Fix SHT1X driver hangs and wrong values on ESP32

Fix SHT1X driver hangs and wrong values on ESP32 (#15790)
This commit is contained in:
Theo Arends 2022-06-13 14:41:40 +02:00
parent 668d3177d3
commit 85566c5ed3
3 changed files with 67 additions and 73 deletions

View File

@ -17,6 +17,7 @@ All notable changes to this project will be documented in this file.
### Fixed
- ESP32 Arduino Core WiFi timeout is changed from msec to seconds
- Reduce blocking by adding WifiPollDns before resolving NTP and/or MQTT server names (#14394)
- SHT1X driver hangs and wrong values on ESP32 (#15790)
### Removed

View File

@ -143,6 +143,7 @@ The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmo
- BL09xx negative power presentation [#15374](https://github.com/arendst/Tasmota/issues/15374)
- Possible pin output toggle after power on [#15630](https://github.com/arendst/Tasmota/issues/15630)
- Reduce blocking by adding WifiPollDns before resolving NTP and/or MQTT server names [#14394](https://github.com/arendst/Tasmota/issues/14394)
- SHT1X driver hangs and wrong values on ESP32 [#15790](https://github.com/arendst/Tasmota/issues/15790)
- ESP32 Arduino Core WiFi timeout is changed from msec to seconds
### Removed

View File

@ -25,7 +25,7 @@
* Reading temperature and humidity takes about 320 milliseconds!
* Source: Marinus vd Broek https://github.com/ESP8266nu/ESPEasy
*
* I2C Address: None
* I2C Address: None and ruins I2C bus hence reinit I2C after each call
\*********************************************************************************************/
#define XSNS_07 7
@ -37,98 +37,95 @@ enum {
SHT1X_CMD_SOFT_RESET = B00011110
};
int8_t sht_sda_pin;
int8_t sht_scl_pin;
uint8_t sht_type = 0;
char sht_types[] = "SHT1X";
uint8_t sht_valid = 0;
float sht_temperature = 0;
float sht_humidity = 0;
struct {
float temperature = 0;
float humidity = 0;
int8_t sda_pin;
int8_t scl_pin;
uint8_t type = 0;
uint8_t valid = 0;
char types[6] = "SHT1X";
} Sht1x;
bool ShtReset(void)
{
pinMode(sht_sda_pin, INPUT_PULLUP);
pinMode(sht_scl_pin, OUTPUT);
bool ShtReset(void) {
pinMode(Sht1x.sda_pin, INPUT_PULLUP);
pinMode(Sht1x.scl_pin, OUTPUT);
delay(11);
for (uint32_t i = 0; i < 9; i++) {
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
}
bool success = ShtSendCommand(SHT1X_CMD_SOFT_RESET);
delay(11);
return success;
}
bool ShtSendCommand(const uint8_t cmd)
{
pinMode(sht_sda_pin, OUTPUT);
bool ShtSendCommand(const uint8_t cmd) {
pinMode(Sht1x.sda_pin, OUTPUT);
// Transmission Start sequence
digitalWrite(sht_sda_pin, HIGH);
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_sda_pin, LOW);
digitalWrite(sht_scl_pin, LOW);
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_sda_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
digitalWrite(Sht1x.sda_pin, HIGH);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.sda_pin, LOW);
digitalWrite(Sht1x.scl_pin, LOW);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.sda_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
// Send the command (address must be 000b)
TasShiftOut(sht_sda_pin, sht_scl_pin, MSBFIRST, cmd);
TasShiftOut(Sht1x.sda_pin, Sht1x.scl_pin, MSBFIRST, cmd);
// Wait for ACK
bool ackerror = false;
digitalWrite(sht_scl_pin, HIGH);
pinMode(sht_sda_pin, INPUT_PULLUP);
if (digitalRead(sht_sda_pin) != LOW) {
digitalWrite(Sht1x.scl_pin, HIGH);
pinMode(Sht1x.sda_pin, INPUT_PULLUP);
if (digitalRead(Sht1x.sda_pin) != LOW) {
ackerror = true;
}
digitalWrite(sht_scl_pin, LOW);
digitalWrite(Sht1x.scl_pin, LOW);
delayMicroseconds(1); // Give the sensor time to release the data line
if (digitalRead(sht_sda_pin) != HIGH) {
if (digitalRead(Sht1x.sda_pin) != HIGH) {
ackerror = true;
}
if (ackerror) {
// sht_type = 0;
// Sht1x.type = 0;
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SHT1 D_SENSOR_DID_NOT_ACK_COMMAND));
}
return (!ackerror);
}
bool ShtAwaitResult(void)
{
bool ShtAwaitResult(void) {
// Maximum 320ms for 14 bit measurement
for (uint32_t i = 0; i < 16; i++) {
if (LOW == digitalRead(sht_sda_pin)) {
if (LOW == digitalRead(Sht1x.sda_pin)) {
return true;
}
delay(20);
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SHT1 D_SENSOR_BUSY));
// sht_type = 0;
// Sht1x.type = 0;
return false;
}
int ShtReadData(void)
{
int ShtReadData(void) {
int val = 0;
// Read most significant byte
val = TasShiftIn(sht_sda_pin, sht_scl_pin, 8);
val = TasShiftIn(Sht1x.sda_pin, Sht1x.scl_pin, 8);
val <<= 8;
// Send ACK
pinMode(sht_sda_pin, OUTPUT);
digitalWrite(sht_sda_pin, LOW);
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
pinMode(sht_sda_pin, INPUT_PULLUP);
pinMode(Sht1x.sda_pin, OUTPUT);
digitalWrite(Sht1x.sda_pin, LOW);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
pinMode(Sht1x.sda_pin, INPUT_PULLUP);
// Read least significant byte
val |= TasShiftIn(sht_sda_pin, sht_scl_pin, 8);
val |= TasShiftIn(Sht1x.sda_pin, Sht1x.scl_pin, 8);
// Keep DATA pin high to skip CRC
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
return val;
}
bool ShtRead(void)
{
if (sht_valid) { sht_valid--; }
bool ShtRead(void) {
if (Sht1x.valid) { Sht1x.valid--; }
if (!ShtReset()) { return false; }
if (!ShtSendCommand(SHT1X_CMD_MEASURE_TEMP)) { return false; }
if (!ShtAwaitResult()) { return false; }
@ -140,50 +137,46 @@ bool ShtRead(void)
// Temperature conversion coefficients from SHT1X datasheet for version 4
const float d1 = -39.7f; // 3.5V
const float d2 = 0.01f; // 14-bit
sht_temperature = d1 + (tempRaw * d2);
Sht1x.temperature = d1 + (tempRaw * d2);
const float c1 = -2.0468f;
const float c2 = 0.0367f;
const float c3 = -1.5955E-6f;
const float t1 = 0.01f;
const float t2 = 0.00008f;
float rhLinear = c1 + c2 * humRaw + c3 * humRaw * humRaw;
sht_humidity = (sht_temperature - 25) * (t1 + t2 * humRaw) + rhLinear;
sht_temperature = ConvertTemp(sht_temperature);
sht_humidity = ConvertHumidity(sht_humidity);
Sht1x.humidity = (Sht1x.temperature - 25) * (t1 + t2 * humRaw) + rhLinear;
Sht1x.temperature = ConvertTemp(Sht1x.temperature);
Sht1x.humidity = ConvertHumidity(Sht1x.humidity);
sht_valid = SENSOR_MAX_MISS;
Sht1x.valid = SENSOR_MAX_MISS;
return true;
}
/********************************************************************************************/
void ShtDetect(void)
{
sht_sda_pin = Pin(GPIO_I2C_SDA);
sht_scl_pin = Pin(GPIO_I2C_SCL);
void ShtDetect(void) {
Sht1x.sda_pin = Pin(GPIO_I2C_SDA);
Sht1x.scl_pin = Pin(GPIO_I2C_SCL);
if (ShtRead()) {
sht_type = 1;
Sht1x.type = 1;
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_I2C D_SHT1X_FOUND));
} else {
I2cBegin(sht_sda_pin, sht_scl_pin);
sht_type = 0;
}
I2cBegin(Sht1x.sda_pin, Sht1x.scl_pin); // Reinit I2C bus
}
void ShtEverySecond(void)
{
if (!(TasmotaGlobal.uptime %4)) { // Every 4 seconds
void ShtEverySecond(void) {
if (!(TasmotaGlobal.uptime %4)) { // Every 4 seconds
// 344mS
if (!ShtRead()) {
AddLogMissed(sht_types, sht_valid);
AddLogMissed(Sht1x.types, Sht1x.valid);
}
I2cBegin(Sht1x.sda_pin, Sht1x.scl_pin); // Reinit I2C bus
}
}
void ShtShow(bool json)
{
if (sht_valid) {
TempHumDewShow(json, (0 == TasmotaGlobal.tele_period), sht_types, sht_temperature, sht_humidity);
void ShtShow(bool json) {
if (Sht1x.valid) {
TempHumDewShow(json, (0 == TasmotaGlobal.tele_period), Sht1x.types, Sht1x.temperature, Sht1x.humidity);
}
}
@ -191,8 +184,7 @@ void ShtShow(bool json)
* Interface
\*********************************************************************************************/
bool Xsns07(uint8_t function)
{
bool Xsns07(uint8_t function) {
if (!I2cEnabled(XI2C_08)) { return false; }
bool result = false;
@ -200,7 +192,7 @@ bool Xsns07(uint8_t function)
if (FUNC_INIT == function) {
ShtDetect();
}
else if (sht_type) {
else if (Sht1x.type) {
switch (function) {
case FUNC_EVERY_SECOND:
ShtEverySecond();