diff --git a/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/conv.cc b/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/conv.cc index 3782413f0..568dbedf3 100644 --- a/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/conv.cc +++ b/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/conv.cc @@ -115,13 +115,13 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { if (input->type == kTfLiteInt8) { data_dims_t input_dims = { .width = input_width, .height = input_height, - .channels = input->dims->data[3], 1 + .channels = input->dims->data[3], .extra = 1 }; data_dims_t output_dims = { .width = output_width, .height = output_height, - .channels = output->dims->data[3], 1 + .channels = output->dims->data[3], .extra = 1 }; - data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0}; + data_dims_t filter_dims = {.width = filter_width, .height = filter_height, .channels = 0, .extra = 0}; conv_params_t conv_params = { .in_offset = 0, .out_offset = 0, .stride = {params.stride_width, params.stride_height}, @@ -209,13 +209,13 @@ inline void EvalQuantizedPerChannel( data_dims_t input_dims = { .width = input_width, .height = input_height, - .channels = input_depth, 1 + .channels = input_depth, .extra = 1 }; data_dims_t output_dims = { .width = output_width, .height = output_height, - .channels = output_depth, 1 + .channels = output_depth, .extra = 1 }; - data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0}; + data_dims_t filter_dims = {.width = filter_width, .height = filter_height, .channels = 0, .extra = 0}; conv_params_t conv_params = { .in_offset = input_offset, .out_offset = output_offset, .stride = {stride_width, stride_height}, diff --git a/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc b/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc index 75bfeb638..1786b3df9 100644 --- a/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc +++ b/lib/libesp32_ml/tf_lite_esp32/src/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc @@ -118,13 +118,13 @@ inline void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node, data_dims_t input_dims = { .width = input_width, .height = input_height, - .channels = input_depth, 1 + .channels = input_depth, .extra = 1 }; data_dims_t output_dims = { .width = output_width, .height = output_height, - .channels = output_depth, 1 + .channels = output_depth, .extra = 1 }; - data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0}; + data_dims_t filter_dims = {.width = filter_width, .height = filter_height, .channels = 0, .extra = 0}; dw_conv_params_t conv_params = { .in_offset = input_offset, .out_offset = output_offset, .ch_mult = depth_multiplier, @@ -227,13 +227,13 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { if (input->type == kTfLiteInt8) { data_dims_t input_dims = { .width = input_width, .height = input_height, - .channels = input->dims->data[3], 1 + .channels = input->dims->data[3], .extra = 1 }; data_dims_t output_dims = { .width = output_width, .height = output_height, - .channels = output->dims->data[3], 1 + .channels = output->dims->data[3], .extra = 1 }; - data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0}; + data_dims_t filter_dims = {.width = filter_width, .height = filter_height, .channels = 0, .extra = 0}; dw_conv_params_t conv_params = { .in_offset = 0, .out_offset = 0, .ch_mult = params.depth_multiplier,