diff --git a/README.md b/README.md index 148f00818..4fa7d6e4a 100644 --- a/README.md +++ b/README.md @@ -147,6 +147,7 @@ People helping to keep the show on the road: - Christian Staars for NRF24L01 and HM-10 Bluetooth sensor support - Paul Diem for UDP Group communication support - Jörg Schüler-Maroldt for his initial ESP32 port +- Javier Arigita for his thermostat driver - Many more providing Tips, Wips, Pocs, PRs and Donations ## License diff --git a/tasmota/my_user_config.h b/tasmota/my_user_config.h index 60c4f87fb..2e3eb4a5f 100644 --- a/tasmota/my_user_config.h +++ b/tasmota/my_user_config.h @@ -675,13 +675,12 @@ #define THERMOSTAT_SENSOR_NAME "DS18B20" // Name of the local sensor to be used #define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number for the first controller (+i for following ones) #define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number for the first controller (+i for following ones) - #define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes + #define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time after last target update to allow ramp-up controller phase in minutes #define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes - #define THERMOSTAT_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds + #define THERMOSTAT_TIME_RAMPUP_CYCLE 30 // Default time ramp-up cycle in minutes #define THERMOSTAT_TIME_SENS_LOST 30 // Maximum time w/o sensor update to set it as lost in minutes #define THERMOSTAT_TEMP_SENS_NUMBER 1 // Default temperature sensor number #define THERMOSTAT_TIME_MANUAL_TO_AUTO 60 // Default time without input switch active to change from manual to automatic in minutes - #define THERMOSTAT_TIME_ON_LIMIT 120 // Default maximum time with output active in minutes #define THERMOSTAT_TIME_RESET 12000 // Default reset time of the PI controller in seconds #define THERMOSTAT_TIME_PI_CYCLE 30 // Default cycle time for the thermostat controller in minutes #define THERMOSTAT_TIME_MAX_ACTION 20 // Default maximum thermostat time per cycle in minutes diff --git a/tasmota/xdrv_39_thermostat.ino b/tasmota/xdrv_39_thermostat.ino index 0ccf777ad..5c9fc2739 100644 --- a/tasmota/xdrv_39_thermostat.ino +++ b/tasmota/xdrv_39_thermostat.ino @@ -134,18 +134,18 @@ const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CM D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|" - D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TIMEONLIMITSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" - D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" - D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" - D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" - D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET; + D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" + D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|" + D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" + D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" + D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET; void (* const ThermostatCommand[])(void) PROGMEM = { &CmndThermostatModeSet, &CmndClimateModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndInputSwitchUse, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet, - &CmndTimeOnLimitSet, &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, - &CmndTempHystSet, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, + &CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, + &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet }; @@ -183,16 +183,15 @@ struct THERMOSTAT { int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees uint16_t time_rampup_max = THERMOSTAT_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes - uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in seconds + uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in minutes uint16_t time_allow_rampup = THERMOSTAT_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase - uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost + uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost in minutes uint16_t time_manual_to_auto = THERMOSTAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes - uint16_t time_on_limit = THERMOSTAT_TIME_ON_LIMIT; // Maximum time with output active in minutes - uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE; // Cycle time for the thermostat controller in seconds uint32_t time_reset = THERMOSTAT_TIME_RESET; // Reset time of the PI controller in seconds + uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE; // Cycle time for the thermostat controller in minutes uint16_t time_max_action = THERMOSTAT_TIME_MAX_ACTION; // Maximum thermostat time per cycle in minutes uint16_t time_min_action = THERMOSTAT_TIME_MIN_ACTION; // Minimum thermostat time per cycle in minutes - uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will be held on + uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will stay on uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius @@ -605,7 +604,7 @@ void ThermostatCalculatePI(uint8_t ctr_output) // Antiwindup of the integrator // If integral calculation is bigger than cycle time, adjust result - // to the cycle time and error will not be cummulated]] + // to the cycle time and error will not be cummulated if (Thermostat[ctr_output].time_integral_pi > ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { Thermostat[ctr_output].time_integral_pi = ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60); } @@ -616,7 +615,7 @@ void ThermostatCalculatePI(uint8_t ctr_output) // Antiwindup of the output // If result is bigger than cycle time, the result will be adjusted - // to the cylce time minus safety time and error will not be cummulated]] + // to the cylce time minus safety time and error will not be cummulated if (Thermostat[ctr_output].time_total_pi >= ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) { // Limit to cycle time //at least switch down a minimum time Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60); @@ -651,13 +650,13 @@ void ThermostatCalculatePI(uint8_t ctr_output) } // Minimum action limiter - // If result is less than the minimum action time, adjust to minimum value]] + // If result is less than the minimum action time, adjust to minimum value if ((Thermostat[ctr_output].time_total_pi <= abs(((uint32_t)Thermostat[ctr_output].time_min_action * 60))) && (Thermostat[ctr_output].time_total_pi != 0)) { Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60); } // Maximum action limiter - // If result is more than the maximum action time, adjust to maximum value]] + // If result is more than the maximum action time, adjust to maximum value else if (Thermostat[ctr_output].time_total_pi > abs(((int32_t)Thermostat[ctr_output].time_max_action * 60))) { Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_max_action * 60); } @@ -747,7 +746,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output) } // Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup); - Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; + Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60); // Set auxiliary variables Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured; Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max); @@ -758,7 +757,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output) // Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle // temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle)) temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_cycle; - uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * Thermostat[ctr_output].counter_rampup_cycles; + uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60 * Thermostat[ctr_output].counter_rampup_cycles; // Translate into gradient per hour (thousandths of ° per hour) Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup); if ( ((Thermostat[ctr_output].temp_rampup_meas_gradient > 0) @@ -776,7 +775,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output) // y = (((y2-y1)/(x2-x1))*(x-x1)) + y1 Thermostat[ctr_output].temp_rampup_output_off = (int16_t)(((int32_t)temp_delta_rampup * (int32_t)(Thermostat[ctr_output].time_ctr_changepoint - (uptime - (time_total_rampup)))) / (int32_t)(time_total_rampup * Thermostat[ctr_output].counter_rampup_cycles)) + Thermostat[ctr_output].temp_rampup_cycle; // Set auxiliary variables - Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; + Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60); Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured; // Reset period counter Thermostat[ctr_output].counter_rampup_cycles = 1; @@ -785,7 +784,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output) // Increase the period counter Thermostat[ctr_output].counter_rampup_cycles++; // Set another period - Thermostat[ctr_output].time_rampup_nextcycle = uptime + (uint32_t)Thermostat[ctr_output].time_rampup_cycle; + Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60); // Reset time_ctr_changepoint and temp_rampup_output_off Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup; Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr; @@ -1256,7 +1255,7 @@ void CmndTempMeasuredGrdRead(void) else { value = Thermostat[ctr_output].temp_measured_gradient; } - ResponseCmndFloat((float)value / 10, 1); + ResponseCmndFloat(((float)value) / 1000, 1); } } @@ -1280,25 +1279,11 @@ void CmndTimeManualToAutoSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_manual_to_auto = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_manual_to_auto = (uint16_t)value; } } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_manual_to_auto * 60)); - } -} - -void CmndTimeOnLimitSet(void) -{ - if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { - uint8_t ctr_output = XdrvMailbox.index - 1; - if (XdrvMailbox.data_len > 0) { - uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_on_limit = (uint16_t)(value / 60); - } - } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_on_limit * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_manual_to_auto)); } } @@ -1330,17 +1315,33 @@ void CmndTimeResetSet(void) } } +void CmndTimePiProportRead(void) +{ + if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { + uint8_t ctr_output = XdrvMailbox.index - 1; + ResponseCmndNumber((int)Thermostat[ctr_output].time_proportional_pi); + } +} + +void CmndTimePiIntegrRead(void) +{ + if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { + uint8_t ctr_output = XdrvMailbox.index - 1; + ResponseCmndNumber((int)Thermostat[ctr_output].time_integral_pi); + } +} + void CmndTimePiCycleSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_pi_cycle = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_pi_cycle = (uint16_t)(value); } } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_pi_cycle)); } } @@ -1404,11 +1405,11 @@ void CmndTimeMaxActionSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_max_action = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_max_action = (uint16_t)value; } } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_max_action * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_max_action)); } } @@ -1418,11 +1419,11 @@ void CmndTimeMinActionSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_min_action = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_min_action = (uint16_t)value; } } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_action * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_action)); } } @@ -1432,11 +1433,11 @@ void CmndTimeSensLostSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_sens_lost = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_sens_lost = (uint16_t)value; } } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_sens_lost * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_sens_lost)); } } @@ -1446,11 +1447,11 @@ void CmndTimeMinTurnoffActionSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_min_turnoff_action = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_min_turnoff_action = (uint16_t)value; } } - ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_turnoff_action * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_turnoff_action)); } } @@ -1514,11 +1515,11 @@ void CmndTimeRampupMaxSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 86400)) { - Thermostat[ctr_output].time_rampup_max = (uint16_t)(value / 60); + if ((value >= 0) && (value <= 1440)) { + Thermostat[ctr_output].time_rampup_max = (uint16_t)value; } } - ResponseCmndNumber((int)(((uint32_t)Thermostat[ctr_output].time_rampup_max) * 60)); + ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_rampup_max)); } } @@ -1528,7 +1529,7 @@ void CmndTimeRampupCycleSet(void) uint8_t ctr_output = XdrvMailbox.index - 1; if (XdrvMailbox.data_len > 0) { uint32_t value = (uint32_t)(XdrvMailbox.payload); - if ((value >= 0) && (value <= 54000)) { + if ((value >= 0) && (value <= 1440)) { Thermostat[ctr_output].time_rampup_cycle = (uint16_t)value; } } @@ -1563,22 +1564,6 @@ void CmndTempRampupPiAccErrSet(void) } } -void CmndTimePiProportRead(void) -{ - if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { - uint8_t ctr_output = XdrvMailbox.index - 1; - ResponseCmndNumber((int)Thermostat[ctr_output].time_proportional_pi); - } -} - -void CmndTimePiIntegrRead(void) -{ - if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) { - uint8_t ctr_output = XdrvMailbox.index - 1; - ResponseCmndNumber((int)Thermostat[ctr_output].time_integral_pi); - } -} - void CmndDiagnosticModeSet(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {