus->register_address[NrgModbus->state][NrgModbus->phase] :
NrgModbusUser[NrgModbus->state - NRG_MBS_MAX_REGS].register_address[NrgModbus->phase];
} while (register_address == nrg_mbs_reg_not_used);
} while (NrgMbsReg[NrgMbsParam.state].address[NrgMbsParam.phase] == nrg_mbs_reg_not_used);
}
} // end data ready
if (0 == NrgModbus->retry || data_ready) {
NrgModbus->retry = 1;
register_address = (NrgModbus->state < NRG_MBS_MAX_REGS) ? NrgModbus->register_address[NrgModbus->state][NrgModbus->phase] :
NrgModbusUser[NrgModbus->state - NRG_MBS_MAX_REGS].register_address[NrgModbus->phase];
EnergyModbus->Send(NrgModbus->device_address, NrgModbus->function, register_address, 2);
if (0 == NrgMbsParam.retry || data_ready) {
NrgMbsParam.retry = 1;
register_count = 2 - (NrgMbsReg[NrgMbsParam.state].datatype & 1);
EnergyModbus->Send(NrgMbsParam.device_address, NrgMbsParam.function, NrgMbsReg[NrgMbsParam.state].address[NrgMbsParam.phase], register_count);
} else {
NrgModbus->retry--;
NrgMbsParam.retry--;
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Modbus state %d retry %d"), NrgModbus->state, NrgModbus->retry);
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Modbus state %d retry %d"), NrgMbsParam.state, NrgMbsParam.retry);
#endif
}
delay(0);
NrgModbus->mutex = 0;
// AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: EnergyModbusLoop() exit"));
NrgMbsParam.mutex = 0;
/*
if (TheoTest) {
AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: EnergyModbusLoop() exit"));
}
*/
}
#ifdef USE_RULES
bool EnergyModbusReadUserRegisters(JsonParserObject user_add_value, uint32_t add_index) {
// {"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
// {"R":0x004E,"T":0,"M":1,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
uint32_t reg_index = NRG_MBS_MAX_REGS + add_index;
JsonParserToken val;
val = user_add_value[PSTR("R")]; // Register address
uint32_t phase = 0;
if (val.isArray()) {
JsonParserArray address_arr = val.getArray();
for (auto value : address_arr) {
NrgModbusUser[add_index].register_address[phase] = value.getUInt();
NrgMbsReg[reg_index].address[phase] = value.getUInt();
phase++;
if (phase >= ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
NrgModbusUser[add_index].register_address[0] = val.getUInt();
NrgMbsReg[reg_index].address[0] = val.getUInt();
phase++;
} else {
return false;
@ -313,39 +407,51 @@ bool EnergyModbusReadUserRegisters(JsonParserObject user_add_value, uint32_t add
if (phase > Energy.phase_count) {
Energy.phase_count = phase;
}
val = user_add_value[PSTR("T")]; // Register data type
if (val) {
// "T":0
NrgMbsReg[reg_index].datatype = val.getUInt();
}
val = user_add_value[PSTR("M")]; // Register divider
if (val) {
// "M":1
NrgMbsReg[reg_index].divider = val.getUInt();
}
val = user_add_value[PSTR("J")]; // JSON value name
if (val) {
NrgModbusUser[add_index].json_name = val.getStr();
NrgMbsUser[add_index].json_name = SetStr(val.getStr());
} else {
return false;
}
val = user_add_value[PSTR("G")]; // GUI value name
if (val) {
NrgModbusUser[add_index].gui_name = val.getStr();
NrgMbsUser[add_index].gui_name = SetStr(val.getStr());
} else {
return false;
}
NrgModbusUser[add_index].gui_unit = ENERGY_MODBUS_UNITS;
NrgMbsUser[add_index].gui_unit = EmptyStr;
val = user_add_value[PSTR("U")]; // GUI value Unit
if (val) {
NrgModbusUser[add_index].gui_unit = val.getStr();
NrgMbsUser[add_index].gui_unit = SetStr(val.getStr());
}
NrgModbusUser[add_index].resolution = ENERGY_MODBUS_DECIMALS;
NrgMbsUser[add_index].resolution = ENERGY_MODBUS_DECIMALS;
val = user_add_value[PSTR("D")]; // Decimal resolution
if (val) {
NrgModbusUser[add_index].resolution = val.getUInt();
NrgMbsUser[add_index].resolution = val.getUInt();
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], J '%s', G '%s', U '%s', D %d"),
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], T %d, M %d, J '%s', G '%s', U '%s', D %d"),
add_index,
NrgModbusUser[add_index].register_address[0],
NrgModbusUser[add_index].register_address[1],
NrgModbusUser[add_index].register_address[2],
NrgModbusUser[add_index].json_name.c_str(),
NrgModbusUser[add_index].gui_name.c_str(),
NrgModbusUser[add_index].gui_unit.c_str(),
NrgModbusUser[add_index].resolution);
NrgMbsReg[reg_index].address[0],
NrgMbsReg[reg_index].address[1],
NrgMbsReg[reg_index].address[2],
NrgMbsReg[reg_index].datatype,
NrgMbsReg[reg_index].divider,
NrgMbsUser[add_index].json_name,
NrgMbsUser[add_index].gui_name,
NrgMbsUser[add_index].gui_unit,
NrgMbsUser[add_index].resolution);
#endif
return true;
@ -368,37 +474,67 @@ bool EnergyModbusReadRegisters(void) {
JsonParserObject root = parser.getRootObject();
if (!root) { return false; } // Invalid JSON
NrgModbus = (NRGMODBUS *)calloc(1, sizeof(struct NRGMODBUS));
if (NrgModbus == nullptr) { return false; } // Unable to allocate variables on heap
// Init defaults
NrgModbus->serial_bps = ENERGY_MODBUS_SPEED;
NrgModbus->serial_config = ENERGY_MODBUS_CONFIG;
NrgModbus->device_address = ENERGY_MODBUS_ADDR;
NrgModbus->function = ENERGY_MODBUS_FUNC;
for (uint32_t i = 0; i < NRG_MBS_MAX_REGS; i++) {
NrgMbsParam.serial_bps = ENERGY_MODBUS_SPEED;
NrgMbsParam.serial_config = ENERGY_MODBUS_CONFIG;
NrgMbsParam.device_address = ENERGY_MODBUS_ADDR;
NrgMbsParam.function = ENERGY_MODBUS_FUNC;
NrgMbsParam.user_adds = 0;
JsonParserToken val;
val = root[PSTR("User")];
if (val) {
if (val.isArray()) {
// "User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]
NrgMbsParam.user_adds = val.size();
} else {
// "User":{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
NrgMbsParam.user_adds = 1;
}
}
NrgMbsParam.total_regs = NRG_MBS_MAX_REGS + NrgMbsParam.user_adds;
NrgMbsReg = (NrgMbsRegister_t*)calloc(NrgMbsParam.total_regs, sizeof(NrgMbsRegister_t));
if (NrgMbsReg == nullptr) { return false; } // Unable to allocate variables on heap
// Init defaults
for (uint32_t i = 0; i < NrgMbsParam.total_regs; i++) {
NrgMbsReg[i].datatype = ENERGY_MODBUS_DATATYPE;
NrgMbsReg[i].divider = ENERGY_MODBUS_DIVIDER;
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgModbus->register_address[i][j] = nrg_mbs_reg_not_used;
NrgMbsReg[i].address[j] = nrg_mbs_reg_not_used;
}
}
if (NrgMbsParam.user_adds) {
NrgMbsUser = (NrgMbsUser_t*)calloc(NrgMbsParam.user_adds +1, sizeof(NrgMbsUser_t));
if (NrgMbsUser == nullptr) {
NrgMbsParam.user_adds = 0;
NrgMbsParam.total_regs = NRG_MBS_MAX_REGS;
} else {
// Init defaults
for (uint32_t i = 0; i < NrgMbsParam.user_adds; i++) {
NrgMbsUser[i].resolution = ENERGY_MODBUS_DECIMALS;
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgMbsUser[i].data[j] = NAN;
}
}
}
}
JsonParserToken val;
val = root[PSTR("Baud")];
if (val) {
NrgModbus->serial_bps = val.getInt(); // 2400
NrgMbsParam.serial_bps = val.getInt(); // 2400
}
val = root[PSTR("Config")];
if (val) {
const char *serial_config = val.getStr(); // 8N1
NrgModbus->serial_config = ConvertSerialConfig(ParseSerialConfig(serial_config));
NrgMbsParam.serial_config = ConvertSerialConfig(ParseSerialConfig(serial_config));
}
val = root[PSTR("Address")];
if (val) {
NrgModbus->device_address = val.getUInt(); // 1
NrgMbsParam.device_address = val.getUInt(); // 1
}
val = root[PSTR("Function")];
if (val) {
NrgModbus->function = val.getUInt(); // 4
NrgMbsParam.function = val.getUInt(); // 4
}
char register_name[32];
@ -409,16 +545,48 @@ bool EnergyModbusReadRegisters(void) {
if (val) {
// "Voltage":0
// "Voltage":[0,0,0]
// "Voltage":{"R":0,"T":0,"M":1}
// "Voltage":{"R":[0,0,0],"T":0,"M":1}
uint32_t phase = 0;
if (val.isArray()) {
if (val.isObject()) {
// "Voltage":{"R":0,"T":0,"M":1}
// "Voltage":{"R":[0,0,0],"T":0,"M":1}
JsonParserObject register_add_values = val.getObject();
val = register_add_values[PSTR("R")]; // Register address
if (val.isArray()) {
// "R":[0,0,0]
JsonParserArray address_arr = val.getArray();
for (auto value : address_arr) {
NrgMbsReg[names].address[phase] = value.getUInt();
phase++;
if (phase >= ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
// "R":0
NrgMbsReg[names].address[0] = val.getUInt();
phase++;
}
val = register_add_values[PSTR("T")]; // Register data type
if (val) {
// "T":0
NrgMbsReg[names].datatype = val.getUInt();
}
val = register_add_values[PSTR("M")]; // Register divider
if (val) {
// "M":1
NrgMbsReg[names].divider = val.getUInt();
}
} else if (val.isArray()) {
// "Voltage":[0,0,0]
JsonParserArray arr = val.getArray();
for (auto value : arr) {
NrgModbus->register_address[names][phase] = value.getUInt();
NrgMbsReg[names].address[phase] = value.getUInt();
phase++;
if (phase >= ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
NrgModbus->register_address[names][0] = val.getUInt();
// "Voltage":0
NrgMbsReg[names].address[0] = val.getUInt();
phase++;
}
if (phase > Energy.phase_count) {
@ -445,66 +613,60 @@ bool EnergyModbusReadRegisters(void) {
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X]"),
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], T %d, M %d"),
names,
NrgModbus->register_address[names][0],
NrgModbus->register_address[names][1],
NrgModbus->register_address[names][2]);
NrgMbsReg[names].address[0],
NrgMbsReg[names].address[1],
NrgMbsReg[names].address[2],
NrgMbsReg[names].datatype,
NrgMbsReg[names].divider);
#endif
}
}
NrgModbus->user_adds = 0;
// "User":{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
// "User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]
val = root[PSTR("User")];
if (val) {
NrgModbus->user_adds = 1;
if (val.isArray()) {
NrgModbus->user_adds = val.size();
JsonParserArray user_adds_arr = val.getArray();
uint32_t add_index = 0;
for (auto user_add_values : user_adds_arr) {
if (!user_add_values.isObject()) { break; }
if (EnergyModbusReadUserRegisters(user_add_values.getObject(), add_index)) {
add_index++;
} else {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Dropped JSON user input %d"), add_index +1);
NrgMbsParam.user_adds--;
}
}
} else if (val) {
if (val.isObject()) {
if (!EnergyModbusReadUserRegisters(val.getObject(), 0)) {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Dropped JSON user input"));
NrgMbsParam.user_adds--;
}
}
}
NrgModbusUser = (NrgModbusUser_t*)calloc(NrgModbus->user_adds, sizeof(NrgModbusUser_t));
if (NrgModbusUser) {
// Init defaults
for (uint32_t i = 0; i < NrgModbus->user_adds; i++) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgModbusUser[i].register_address[j] = nrg_mbs_reg_not_used;
NrgModbusUser[i].register_data[j] = NAN;
}
}
if (val.isArray()) {
JsonParserArray user_adds_arr = val.getArray();
uint32_t add_index = 0;
for (auto user_add_values : user_adds_arr) {
if (!user_add_values.isObject()) { break; }
if (EnergyModbusReadUserRegisters(user_add_values.getObject(), add_index)) {
add_index++;
} else {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Dropped JSON user input %d"), add_index +1);
NrgModbus->user_adds--;
}
}
} else if (val) {
if (val.isObject()) {
if (!EnergyModbusReadUserRegisters(val.getObject(), 0)) {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Dropped JSON user input"));
NrgModbus->user_adds--;
}
}
}
} else {
// Unable to allocate variables on heap
NrgModbus->user_adds = 0;
NrgMbsParam.total_regs = NRG_MBS_MAX_REGS + NrgMbsParam.user_adds;
}
for (uint32_t i = 0; i < NrgMbsParam.total_regs; i++) {
if (NrgMbsReg[i].datatype >= NRG_DT_MAX) {
NrgMbsReg[i].datatype = ENERGY_MODBUS_DATATYPE;
}
if (NrgMbsReg[i].divider < 1) {
NrgMbsReg[i].divider = ENERGY_MODBUS_DIVIDER;
}
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: RAM usage %d + %d"), sizeof(struct NRGMODBUS), NrgModbus->user_adds * sizeof(NrgModbusUser_t));
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: RAM usage %d + %d + %d"), sizeof(NrgMbsParam), NrgMbsParam.total_regs * sizeof(NrgMbsRegister_t), NrgMbsParam.user_adds * sizeof(NrgMbsUser_t));
#endif
// NrgModbus->state = 0; // Set by calloc()
// NrgModbus->phase = 0;
// NrgMbsParam.state = 0; // Set by calloc()
// NrgMbsParam.phase = 0;
return true;
#endif // USE_RULES
@ -522,10 +684,10 @@ bool EnergyModbusRegisters(void) {
void EnergyModbusSnsInit(void) {
if (EnergyModbusRegisters()) {
EnergyModbus = new TasmotaModbus(Pin(GPIO_NRG_MBS_RX), Pin(GPIO_NRG_MBS_TX));
uint8_t result = EnergyModbus->Begin(NrgModbus->serial_bps, NrgModbus->serial_config);
uint8_t result = EnergyModbus->Begin(NrgMbsParam.serial_bps, NrgMbsParam.serial_config);
if (result) {
if (2 == result) { ClaimSerial(); }
ticker_energy_modbus.attach_ms(150, EnergyModbusLoop);
ticker_energy_modbus.attach_ms(200, EnergyModbusLoop);
return;
}
}
@ -543,10 +705,10 @@ void EnergyModbusDrvInit(void) {
\*********************************************************************************************/
void EnergyModbusReset(void) {
for (uint32_t i = 0; i < NrgModbus->user_adds; i++) {
for (uint32_t i = 0; i < NrgMbsParam.user_adds; i++) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
if (NrgModbusUser[i].register_address[0] != nrg_mbs_reg_not_used) {
NrgModbusUser[i].register_data[j] = 0;
if (NrgMbsReg[NRG_MBS_MAX_REGS + i].address[0] != nrg_mbs_reg_not_used) {
NrgMbsUser[i].data[j] = 0;
}
}
}
@ -579,43 +741,44 @@ uint32_t EnergyModbusResolution(uint32_t resolution) {
}
void EnergyModbusShow(bool json) {
char value_chr[TOPSZ];
for (uint32_t i = 0; i < NrgModbus->user_adds; i++) {
char value_chr[GUISZ];
float values[ENERGY_MAX_PHASES];
for (uint32_t i = 0; i < NrgMbsParam.user_adds; i++) {
uint32_t reg_index = NRG_MBS_MAX_REGS + i;
#ifdef ENERGY_MODBUS_DEBUG_SHOW
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], J '%s', G '%s', U '%s', D %d, V [%3_f,%3_f,%3_f]"),
i,
NrgModbusUser[i].register_address[0],
NrgModbusUser[i].register_address[1],
NrgModbusUser[i].register_address[2],
NrgModbusUser[i].json_name.c_str(),
NrgModbusUser[i].gui_name.c_str(),
NrgModbusUser[i].gui_unit.c_str(),
NrgModbusUser[i].resolution,
&NrgModbusUser[i].register_data[0],
&NrgModbusUser[i].register_data[1],
&NrgModbusUser[i].register_data[2]);
NrgMbsReg[reg_index].address[0],
NrgMbsReg[reg_index].address[1],
NrgMbsReg[reg_index].address[2],
NrgMbsUser[i].json_name,
NrgMbsUser[i].gui_name,
NrgMbsUser[i].gui_unit,
NrgMbsUser[i].resolution,
&NrgMbsUser[i].data[0],
&NrgMbsUser[i].data[1],
&NrgMbsUser[i].data[2]);
#endif
if ((NrgModbusUser[i].register_address[0] != nrg_mbs_reg_not_used) && !isnan(NrgModbusUser[i].register_data[0])) {
float values[ENERGY_MAX_PHASES];
if ((NrgMbsReg[reg_index].address[0] != nrg_mbs_reg_not_used) && !isnan(NrgMbsUser[i].data[0])) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
values[j] = NrgModbusUser[i].register_data[j];
values[j] = NrgMbsUser[i].data[j];
}
uint32_t resolution = EnergyModbusResolution(NrgModbusUser[i].resolution);
uint32_t resolution = EnergyModbusResolution(NrgMbsUser[i].resolution);
#ifdef ENERGY_MODBUS_DEBUG_SHOW
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: resolution %d -> %d"), NrgModbusUser[i].resolution, resolution);
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: resolution %d -> %d"), NrgMbsUser[i].resolution, resolution);
#endif
if (json) {
ResponseAppend_P(PSTR(",\"%s\":%s"), NrgModbusUser[i].json_name.c_str(), EnergyFormat(value_chr, values, resolution));
ResponseAppend_P(PSTR(",\"%s\":%s"), NrgMbsUser[i].json_name, EnergyFormat(value_chr, values, resolution));
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(PSTR("{s}%s{m}%s %s{e}"),
NrgModbusUser[i].gui_name.c_str(),
NrgMbsUser[i].gui_name,
WebEnergyFormat(value_chr, values, resolution),
NrgModbusUser[i].gui_unit.c_str());
NrgMbsUser[i].gui_unit);
#endif // USE_WEBSERVER
}
}