diff --git a/CHANGELOG.md b/CHANGELOG.md index dbc59b21b..b9ef7fe0d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -8,6 +8,8 @@ All notable changes to this project will be documented in this file. - Commands ``MqttKeepAlive 1..100`` to set Mqtt Keep Alive timer (default 30) and ``MqttTimeout 1..100`` to set Mqtt Socket Timeout (default 4) (#5341) - Commands ``DisplayType`` to select sub-modules where implemented and ``DisplayInvert`` to select inverted display where implemented - Support for TM1638 seven segment display by Ajith Vasudevan (#11031) +- Support for MAX7219 seven segment display by Ajith Vasudevan (#11387) +- Support for Frequency monitoring and zero-cross detection on CSE7761 (Sonoff Dual R3) ### Changed - PubSubClient library from EspEasy v2.7.12 to Tasmota v2.8.12 diff --git a/RELEASENOTES.md b/RELEASENOTES.md index b94f603c8..0efe3c3ef 100644 --- a/RELEASENOTES.md +++ b/RELEASENOTES.md @@ -88,7 +88,9 @@ The attached binaries can also be downloaded from http://ota.tasmota.com/tasmota - Support for XPT2046 touch screen digitizer on ILI9341 display by nonix [#11159](https://github.com/arendst/Tasmota/issues/11159) - Support for zigbee lumi.sensor_wleak [#11200](https://github.com/arendst/Tasmota/issues/11200) - Support for CSE7761 energy monitor as used in ESP32 based Sonoff Dual R3 Pow [#10793](https://github.com/arendst/Tasmota/issues/10793) +- Support for Frequency monitoring and zero-cross detection on CSE7761 (Sonoff Dual R3) - Support for TM1638 seven segment display by Ajith Vasudevan [#11031](https://github.com/arendst/Tasmota/issues/11031) +- Support for MAX7219 seven segment display by Ajith Vasudevan [#11387](https://github.com/arendst/Tasmota/issues/11387) - Support for MPU6886 on primary or secondary I2C bus - Allow MCP230xx pinmode from output to input [#11104](https://github.com/arendst/Tasmota/issues/11104) - Berry improvements [#11163](https://github.com/arendst/Tasmota/issues/11163) diff --git a/tasmota/support_tasmota.ino b/tasmota/support_tasmota.ino index 94d18f9dc..4dbaae508 100644 --- a/tasmota/support_tasmota.ino +++ b/tasmota/support_tasmota.ino @@ -157,6 +157,47 @@ char* GetStateText(uint32_t state) /********************************************************************************************/ +void ZeroCrossMomentStart(void) { + if (!TasmotaGlobal.zc_interval || !TasmotaGlobal.zc_time) { return; } + +// uint32_t dbg_interval = TasmotaGlobal.zc_interval; +// uint32_t dbg_zctime = TasmotaGlobal.zc_time; +// uint32_t dbg_starttime = micros(); + + uint32_t timeout = millis() +22; // Catch at least 2 * 50Hz pulses + uint32_t trigger_moment = TasmotaGlobal.zc_time + TasmotaGlobal.zc_interval - TasmotaGlobal.zc_offset - TasmotaGlobal.zc_code_offset; + while (!TimeReached(timeout) && !TimeReachedUsec(trigger_moment)) {} + +// uint32_t dbg_endtime = micros(); +// AddLog(LOG_LEVEL_DEBUG, PSTR("ZCR: CodeExecTime %d, StartTime %d, EndTime %d, ZcTime %d, Interval %d"), +// dbg_endtime - dbg_starttime, dbg_starttime, dbg_endtime, dbg_zctime, dbg_interval); + + TasmotaGlobal.zc_code_offset = micros(); +} + +void ZeroCrossMomentEnd(void) { + if (!TasmotaGlobal.zc_interval || !TasmotaGlobal.zc_time) { return; } + + TasmotaGlobal.zc_code_offset = (micros() - TasmotaGlobal.zc_code_offset) / 2; + +// AddLog(LOG_LEVEL_DEBUG, PSTR("ZCR: CodeExecTime %d"), TasmotaGlobal.zc_code_offset * 2); +} + +void ICACHE_RAM_ATTR ZeroCrossIsr(void) { + uint32_t time = micros(); + TasmotaGlobal.zc_interval = time - TasmotaGlobal.zc_time; + TasmotaGlobal.zc_time = time; + if (!TasmotaGlobal.zc_time) {TasmotaGlobal.zc_time = 1; } +} + +void ZeroCrossInit(uint32_t gpio, uint32_t offset) { + TasmotaGlobal.zc_offset = offset; + pinMode(gpio, INPUT_PULLUP); + attachInterrupt(gpio, ZeroCrossIsr, CHANGE); +} + +/********************************************************************************************/ + void SetLatchingRelay(power_t lpower, uint32_t state) { // TasmotaGlobal.power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off @@ -232,6 +273,8 @@ void SetDevicePower(power_t rpower, uint32_t source) #endif // ESP8266 else { + ZeroCrossMomentStart(); + for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { power_t state = rpower &1; if (i < MAX_RELAYS) { @@ -239,6 +282,8 @@ void SetDevicePower(power_t rpower, uint32_t source) } rpower >>= 1; } + + ZeroCrossMomentEnd(); } } diff --git a/tasmota/tasmota.ino b/tasmota/tasmota.ino index c24b8733a..b70a2f93f 100644 --- a/tasmota/tasmota.ino +++ b/tasmota/tasmota.ino @@ -109,6 +109,10 @@ struct { uint32_t loop_load_avg; // Indicative loop load average uint32_t log_buffer_pointer; // Index in log buffer uint32_t uptime; // Counting every second until 4294967295 = 130 year + uint32_t zc_time; // Zero-cross moment (microseconds) + uint32_t zc_offset; // Zero cross moment offset due to monitoring chip processing (microseconds) + uint32_t zc_code_offset; // Zero cross moment offset due to executing power code (microseconds) + uint32_t zc_interval; // Zero cross interval around 8333 (60Hz) or 10000 (50Hz) (microseconds) GpioOptionABits gpio_optiona; // GPIO Option_A flags void *log_buffer_mutex; // Control access to log buffer diff --git a/tasmota/xnrg_19_cse7761.ino b/tasmota/xnrg_19_cse7761.ino index 77237dda7..fb078544d 100644 --- a/tasmota/xnrg_19_cse7761.ino +++ b/tasmota/xnrg_19_cse7761.ino @@ -27,49 +27,54 @@ * See https://github.com/arendst/Tasmota/discussions/10793 \*********************************************************************************************/ -#define XNRG_19 19 +#define XNRG_19 19 -//#define CSE7761_SIMULATE +//#define CSE7761_SIMULATE // Enable simulation of CSE7761 +#define CSE7761_FREQUENCY // Add support for frequency monitoring + #define CSE7761_ZEROCROSS // Add zero cross detection + #define CSE7761_ZEROCROSS_OFFSET 2200 // Zero cross offset due to chip calculation (microseconds) + #define CSE7761_ZEROCROSS_GPIO 4 // Sonoff Dual R3 pulse input -#define CSE7761_UREF 42563 // RmsUc -#define CSE7761_IREF 52241 // RmsIAC -#define CSE7761_PREF 44513 // PowerPAC -#define CSE7761_FREF 3579545 // System clock (3.579545MHz) as used in frequency calculation +#define CSE7761_UREF 42563 // RmsUc +#define CSE7761_IREF 52241 // RmsIAC +#define CSE7761_PREF 44513 // PowerPAC +#define CSE7761_FREF 3579545 // System clock (3.579545MHz) as used in frequency calculation -#define CSE7761_REG_SYSCON 0x00 // (2) System Control Register (0x0A04) -#define CSE7761_REG_EMUCON 0x01 // (2) Metering control register (0x0000) -#define CSE7761_REG_EMUCON2 0x13 // (2) Metering control register 2 (0x0001) +#define CSE7761_REG_SYSCON 0x00 // (2) System Control Register (0x0A04) +#define CSE7761_REG_EMUCON 0x01 // (2) Metering control register (0x0000) +#define CSE7761_REG_EMUCON2 0x13 // (2) Metering control register 2 (0x0001) +#define CSE7761_REG_PULSE1SEL 0x1D // (2) Pin function output select register (0x3210) -#define CSE7761_REG_UFREQ 0x23 // (2) Voltage Frequency (0x0000) -#define CSE7761_REG_RMSIA 0x24 // (3) The effective value of channel A current (0x000000) -#define CSE7761_REG_RMSIB 0x25 // (3) The effective value of channel B current (0x000000) -#define CSE7761_REG_RMSU 0x26 // (3) Voltage RMS (0x000000) -#define CSE7761_REG_POWERFACTOR 0x27 // (3) Power factor register, select by command: channel A Power factor or channel B power factor (0x7FFFFF) -#define CSE7761_REG_POWERPA 0x2C // (4) Channel A active power, update rate 27.2Hz (0x00000000) -#define CSE7761_REG_POWERPB 0x2D // (4) Channel B active power, update rate 27.2Hz (0x00000000) -#define CSE7761_REG_SYSSTATUS 0x43 // (1) System status register +#define CSE7761_REG_UFREQ 0x23 // (2) Voltage Frequency (0x0000) +#define CSE7761_REG_RMSIA 0x24 // (3) The effective value of channel A current (0x000000) +#define CSE7761_REG_RMSIB 0x25 // (3) The effective value of channel B current (0x000000) +#define CSE7761_REG_RMSU 0x26 // (3) Voltage RMS (0x000000) +#define CSE7761_REG_POWERFACTOR 0x27 // (3) Power factor register, select by command: channel A Power factor or channel B power factor (0x7FFFFF) +#define CSE7761_REG_POWERPA 0x2C // (4) Channel A active power, update rate 27.2Hz (0x00000000) +#define CSE7761_REG_POWERPB 0x2D // (4) Channel B active power, update rate 27.2Hz (0x00000000) +#define CSE7761_REG_SYSSTATUS 0x43 // (1) System status register -#define CSE7761_REG_COEFFOFFSET 0x6E // (2) Coefficient checksum offset (0xFFFF) -#define CSE7761_REG_COEFFCHKSUM 0x6F // (2) Coefficient checksum -#define CSE7761_REG_RMSIAC 0x70 // (2) Channel A effective current conversion coefficient -#define CSE7761_REG_RMSIBC 0x71 // (2) Channel B effective current conversion coefficient -#define CSE7761_REG_RMSUC 0x72 // (2) Effective voltage conversion coefficient -#define CSE7761_REG_POWERPAC 0x73 // (2) Channel A active power conversion coefficient -#define CSE7761_REG_POWERPBC 0x74 // (2) Channel B active power conversion coefficient -#define CSE7761_REG_POWERSC 0x75 // (2) Apparent power conversion coefficient -#define CSE7761_REG_ENERGYAC 0x76 // (2) Channel A energy conversion coefficient -#define CSE7761_REG_ENERGYBC 0x77 // (2) Channel B energy conversion coefficient +#define CSE7761_REG_COEFFOFFSET 0x6E // (2) Coefficient checksum offset (0xFFFF) +#define CSE7761_REG_COEFFCHKSUM 0x6F // (2) Coefficient checksum +#define CSE7761_REG_RMSIAC 0x70 // (2) Channel A effective current conversion coefficient +#define CSE7761_REG_RMSIBC 0x71 // (2) Channel B effective current conversion coefficient +#define CSE7761_REG_RMSUC 0x72 // (2) Effective voltage conversion coefficient +#define CSE7761_REG_POWERPAC 0x73 // (2) Channel A active power conversion coefficient +#define CSE7761_REG_POWERPBC 0x74 // (2) Channel B active power conversion coefficient +#define CSE7761_REG_POWERSC 0x75 // (2) Apparent power conversion coefficient +#define CSE7761_REG_ENERGYAC 0x76 // (2) Channel A energy conversion coefficient +#define CSE7761_REG_ENERGYBC 0x77 // (2) Channel B energy conversion coefficient -#define CSE7761_SPECIAL_COMMAND 0xEA // Start special command -#define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets -#define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power, - // Power factor, phase angle, instantaneous active power, instantaneous apparent power and - // The channel indicated by the signal of power overload is channel A -#define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power, - // Power factor, phase angle, instantaneous active power, instantaneous apparent power and - // The channel indicated by the signal of power overload is channel B -#define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation -#define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation +#define CSE7761_SPECIAL_COMMAND 0xEA // Start special command +#define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets +#define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power, + // Power factor, phase angle, instantaneous active power, instantaneous apparent power and + // The channel indicated by the signal of power overload is channel A +#define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power, + // Power factor, phase angle, instantaneous active power, instantaneous apparent power and + // The channel indicated by the signal of power overload is channel B +#define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation +#define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAC, EnergyBC }; @@ -89,6 +94,8 @@ struct { uint8_t ready = 0; } CSE7761Data; +/********************************************************************************************/ + void Cse7761Write(uint32_t reg, uint32_t data) { uint8_t buffer[5]; @@ -180,6 +187,8 @@ uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev, uint32_t size) { return value; } +/********************************************************************************************/ + uint32_t Cse7761Ref(uint32_t unit) { switch (unit) { case RmsUC: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC]; @@ -256,6 +265,7 @@ bool Cse7761ChipInit(void) { =000, PGA of current channel A=1 */ Cse7761Write(CSE7761_REG_SYSCON | 0x80, 0xFF04); + /* Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000 Bit name Function description @@ -302,7 +312,9 @@ bool Cse7761ChipInit(void) { =1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow) =0 (default), turn off PFA pulse output and active energy register accumulation. */ - Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003); +// Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003); + Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1183); // Tasmota enable zero cross detection on both positive and negative signal + /* Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001 Bit name Function description @@ -346,8 +358,46 @@ bool Cse7761ChipInit(void) { =0, turn off the peak detection function (Sonoff Dual R3 Pow) 0 NC Default is 1 */ -// Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1); // Sonoff Dual R3 Pow +#ifndef CSE7761_FREQUENCY + Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1); // Sonoff Dual R3 Pow +#else Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FE5); // Tasmota add Frequency + +#ifdef CSE7761_ZEROCROSS +/* + Pin function output selection register (PULSE1SEL) Addr: 0x1D Default value: 0x3210 + Bit name Function description + 15-13 NC - + 12 SDOCmos + =1, SDO pin CMOS open-drain output + + 15-12 NC NC, the default value is 4'b0011 + 11-8 NC NC, the default value is 4'b0010 + 7-4 P2Sel Pulse2 Pin output function selection, see the table below + 3-0 P1Sel Pulse1 Pin output function selection, see the table below + + Table Pulsex function output selection list + Pxsel Select description + 0000 Output of energy metering calibration pulse PFA + 0001 The output of the energy metering calibration pulse PFB + 0010 Comparator indication signal comp_sign + 0011 Interrupt signal IRQ output (the default is high level, if it is an interrupt, set to 0) + 0100 Signal indication of power overload: only PA or PB can be selected + 0101 Channel A negative power indicator signal + 0110 Channel B negative power indicator signal + 0111 Instantaneous value update interrupt output + 1000 Average update interrupt output + 1001 Voltage channel zero-crossing signal output (Tasmota add zero-cross detection) + 1010 Current channel A zero-crossing signal output + 1011 Current channel B zero crossing signal output + 1100 Voltage channel overvoltage indication signal output + 1101 Voltage channel undervoltage indication signal output + 1110 Current channel A overcurrent signal indication output + 1111 Current channel B overcurrent signal indication output +*/ + Cse7761Write(CSE7761_REG_PULSE1SEL | 0x80, 0x3290); +#endif // CSE7761_ZEROCROSS +#endif // CSE7761_FREQUENCY } else { AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write failed")); return false; @@ -365,11 +415,13 @@ void Cse7761GetData(void) { #endif CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value; +#ifdef CSE7761_FREQUENCY value = Cse7761ReadFallback(CSE7761_REG_UFREQ, CSE7761Data.frequency, 2); #ifdef CSE7761_SIMULATE value = 8948; // 49.99Hz #endif CSE7761Data.frequency = (value >= 0x8000) ? 0 : value; +#endif // CSE7761_FREQUENCY value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3); #ifdef CSE7761_SIMULATE @@ -402,7 +454,9 @@ void Cse7761GetData(void) { // Voltage = RmsU * RmsUC * 10 / 0x400000 // Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V +#ifdef CSE7761_FREQUENCY Energy.frequency[0] = (CSE7761Data.frequency) ? ((float)Settings.energy_frequency_calibration / 8 / CSE7761Data.frequency) : 0; // Hz +#endif for (uint32_t channel = 0; channel < 2; channel++) { Energy.data_valid[channel] = 0; @@ -423,6 +477,48 @@ void Cse7761GetData(void) { } /********************************************************************************************/ +/* +void Cse7761DumpRegs(void) { + uint32_t registers[23] = { 0 }; + uint32_t reg_num[23] = { 0 }; + reg_num[0] = 0x00; registers[0] = Cse7761Read(0x00, 2); + reg_num[1] = 0x01; registers[1] = Cse7761Read(0x01, 2); + reg_num[2] = 0x02; registers[2] = Cse7761Read(0x02, 2); + reg_num[3] = 0x13; registers[3] = Cse7761Read(0x13, 2); + reg_num[4] = 0x1D; registers[4] = Cse7761Read(0x1D, 2); + reg_num[5] = 0x2F; registers[5] = Cse7761Read(0x2F, 3); + reg_num[6] = 0x40; registers[6] = Cse7761Read(0x40, 2); + reg_num[7] = 0x41; registers[7] = Cse7761Read(0x41, 2); + reg_num[8] = 0x42; registers[8] = Cse7761Read(0x42, 2); + reg_num[9] = 0x43; registers[9] = Cse7761Read(0x43, 1); + reg_num[10] = 0x44; registers[10] = Cse7761Read(0x44, 4); + reg_num[11] = 0x45; registers[11] = Cse7761Read(0x45, 2); + reg_num[12] = 0x6E; registers[12] = Cse7761Read(0x6E, 2); + reg_num[13] = 0x6F; registers[13] = Cse7761Read(0x6F, 2); + reg_num[14] = 0x70; registers[14] = Cse7761Read(0x70, 2); + reg_num[15] = 0x71; registers[15] = Cse7761Read(0x71, 2); + reg_num[16] = 0x72; registers[16] = Cse7761Read(0x72, 2); + reg_num[17] = 0x73; registers[17] = Cse7761Read(0x73, 2); + reg_num[18] = 0x74; registers[18] = Cse7761Read(0x74, 2); + reg_num[19] = 0x75; registers[19] = Cse7761Read(0x75, 2); + reg_num[20] = 0x76; registers[20] = Cse7761Read(0x76, 2); + reg_num[21] = 0x77; registers[21] = Cse7761Read(0x77, 2); + reg_num[22] = 0x7F; registers[22] = Cse7761Read(0x7F, 3); + + char reg_data[320]; + reg_data[0] = '\0'; + for (uint32_t i = 0; i < 23; i++) { + snprintf_P(reg_data, sizeof(reg_data), PSTR("%s%s%8X"), reg_data, (i) ? "," : "", reg_num[i]); + } + AddLog_P(LOG_LEVEL_DEBUG, PSTR("C61: RegDump %s"), reg_data); + + reg_data[0] = '\0'; + for (uint32_t i = 0; i < 23; i++) { + snprintf_P(reg_data, sizeof(reg_data), PSTR("%s%s%08X"), reg_data, (i) ? "," : "", registers[i]); + } + AddLog_P(LOG_LEVEL_DEBUG, PSTR("C61: RegDump %s"), reg_data); +} +*/ void Cse7761Every200ms(void) { if (2 == CSE7761Data.ready) { @@ -477,6 +573,13 @@ void Cse7761SnsInit(void) { SetSerial(38400, TS_SERIAL_8E1); ClaimSerial(); } + +#ifdef CSE7761_FREQUENCY +#ifdef CSE7761_ZEROCROSS + ZeroCrossInit(CSE7761_ZEROCROSS_GPIO, CSE7761_ZEROCROSS_OFFSET); +#endif // CSE7761_ZEROCROSS +#endif // CSE7761_FREQUENCY + } else { TasmotaGlobal.energy_driver = ENERGY_NONE; } @@ -488,7 +591,9 @@ void Cse7761DrvInit(void) { CSE7761Data.init = 4; // Init setup steps Energy.phase_count = 2; // Handle two channels as two phases Energy.voltage_common = true; // Use common voltage +#ifdef CSE7761_FREQUENCY Energy.frequency_common = true; // Use common frequency +#endif TasmotaGlobal.energy_driver = XNRG_19; } } @@ -503,18 +608,6 @@ bool Cse7761Command(void) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(PowerPAC); } // Service in xdrv_03_energy.ino } - else if (CMND_VOLTAGECAL == Energy.command_code) { - if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); } - // Service in xdrv_03_energy.ino - } - else if (CMND_CURRENTCAL == Energy.command_code) { - if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); } - // Service in xdrv_03_energy.ino - } - else if (CMND_FREQUENCYCAL == Energy.command_code) { - if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_FREF; } - // Service in xdrv_03_energy.ino - } else if (CMND_POWERSET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) { if ((value > 100) && (value < 200000)) { // Between 1W and 2000W @@ -522,6 +615,10 @@ bool Cse7761Command(void) { } } } + else if (CMND_VOLTAGECAL == Energy.command_code) { + if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); } + // Service in xdrv_03_energy.ino + } else if (CMND_VOLTAGESET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.voltage_rms) { if ((value > 10000) && (value < 26000)) { // Between 100V and 260V @@ -529,6 +626,10 @@ bool Cse7761Command(void) { } } } + else if (CMND_CURRENTCAL == Energy.command_code) { + if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); } + // Service in xdrv_03_energy.ino + } else if (CMND_CURRENTSET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.current_rms[channel]) { if ((value > 1000) && (value < 1000000)) { // Between 10mA and 10A @@ -536,6 +637,11 @@ bool Cse7761Command(void) { } } } +#ifdef CSE7761_FREQUENCY + else if (CMND_FREQUENCYCAL == Energy.command_code) { + if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_FREF; } + // Service in xdrv_03_energy.ino + } else if (CMND_FREQUENCYSET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.frequency) { if ((value > 4500) && (value < 6500)) { // Between 45.00Hz and 65.00Hz @@ -543,6 +649,7 @@ bool Cse7761Command(void) { } } } +#endif else serviced = false; // Unknown command return serviced;