Clean up code

Clean up code
This commit is contained in:
Theo Arends 2019-07-02 17:59:40 +02:00
parent 3d67b8dc66
commit 61807b8afa

View File

@ -1,7 +1,7 @@
/*
support_float.ino - support for Sonoff-Tasmota
support_float.ino - Small floating point support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -20,11 +20,11 @@
#ifdef ARDUINO_ESP8266_RELEASE_2_3_0
// Functions not available in 2.3.0
static const float Zero[] = { 0.0, -0.0 };
// https://code.woboq.org/userspace/glibc/sysdeps/ieee754/flt-32/e_fmodf.c.html
float fmodf(float x, float y)
{
const float Zero[] = { 0.0, -0.0 };
int32_t hx = (int32_t)x;
int32_t hy = (int32_t)y;
@ -165,9 +165,8 @@ double TaylorLog(double x)
return totalValue;
}
// All code adapted from: http://www.ganssle.com/approx.htm
/// ========================================
// Following code adapted from: http://www.ganssle.com/approx.htm
// ==============================================================
// The following code implements approximations to various trig functions.
//
// This is demo code to guide developers in implementing their own approximation
@ -195,12 +194,11 @@ double const f_tansixthpi=tan(f_sixthpi); // tan(f_pi/6), used in atan routines
double const f_twelfthpi = f_pi / 12.0; // f_pi/12.0, used in atan routines
double const f_tantwelfthpi = tan(f_twelfthpi); // tan(f_pi/12), used in atan routines
// *********************************************************
// *******************************************************************
// ***
// *** Routines to compute sine and cosine to 5.2 digits
// *** of accuracy.
// *** Routines to compute sine and cosine to 5.2 digits of accuracy.
// ***
// *********************************************************
// *******************************************************************
//
// cos_52s computes cosine (x)
//
@ -220,24 +218,20 @@ const float c2=-0.4999124376;
const float c3 = 0.0414877472;
const float c4 = -0.0012712095;
float x2; // The input argument squared
x2=x * x;
float x2 = x * x; // The input argument squared
return (c1 + x2 * (c2 + x2 * (c3 + c4 * x2)));
}
//
// This is the main cosine approximation "driver"
// It reduces the input argument's range to [0, f_pi/2],
// and then calls the approximator.
// See the notes for an explanation of the range reduction.
//
float cos_52(float x){
int quad; // what quadrant are we in?
float cos_52(float x)
{
x = fmodf(x, f_twopi); // Get rid of values > 2* f_pi
if(x<0)x=-x; // cos(-x) = cos(x)
quad=int(x * (float)f_two_over_pi); // Get quadrant # (0 to 3) we're in
if (x < 0) { x = -x; } // cos(-x) = cos(x)
int quad = int(x * (float)f_two_over_pi); // Get quadrant # (0 to 3) we're in
switch (quad) {
case 0: return cos_52s(x);
case 1: return -cos_52s((float)f_pi - x);
@ -249,16 +243,16 @@ float cos_52(float x){
// The sine is just cosine shifted a half-f_pi, so
// we'll adjust the argument and call the cosine approximation.
//
float sin_52(float x){
float sin_52(float x)
{
return cos_52((float)f_halfpi - x);
}
// *********************************************************
// *******************************************************************
// ***
// *** Routines to compute tangent to 5.6 digits
// *** of accuracy.
// *** Routines to compute tangent to 5.6 digits of accuracy.
// ***
// *********************************************************
// *******************************************************************
//
// tan_56s computes tan(f_pi*x/4)
//
@ -276,12 +270,9 @@ const float c1=-3.16783027;
const float c2 = 0.134516124;
const float c3 = -4.033321984;
float x2; // The input argument squared
x2=x * x;
float x2 = x * x; // The input argument squared
return (x * (c1 + c2 * x2) / (c3 + x2));
}
//
// This is the main tangent approximation "driver"
// It reduces the input argument's range to [0, f_pi/4],
@ -293,11 +284,10 @@ return (x*(c1 + c2 * x2)/(c3 + x2));
// which it will at x=f_pi/2 and x=3*f_pi/2. If this is a problem
// in your application, take appropriate action.
//
float tan_56(float x){
int octant; // what octant are we in?
float tan_56(float x)
{
x = fmodf(x, (float)f_twopi); // Get rid of values >2 *f_pi
octant=int(x * (float)f_four_over_pi); // Get octant # (0 to 7)
int octant = int(x * (float)f_four_over_pi); // Get octant # (0 to 7)
switch (octant){
case 0: return tan_56s(x * (float)f_four_over_pi);
case 1: return 1.0f / tan_56s(((float)f_halfpi - x) * (float)f_four_over_pi);
@ -310,12 +300,11 @@ float tan_56(float x){
}
}
// *********************************************************
// *******************************************************************
// ***
// *** Routines to compute arctangent to 6.6 digits
// *** of accuracy.
// *** Routines to compute arctangent to 6.6 digits of accuracy.
// ***
// *********************************************************
// *******************************************************************
//
// atan_66s computes atan(x)
//
@ -330,19 +319,16 @@ const float c1=1.6867629106;
const float c2 = 0.4378497304;
const float c3 = 1.6867633134;
float x2; // The input argument squared
x2=x * x;
float x2 = x * x; // The input argument squared
return (x * (c1 + x2 * c2) / (c3 + x2));
}
//
// This is the main arctangent approximation "driver"
// It reduces the input argument's range to [0, f_pi/12],
// and then calls the approximator.
//
//
float atan_66(float x){
float atan_66(float x)
{
float y; // return from atan__s function
bool complement= false; // true if arg was >1
bool region= false; // true depending on region arg is in
@ -362,21 +348,23 @@ float atan_66(float x){
}
y = atan_66s(x); // run the approximation
if (region) y+=(float)f_sixthpi; // correct for region we're in
if (complement)y=(float)f_halfpi-y; // correct for 1/x if we did that
if (sign)y=-y; // correct for negative arg
if (region) { y += (float)f_sixthpi; } // correct for region we're in
if (complement) { y = (float)f_halfpi-y; } // correct for 1/x if we did that
if (sign) { y = -y; } // correct for negative arg
return (y);
}
float asinf1(float x) {
float asinf1(float x)
{
float d = 1.0f - x * x;
if (d < 0.0f) { return nanf(""); }
if (d < 0.0f) { return NAN; }
return 2 * atan_66(x / (1 + sqrt1(d)));
}
float acosf1(float x) {
float acosf1(float x)
{
float d = 1.0f - x * x;
if (d < 0.0f) { return nanf(""); }
if (d < 0.0f) { return NAN; }
float y = asinf1(sqrt1(d));
if (x >= 0.0f) {
return y;
@ -388,8 +376,7 @@ float acosf1(float x) {
// https://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi
float sqrt1(const float x)
{
union
{
union {
int i;
float x;
} u;