Tune driver RF Sensor

- Free memory when driver RF Sensor is compiled but not used.
- Fix possible buffer overflow exceptions
- Add rule and hardware info to source
This commit is contained in:
Theo Arends 2018-12-17 18:06:19 +01:00
parent a76ae557f0
commit 8c48ad3d93

View File

@ -19,10 +19,15 @@
#ifdef USE_RF_SENSOR #ifdef USE_RF_SENSOR
/*********************************************************************************************\ /*********************************************************************************************\
* RF receive based on work by Paul Tonkes (www.nodo-domotica.nl) * RF receiver based on work by Paul Tonkes (www.nodo-domotica.nl)
*
* Supported 434MHz receiver is Aurel RX-4M50RR30SF
* Supported 868MHz receiver is Aurel RX-AM8SF
*
* Connect one of above receivers with a 330 Ohm resistor to any GPIO
* *
* USE_THEO_V2 Add support for 434MHz Theo V2 sensors as documented on https://sidweb.nl * USE_THEO_V2 Add support for 434MHz Theo V2 sensors as documented on https://sidweb.nl
* USE_ALECTO_V2 Add support for 868MHz Alecto V2 sensors like ACH2010, WS3000 and DKW2012 * USE_ALECTO_V2 Add support for 868MHz Alecto V2 sensors like ACH2010, WS3000 and DKW2012 weather stations
\*********************************************************************************************/ \*********************************************************************************************/
#define XSNS_37 37 #define XSNS_37 37
@ -41,24 +46,26 @@
#define RFSNS_SIGNAL_TIMEOUT 10 // Pulse timings in mSec. Beyond this value indicate end of message #define RFSNS_SIGNAL_TIMEOUT 10 // Pulse timings in mSec. Beyond this value indicate end of message
#define RFSNS_SIGNAL_REPEAT_TIME 500 // (500) Tijd in mSec. waarbinnen hetzelfde event niet nogmaals via RF mag binnenkomen. Onderdrukt ongewenste herhalingen van signaal #define RFSNS_SIGNAL_REPEAT_TIME 500 // (500) Tijd in mSec. waarbinnen hetzelfde event niet nogmaals via RF mag binnenkomen. Onderdrukt ongewenste herhalingen van signaal
struct RawSignalStruct // Variabelen geplaatst in struct zodat deze later eenvoudig kunnen worden weggeschreven naar SDCard typedef struct RawSignalStruct // Variabelen geplaatst in struct zodat deze later eenvoudig kunnen worden weggeschreven naar SDCard
{ {
int Number; // aantal bits, maal twee omdat iedere bit een mark en een space heeft. int Number; // aantal bits, maal twee omdat iedere bit een mark en een space heeft.
byte Repeats; // Aantal maal dat de pulsreeks verzonden moet worden bij een zendactie. byte Repeats; // Aantal maal dat de pulsreeks verzonden moet worden bij een zendactie.
byte Multiply; // Pulses[] * Multiply is de echte tijd van een puls in microseconden byte Multiply; // Pulses[] * Multiply is de echte tijd van een puls in microseconden
unsigned long Time; // Tijdstempel wanneer signaal is binnengekomen (millis()) unsigned long Time; // Tijdstempel wanneer signaal is binnengekomen (millis())
byte Pulses[RFSNS_RAW_BUFFER_SIZE+2]; // Tabel met de gemeten pulsen in microseconden gedeeld door rfsns_raw_signal.Multiply. Dit scheelt helft aan RAM geheugen. byte Pulses[RFSNS_RAW_BUFFER_SIZE+2]; // Tabel met de gemeten pulsen in microseconden gedeeld door rfsns_raw_signal->Multiply. Dit scheelt helft aan RAM geheugen.
// Om legacy redenen zit de eerste puls in element 1. Element 0 wordt dus niet gebruikt. // Om legacy redenen zit de eerste puls in element 1. Element 0 wordt dus niet gebruikt.
} rfsns_raw_signal = {0, 0, 0, 0L}; } raw_signal_t;
raw_signal_t *rfsns_raw_signal = NULL;
uint8_t rfsns_rf_bit; uint8_t rfsns_rf_bit;
uint8_t rfsns_rf_port; uint8_t rfsns_rf_port;
uint8_t rfsns_any_sensor = 0;
/*********************************************************************************************\ /*********************************************************************************************\
* Fetch signals from RF pin * Fetch signals from RF pin
\*********************************************************************************************/ \*********************************************************************************************/
boolean RfSnsFetchSignal(byte DataPin, boolean StateSignal) bool RfSnsFetchSignal(byte DataPin, bool StateSignal)
{ {
uint8_t Fbit = digitalPinToBitMask(DataPin); uint8_t Fbit = digitalPinToBitMask(DataPin);
uint8_t Fport = digitalPinToPort(DataPin); uint8_t Fport = digitalPinToPort(DataPin);
@ -73,15 +80,15 @@ boolean RfSnsFetchSignal(byte DataPin, boolean StateSignal)
// rust tussen de signalen. Op deze wijze wordt het aantal zinloze captures teruggebracht. // rust tussen de signalen. Op deze wijze wordt het aantal zinloze captures teruggebracht.
unsigned long PulseLength = 0; unsigned long PulseLength = 0;
if (rfsns_raw_signal.Time) { // Eerst een snelle check, want dit bevindt zich in een tijdkritisch deel... if (rfsns_raw_signal->Time) { // Eerst een snelle check, want dit bevindt zich in een tijdkritisch deel...
if (rfsns_raw_signal.Repeats && (rfsns_raw_signal.Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) { // ...want deze check duurt enkele micro's langer! if (rfsns_raw_signal->Repeats && (rfsns_raw_signal->Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) { // ...want deze check duurt enkele micro's langer!
PulseLength = micros() + RFSNS_SIGNAL_TIMEOUT *1000; // Wachttijd PulseLength = micros() + RFSNS_SIGNAL_TIMEOUT *1000; // Wachttijd
while (((rfsns_raw_signal.Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) && (PulseLength > micros())) { while (((rfsns_raw_signal->Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) && (PulseLength > micros())) {
if ((*portInputRegister(Fport) & Fbit) == FstateMask) { if ((*portInputRegister(Fport) & Fbit) == FstateMask) {
PulseLength = micros() + RFSNS_SIGNAL_TIMEOUT *1000; PulseLength = micros() + RFSNS_SIGNAL_TIMEOUT *1000;
} }
} }
while (((rfsns_raw_signal.Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) && ((*portInputRegister(Fport) & Fbit) != FstateMask)); while (((rfsns_raw_signal->Time + RFSNS_SIGNAL_REPEAT_TIME) > millis()) && ((*portInputRegister(Fport) & Fbit) != FstateMask));
} }
} }
@ -89,7 +96,7 @@ boolean RfSnsFetchSignal(byte DataPin, boolean StateSignal)
bool Ftoggle = false; bool Ftoggle = false;
unsigned long numloops = 0; unsigned long numloops = 0;
unsigned long maxloops = RFSNS_SIGNAL_TIMEOUT * LoopsPerMilli; unsigned long maxloops = RFSNS_SIGNAL_TIMEOUT * LoopsPerMilli;
rfsns_raw_signal.Multiply = RFSNS_RAWSIGNAL_SAMPLE; // Ingestelde sample groote. rfsns_raw_signal->Multiply = RFSNS_RAWSIGNAL_SAMPLE; // Ingestelde sample groote.
do { // lees de pulsen in microseconden en plaats deze in de tijdelijke buffer rfsns_raw_signal do { // lees de pulsen in microseconden en plaats deze in de tijdelijke buffer rfsns_raw_signal
numloops = 0; numloops = 0;
while(((*portInputRegister(Fport) & Fbit) == FstateMask) ^ Ftoggle) { // while() loop *A* while(((*portInputRegister(Fport) & Fbit) == FstateMask) ^ Ftoggle) { // while() loop *A*
@ -98,19 +105,19 @@ boolean RfSnsFetchSignal(byte DataPin, boolean StateSignal)
PulseLength = (numloops *1000) / LoopsPerMilli; // Bevat nu de pulslengte in microseconden PulseLength = (numloops *1000) / LoopsPerMilli; // Bevat nu de pulslengte in microseconden
if (PulseLength < RFSNS_MIN_PULSE_LENGTH) { break; } if (PulseLength < RFSNS_MIN_PULSE_LENGTH) { break; }
Ftoggle = !Ftoggle; Ftoggle = !Ftoggle;
rfsns_raw_signal.Pulses[RawCodeLength++] = PulseLength / (unsigned long)rfsns_raw_signal.Multiply; // sla op in de tabel rfsns_raw_signal rfsns_raw_signal->Pulses[RawCodeLength++] = PulseLength / (unsigned long)rfsns_raw_signal->Multiply; // sla op in de tabel rfsns_raw_signal
} }
while(RawCodeLength < RFSNS_RAW_BUFFER_SIZE && numloops <= maxloops); // Zolang nog ruimte in de buffer, geen timeout en geen stoorpuls while(RawCodeLength < RFSNS_RAW_BUFFER_SIZE && numloops <= maxloops); // Zolang nog ruimte in de buffer, geen timeout en geen stoorpuls
if ((RawCodeLength >= RFSNS_MIN_RAW_PULSES) && (RawCodeLength < RFSNS_RAW_BUFFER_SIZE -1)) { if ((RawCodeLength >= RFSNS_MIN_RAW_PULSES) && (RawCodeLength < RFSNS_RAW_BUFFER_SIZE -1)) {
rfsns_raw_signal.Repeats = 0; // Op dit moment weten we nog niet het type signaal, maar de variabele niet ongedefinieerd laten. rfsns_raw_signal->Repeats = 0; // Op dit moment weten we nog niet het type signaal, maar de variabele niet ongedefinieerd laten.
rfsns_raw_signal.Number = RawCodeLength -1; // Aantal ontvangen tijden (pulsen *2) rfsns_raw_signal->Number = RawCodeLength -1; // Aantal ontvangen tijden (pulsen *2)
rfsns_raw_signal.Pulses[rfsns_raw_signal.Number] = 0; // Laatste element bevat de timeout. Niet relevant. rfsns_raw_signal->Pulses[rfsns_raw_signal->Number] = 0; // Laatste element bevat de timeout. Niet relevant.
rfsns_raw_signal.Time = millis(); rfsns_raw_signal->Time = millis();
return true; return true;
} }
else else
rfsns_raw_signal.Number = 0; rfsns_raw_signal->Number = 0;
} }
return false; return false;
@ -151,8 +158,6 @@ typedef struct {
uint8_t volt; uint8_t volt;
} theo_v2_t1_t; } theo_v2_t1_t;
theo_v2_t1_t rfsns_theo_v2_t1[RFSNS_THEOV2_MAX_CHANNEL];
typedef struct { typedef struct {
uint32_t time; uint32_t time;
int16_t temp; int16_t temp;
@ -160,11 +165,19 @@ typedef struct {
uint8_t volt; uint8_t volt;
} theo_v2_t2_t; } theo_v2_t2_t;
theo_v2_t2_t rfsns_theo_v2_t2[RFSNS_THEOV2_MAX_CHANNEL]; theo_v2_t1_t *rfsns_theo_v2_t1 = NULL;
theo_v2_t2_t *rfsns_theo_v2_t2 = NULL;
boolean RfSnsAnalyzeTheov2(void) void RfSnsInitTheoV2(void)
{ {
if (rfsns_raw_signal.Number != RFSNS_THEOV2_PULSECOUNT) return false; rfsns_theo_v2_t1 = (theo_v2_t1_t*)malloc(RFSNS_THEOV2_MAX_CHANNEL * sizeof(theo_v2_t1_t));
rfsns_theo_v2_t2 = (theo_v2_t2_t*)malloc(RFSNS_THEOV2_MAX_CHANNEL * sizeof(theo_v2_t2_t));
rfsns_any_sensor++;
}
void RfSnsAnalyzeTheov2(void)
{
if (rfsns_raw_signal->Number != RFSNS_THEOV2_PULSECOUNT) { return; }
byte Checksum; // 8 bits Checksum over following bytes byte Checksum; // 8 bits Checksum over following bytes
byte Channel; // 3 bits channel byte Channel; // 3 bits channel
@ -174,7 +187,6 @@ boolean RfSnsAnalyzeTheov2(void)
int Payload2; // 16 bits int Payload2; // 16 bits
byte b, bytes, bits, id; byte b, bytes, bits, id;
char log[128];
byte idx = 3; byte idx = 3;
byte chksum = 0; byte chksum = 0;
@ -182,7 +194,7 @@ boolean RfSnsAnalyzeTheov2(void)
b = 0; b = 0;
for (bits = 0; bits <= 7; bits++) for (bits = 0; bits <= 7; bits++)
{ {
if ((rfsns_raw_signal.Pulses[idx] * rfsns_raw_signal.Multiply) > RFSNS_THEOV2_RF_PULSE_MID) { if ((rfsns_raw_signal->Pulses[idx] * rfsns_raw_signal->Multiply) > RFSNS_THEOV2_RF_PULSE_MID) {
b |= 1 << bits; b |= 1 << bits;
} }
idx += 2; idx += 2;
@ -216,13 +228,13 @@ boolean RfSnsAnalyzeTheov2(void)
} }
} }
if (Checksum != chksum) { return false; } if (Checksum != chksum) { return; }
if (Channel == 0) { return false; } if ((Channel == 0) || (Channel > RFSNS_THEOV2_MAX_CHANNEL)) { return; }
Channel--;
rfsns_raw_signal.Repeats = 1; // het is een herhalend signaal. Bij ontvangst herhalingen onderdukken rfsns_raw_signal->Repeats = 1; // het is een herhalend signaal. Bij ontvangst herhalingen onderdukken
int Payload3 = Voltage & 0x3f; int Payload3 = Voltage & 0x3f;
Channel--;
switch (Type) { switch (Type) {
case 1: // Temp / Lux case 1: // Temp / Lux
@ -242,11 +254,9 @@ boolean RfSnsAnalyzeTheov2(void)
snprintf_P(log_data, sizeof(log_data), PSTR("RFS: TheoV2, ChkCalc %d, Chksum %d, id %d, Type %d, Ch %d, Volt %d, BattLo %d, Pld1 %d, Pld2 %d"), snprintf_P(log_data, sizeof(log_data), PSTR("RFS: TheoV2, ChkCalc %d, Chksum %d, id %d, Type %d, Ch %d, Volt %d, BattLo %d, Pld1 %d, Pld2 %d"),
chksum, Checksum, id, Type, Channel +1, Payload3, (Voltage & 0x80) >> 7, Payload1, Payload2); chksum, Checksum, id, Type, Channel +1, Payload3, (Voltage & 0x80) >> 7, Payload1, Payload2);
AddLog(LOG_LEVEL_DEBUG); AddLog(LOG_LEVEL_DEBUG);
return true;
} }
void RfSnsTheoV2Show(boolean json) void RfSnsTheoV2Show(bool json)
{ {
bool sensor_once = false; bool sensor_once = false;
@ -414,15 +424,19 @@ typedef struct {
uint8_t wdir; uint8_t wdir;
} alecto_v2_t; } alecto_v2_t;
alecto_v2_t rfsns_alecto_v2; alecto_v2_t *rfsns_alecto_v2 = NULL;
uint16_t rfsns_alecto_rain_base = 0; uint16_t rfsns_alecto_rain_base = 0;
//unsigned long rfsns_alecto_time = 60000;
boolean RfSnsAnalyzeAlectov2() void RfSnsInitAlectoV2(void)
{ {
if (!(((rfsns_raw_signal.Number >= RFSNS_ACH2010_MIN_PULSECOUNT) && rfsns_alecto_v2 = (alecto_v2_t*)malloc(sizeof(alecto_v2_t));
(rfsns_raw_signal.Number <= RFSNS_ACH2010_MAX_PULSECOUNT)) || (rfsns_raw_signal.Number == RFSNS_DKW2012_PULSECOUNT))) { return false; } rfsns_any_sensor++;
}
void RfSnsAnalyzeAlectov2()
{
if (!(((rfsns_raw_signal->Number >= RFSNS_ACH2010_MIN_PULSECOUNT) &&
(rfsns_raw_signal->Number <= RFSNS_ACH2010_MAX_PULSECOUNT)) || (rfsns_raw_signal->Number == RFSNS_DKW2012_PULSECOUNT))) { return; }
byte c = 0; byte c = 0;
byte rfbit; byte rfbit;
@ -437,11 +451,11 @@ boolean RfSnsAnalyzeAlectov2()
float factor; float factor;
char buf1[16]; char buf1[16];
if (rfsns_raw_signal.Number > RFSNS_ACH2010_MAX_PULSECOUNT) { maxidx = 9; } if (rfsns_raw_signal->Number > RFSNS_ACH2010_MAX_PULSECOUNT) { maxidx = 9; }
// Get message back to front as the header is almost never received complete for ACH2010 // Get message back to front as the header is almost never received complete for ACH2010
byte idx = maxidx; byte idx = maxidx;
for (byte x = rfsns_raw_signal.Number; x > 0; x = x-2) { for (byte x = rfsns_raw_signal->Number; x > 0; x = x-2) {
if (rfsns_raw_signal.Pulses[x-1] * rfsns_raw_signal.Multiply < 0x300) { if (rfsns_raw_signal->Pulses[x-1] * rfsns_raw_signal->Multiply < 0x300) {
rfbit = 0x80; rfbit = 0x80;
} else { } else {
rfbit = 0; rfbit = 0;
@ -461,49 +475,47 @@ boolean RfSnsAnalyzeAlectov2()
msgtype = (data[0] >> 4) & 0xf; msgtype = (data[0] >> 4) & 0xf;
rc = (data[0] << 4) | (data[1] >> 4); rc = (data[0] << 4) | (data[1] >> 4);
if (checksum != checksumcalc) { return false; } if (checksum != checksumcalc) { return; }
if ((msgtype != 10) && (msgtype != 5)) { return true; } if ((msgtype != 10) && (msgtype != 5)) { return; }
rfsns_raw_signal.Repeats = 1; // het is een herhalend signaal. Bij ontvangst herhalingen onderdukken rfsns_raw_signal->Repeats = 1; // het is een herhalend signaal. Bij ontvangst herhalingen onderdukken
// Test set // Test set
// rfsns_raw_signal.Number = RFSNS_DKW2012_PULSECOUNT; // DKW2012 // rfsns_raw_signal->Number = RFSNS_DKW2012_PULSECOUNT; // DKW2012
// data[8] = 11; // WSW // data[8] = 11; // WSW
factor = 1.22; // (1.08) factor = 1.22; // (1.08)
// atime = rfsns_raw_signal.Time - rfsns_alecto_time; // atime = rfsns_raw_signal->Time - rfsns_alecto_time;
// if ((atime > 10000) && (atime < 60000)) factor = (float)60000 / atime; // if ((atime > 10000) && (atime < 60000)) factor = (float)60000 / atime;
// rfsns_alecto_time = rfsns_raw_signal.Time; // rfsns_alecto_time = rfsns_raw_signal->Time;
// Serial.printf("atime %d, rfsns_alecto_time %d\n", atime, rfsns_alecto_time); // Serial.printf("atime %d, rfsns_alecto_time %d\n", atime, rfsns_alecto_time);
rfsns_alecto_v2.time = LocalTime(); rfsns_alecto_v2->time = LocalTime();
rfsns_alecto_v2.type = (RFSNS_DKW2012_PULSECOUNT == rfsns_raw_signal.Number); rfsns_alecto_v2->type = (RFSNS_DKW2012_PULSECOUNT == rfsns_raw_signal->Number);
rfsns_alecto_v2.temp = (float)(((data[1] & 0x3) * 256 + data[2]) - 400) / 10; rfsns_alecto_v2->temp = (float)(((data[1] & 0x3) * 256 + data[2]) - 400) / 10;
rfsns_alecto_v2.humi = data[3]; rfsns_alecto_v2->humi = data[3];
uint16_t rain = (data[6] * 256) + data[7]; uint16_t rain = (data[6] * 256) + data[7];
// check if rain unit has been reset! // check if rain unit has been reset!
if (rain < rfsns_alecto_rain_base) { rfsns_alecto_rain_base = rain; } if (rain < rfsns_alecto_rain_base) { rfsns_alecto_rain_base = rain; }
if (rfsns_alecto_rain_base > 0) { if (rfsns_alecto_rain_base > 0) {
rfsns_alecto_v2.rain += ((float)rain - rfsns_alecto_rain_base) * 0.30; rfsns_alecto_v2->rain += ((float)rain - rfsns_alecto_rain_base) * 0.30;
} }
rfsns_alecto_rain_base = rain; rfsns_alecto_rain_base = rain;
rfsns_alecto_v2.wind = (float)data[4] * factor; rfsns_alecto_v2->wind = (float)data[4] * factor;
rfsns_alecto_v2.gust = (float)data[5] * factor; rfsns_alecto_v2->gust = (float)data[5] * factor;
if (rfsns_alecto_v2.type) { if (rfsns_alecto_v2->type) {
rfsns_alecto_v2.wdir = data[8] & 0xf; rfsns_alecto_v2->wdir = data[8] & 0xf;
} }
snprintf_P(log_data, sizeof(log_data), PSTR("RFS: " D_ALECTOV2 ", ChkCalc %d, Chksum %d, rc %d, Temp %d, Hum %d, Rain %d, Wind %d, Gust %d, Dir %d, Factor %s"), snprintf_P(log_data, sizeof(log_data), PSTR("RFS: " D_ALECTOV2 ", ChkCalc %d, Chksum %d, rc %d, Temp %d, Hum %d, Rain %d, Wind %d, Gust %d, Dir %d, Factor %s"),
checksumcalc, checksum, rc, ((data[1] & 0x3) * 256 + data[2]) - 400, data[3], (data[6] * 256) + data[7], data[4], data[5], data[8] & 0xf, dtostrfd(factor, 3, buf1)); checksumcalc, checksum, rc, ((data[1] & 0x3) * 256 + data[2]) - 400, data[3], (data[6] * 256) + data[7], data[4], data[5], data[8] & 0xf, dtostrfd(factor, 3, buf1));
AddLog(LOG_LEVEL_DEBUG); AddLog(LOG_LEVEL_DEBUG);
return true;
} }
void RfSnsAlectoResetRain(void) void RfSnsAlectoResetRain(void)
{ {
if ((RtcTime.hour == 0) && (RtcTime.minute == 0) && (RtcTime.second == 5)) { if ((RtcTime.hour == 0) && (RtcTime.minute == 0) && (RtcTime.second == 5)) {
rfsns_alecto_v2.rain = 0; // Reset Rain rfsns_alecto_v2->rain = 0; // Reset Rain
} }
} }
@ -537,40 +549,43 @@ const char HTTP_SNS_ALECTOV2_WDIR[] PROGMEM = "%s"
"{s}" D_ALECTOV2 " " D_TX20_WIND_DIRECTION "{m}%s{e}"; "{s}" D_ALECTOV2 " " D_TX20_WIND_DIRECTION "{m}%s{e}";
#endif #endif
void RfSnsAlectoV2Show(boolean json) void RfSnsAlectoV2Show(bool json)
{ {
if (rfsns_alecto_v2.time) { if (rfsns_alecto_v2->time) {
if (rfsns_alecto_v2.time < LocalTime() - RFSNS_VALID_WINDOW) { if (rfsns_alecto_v2->time < LocalTime() - RFSNS_VALID_WINDOW) {
if (json) { if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_ALECTOV2 "\":{\"" D_JSON_RFRECEIVED "\":\"%s\"}"), snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_ALECTOV2 "\":{\"" D_JSON_RFRECEIVED "\":\"%s\"}"),
mqtt_data, GetDT(rfsns_alecto_v2.time).c_str()); mqtt_data, GetDT(rfsns_alecto_v2->time).c_str());
} }
} else { } else {
float temp = ConvertTemp(rfsns_alecto_v2.temp); float temp = ConvertTemp(rfsns_alecto_v2->temp);
char temperature[10]; char temperature[10];
dtostrfd(temp, Settings.flag2.temperature_resolution, temperature); dtostrfd(temp, Settings.flag2.temperature_resolution, temperature);
float humi = (float)rfsns_alecto_v2.humi; float humi = (float)rfsns_alecto_v2->humi;
char humidity[10]; char humidity[10];
dtostrfd(humi, Settings.flag2.humidity_resolution, humidity); dtostrfd(humi, Settings.flag2.humidity_resolution, humidity);
char rain[10]; char rain[10];
dtostrfd(rfsns_alecto_v2.rain, 2, rain); dtostrfd(rfsns_alecto_v2->rain, 2, rain);
char wind[10]; char wind[10];
dtostrfd(rfsns_alecto_v2.wind, 2, wind); dtostrfd(rfsns_alecto_v2->wind, 2, wind);
char gust[10]; char gust[10];
dtostrfd(rfsns_alecto_v2.gust, 2, gust); dtostrfd(rfsns_alecto_v2->gust, 2, gust);
char wdir[4]; char wdir[4];
char direction[20]; char direction[20];
if (rfsns_alecto_v2.type) { if (rfsns_alecto_v2->type) {
GetTextIndexed(wdir, sizeof(wdir), rfsns_alecto_v2.wdir, kAlectoV2Directions); GetTextIndexed(wdir, sizeof(wdir), rfsns_alecto_v2->wdir, kAlectoV2Directions);
snprintf_P(direction, sizeof(direction), PSTR(",\"Direction\":\"%s\""), wdir); snprintf_P(direction, sizeof(direction), PSTR(",\"Direction\":\"%s\""), wdir);
} }
if (json) { if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_ALECTOV2 "\":{\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_HUMIDITY "\":%s,\"Rain\":%s,\"Wind\":%s,\"Gust\":%s%s}"), snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_ALECTOV2 "\":{\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_HUMIDITY "\":%s,\"Rain\":%s,\"Wind\":%s,\"Gust\":%s%s}"),
mqtt_data, temperature, humidity, rain, wind, gust, (rfsns_alecto_v2.type) ? direction : ""); mqtt_data, temperature, humidity, rain, wind, gust, (rfsns_alecto_v2->type) ? direction : "");
if (0 == tele_period) { if (0 == tele_period) {
#ifdef USE_DOMOTICZ #ifdef USE_DOMOTICZ
// Use a rule // Use a rules to send data to Domoticz where also a local BMP280 is connected:
// on tele-alectov2#temperature do var1 %value% endon on tele-alectov2#humidity do var2 %value% endon on tele-bmp280#pressure do publish domoticz/in {"idx":68,"svalue":"%var1%;%var2%;0;%value%;0"} endon
// on tele-alectov2#wind do var1 %value% endon on tele-alectov2#gust do publish domoticz/in {"idx":69,"svalue":"0;N;%var1%;%value%;22;24"} endon"}
// on tele-alectov2#rain do publish domoticz/in {"idx":70,"svalue":"0;%value%"} endon
#endif // USE_DOMOTICZ #endif // USE_DOMOTICZ
} }
#ifdef USE_WEBSERVER #ifdef USE_WEBSERVER
@ -578,7 +593,7 @@ void RfSnsAlectoV2Show(boolean json)
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, D_ALECTOV2, temperature, TempUnit()); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, D_ALECTOV2, temperature, TempUnit());
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, D_ALECTOV2, humidity); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, D_ALECTOV2, humidity);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ALECTOV2, mqtt_data, rain, wind, gust); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ALECTOV2, mqtt_data, rain, wind, gust);
if (rfsns_alecto_v2.type) { if (rfsns_alecto_v2->type) {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ALECTOV2_WDIR, mqtt_data, wdir); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ALECTOV2_WDIR, mqtt_data, wdir);
} }
#endif // USE_WEBSERVER #endif // USE_WEBSERVER
@ -590,25 +605,36 @@ void RfSnsAlectoV2Show(boolean json)
void RfSnsInit(void) void RfSnsInit(void)
{ {
rfsns_rf_bit = digitalPinToBitMask(pin[GPIO_RF_SENSOR]); rfsns_raw_signal = (raw_signal_t*)(malloc(sizeof(raw_signal_t)));
rfsns_rf_port = digitalPinToPort(pin[GPIO_RF_SENSOR]); if (rfsns_raw_signal) {
pinMode(pin[GPIO_RF_SENSOR], INPUT); #ifdef USE_THEO_V2
RfSnsInitTheoV2();
#endif
#ifdef USE_ALECTO_V2
RfSnsInitAlectoV2();
#endif
if (rfsns_any_sensor) {
rfsns_rf_bit = digitalPinToBitMask(pin[GPIO_RF_SENSOR]);
rfsns_rf_port = digitalPinToPort(pin[GPIO_RF_SENSOR]);
pinMode(pin[GPIO_RF_SENSOR], INPUT);
} else {
free(rfsns_raw_signal);
rfsns_raw_signal = NULL;
}
}
} }
void RfSnsAnalyzeRawSignal(void) void RfSnsAnalyzeRawSignal(void)
{ {
snprintf_P(log_data, sizeof(log_data), PSTR("RFS: Pulses %d"), (int)rfsns_raw_signal.Number); snprintf_P(log_data, sizeof(log_data), PSTR("RFS: Pulses %d"), (int)rfsns_raw_signal->Number);
AddLog(LOG_LEVEL_DEBUG); AddLog(LOG_LEVEL_DEBUG);
// if (Settings.flag3.rf_type) {
#ifdef USE_THEO_V2 #ifdef USE_THEO_V2
RfSnsAnalyzeTheov2(); RfSnsAnalyzeTheov2();
#endif #endif
// } else {
#ifdef USE_ALECTO_V2 #ifdef USE_ALECTO_V2
RfSnsAnalyzeAlectov2(); RfSnsAnalyzeAlectov2();
#endif #endif
// }
} }
void RfSnsEverySecond(void) void RfSnsEverySecond(void)
@ -618,12 +644,11 @@ void RfSnsEverySecond(void)
#endif #endif
} }
void RfSnsShow(boolean json) void RfSnsShow(bool json)
{ {
#ifdef USE_THEO_V2 #ifdef USE_THEO_V2
RfSnsTheoV2Show(json); RfSnsTheoV2Show(json);
#endif #endif
#ifdef USE_ALECTO_V2 #ifdef USE_ALECTO_V2
RfSnsAlectoV2Show(json); RfSnsAlectoV2Show(json);
#endif #endif
@ -635,13 +660,13 @@ void RfSnsShow(boolean json)
boolean Xsns37(byte function) boolean Xsns37(byte function)
{ {
boolean result = false; bool result = false;
if (pin[GPIO_RF_SENSOR] < 99) { if ((pin[GPIO_RF_SENSOR] < 99) && (FUNC_INIT == function)) {
RfSnsInit();
}
else if (rfsns_raw_signal) {
switch (function) { switch (function) {
case FUNC_INIT:
RfSnsInit();
break;
case FUNC_LOOP: case FUNC_LOOP:
if ((*portInputRegister(rfsns_rf_port) &rfsns_rf_bit) == rfsns_rf_bit) { if ((*portInputRegister(rfsns_rf_port) &rfsns_rf_bit) == rfsns_rf_bit) {
if (RfSnsFetchSignal(pin[GPIO_RF_SENSOR], HIGH)) { if (RfSnsFetchSignal(pin[GPIO_RF_SENSOR], HIGH)) {