From 95e696075e4ff93a492b67df3a4223aee2c96a7d Mon Sep 17 00:00:00 2001 From: Stephan Hadinger Date: Mon, 15 Mar 2021 21:06:50 +0100 Subject: [PATCH] Add support for MPU6686 on primary or secondary I2C bus --- CHANGELOG.md | 1 + I2CDEVICES.md | 1 + lib/lib_i2c/MFRC522_I2C/library.properties | 9 + lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.cpp | 1752 +++++++++++++++++ lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.h | 407 ++++ lib/lib_i2c/MPU6886/library.properties | 9 + .../MPU6886/src}/MPU6886.cpp | 98 +- .../MPU6886/src}/MPU6886.h | 16 +- lib/libesp32/CORE2_Library/MahonyAHRS.cpp | 254 --- lib/libesp32/CORE2_Library/MahonyAHRS.h | 33 - tasmota/i18n.h | 1 + tasmota/my_user_config.h | 1 + tasmota/support.ino | 25 +- tasmota/xdrv_52_3_berry_wire.ino | 4 +- tasmota/xdrv_84_esp32_core2.ino | 35 +- tasmota/xsns_85_mpu6886.ino | 128 ++ 16 files changed, 2411 insertions(+), 363 deletions(-) create mode 100644 lib/lib_i2c/MFRC522_I2C/library.properties create mode 100644 lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.cpp create mode 100644 lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.h create mode 100644 lib/lib_i2c/MPU6886/library.properties rename lib/{libesp32/CORE2_Library => lib_i2c/MPU6886/src}/MPU6886.cpp (68%) rename lib/{libesp32/CORE2_Library => lib_i2c/MPU6886/src}/MPU6886.h (82%) delete mode 100755 lib/libesp32/CORE2_Library/MahonyAHRS.cpp delete mode 100755 lib/libesp32/CORE2_Library/MahonyAHRS.h create mode 100644 tasmota/xsns_85_mpu6886.ino diff --git a/CHANGELOG.md b/CHANGELOG.md index a2e722eac..1c3c9ca0f 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -18,6 +18,7 @@ All notable changes to this project will be documented in this file. - ESP32 Extent BLE (#11212) - ESP32 support for WS2812 hardware driver via RMT or I2S - ESP32 support for secondary I2C controller +- Add support for MPU6686 on primary or secondary I2C bus ### Changed diff --git a/I2CDEVICES.md b/I2CDEVICES.md index 60ee9608b..8d5e34459 100644 --- a/I2CDEVICES.md +++ b/I2CDEVICES.md @@ -91,3 +91,4 @@ Index | Define | Driver | Device | Address(es) | Description 55 | USE_EZOPMP | xsns_78 | EZOPMP | 0x61 - 0x70 | Peristaltic Pump 56 | USE_SEESAW_SOIL | xsns_81 | SEESOIL | 0x36 - 0x39 | Adafruit seesaw soil moisture sensor 57 | USE_TOF10120 | xsns_84 | TOF10120 | 0x52 | Time-of-flight (ToF) distance sensor + 58 | USE_MPU6886 | xsns_85 | MPU6886 | 0x68 | MPU6886 M5Stack \ No newline at end of file diff --git a/lib/lib_i2c/MFRC522_I2C/library.properties b/lib/lib_i2c/MFRC522_I2C/library.properties new file mode 100644 index 000000000..6253b9d93 --- /dev/null +++ b/lib/lib_i2c/MFRC522_I2C/library.properties @@ -0,0 +1,9 @@ +name=MFRC522_I2C +version= +author=AROZCAN, COOQROBOT +maintainer= +sentence=I2C port of MFRC522 SPI +paragraph=Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS I2C, Based on ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI Library BY COOQROBOT. +category=Communication +url=https://github.com/m5stack/M5StickC/blob/master/examples/Unit/RFID/ +architectures=esp8266,esp32 diff --git a/lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.cpp b/lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.cpp new file mode 100644 index 000000000..d63ee8d3e --- /dev/null +++ b/lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.cpp @@ -0,0 +1,1752 @@ +/* +* MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS I2C BY AROZCAN +* MFRC522.cpp - Based on ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI Library BY COOQROBOT. +* NOTE: Please also check the comments in MFRC522.h - they provide useful hints and background information. +* Released into the public domain. +* Author: arozcan @ https://github.com/arozcan/MFRC522-I2C-Library +*/ + +#include +#include +#include "MFRC522_I2C.h" + + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for setting up the Arduino +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Constructor. + * Prepares the output pins. + */ +MFRC522::MFRC522( byte chipAddress + //byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low) + ) { + _chipAddress = chipAddress; + // _resetPowerDownPin = resetPowerDownPin; +} // End constructor + + +///////////////////////////////////////////////////////////////////////////////////// +// Basic interface functions for communicating with the MFRC522 +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Writes a byte to the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums. + byte value ///< The value to write. + ) { + Wire.beginTransmission(_chipAddress); + Wire.write(reg); + Wire.write(value); + Wire.endTransmission(); +} // End PCD_WriteRegister() + +/** + * Writes a number of bytes to the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums. + byte count, ///< The number of bytes to write to the register + byte *values ///< The values to write. Byte array. + ) { + Wire.beginTransmission(_chipAddress); + Wire.write(reg); + for (byte index = 0; index < count; index++) { + Wire.write(values[index]); + } + Wire.endTransmission(); +} // End PCD_WriteRegister() + +/** + * Reads a byte from the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +byte MFRC522::PCD_ReadRegister( byte reg ///< The register to read from. One of the PCD_Register enums. + ) { + byte value; + //digitalWrite(_chipSelectPin, LOW); // Select slave + Wire.beginTransmission(_chipAddress); + Wire.write(reg); + Wire.endTransmission(); + + Wire.requestFrom(_chipAddress, (byte)1); + value = Wire.read(); + return value; +} // End PCD_ReadRegister() + +/** + * Reads a number of bytes from the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void MFRC522::PCD_ReadRegister( byte reg, ///< The register to read from. One of the PCD_Register enums. + byte count, ///< The number of bytes to read + byte *values, ///< Byte array to store the values in. + byte rxAlign ///< Only bit positions rxAlign..7 in values[0] are updated. + ) { + if (count == 0) { + return; + } + byte address = reg; + byte index = 0; // Index in values array. + Wire.beginTransmission(_chipAddress); + Wire.write(address); + Wire.endTransmission(); + Wire.requestFrom(_chipAddress, count); + while (Wire.available()) { + if (index == 0 && rxAlign) { // Only update bit positions rxAlign..7 in values[0] + // Create bit mask for bit positions rxAlign..7 + byte mask = 0; + for (byte i = rxAlign; i <= 7; i++) { + mask |= (1 << i); + } + // Read value and tell that we want to read the same address again. + byte value = Wire.read(); + // Apply mask to both current value of values[0] and the new data in value. + values[0] = (values[index] & ~mask) | (value & mask); + } + else { // Normal case + values[index] = Wire.read(); + } + index++; + } +} // End PCD_ReadRegister() + +/** + * Sets the bits given in mask in register reg. + */ +void MFRC522::PCD_SetRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums. + byte mask ///< The bits to set. + ) { + byte tmp; + tmp = PCD_ReadRegister(reg); + PCD_WriteRegister(reg, tmp | mask); // set bit mask +} // End PCD_SetRegisterBitMask() + +/** + * Clears the bits given in mask from register reg. + */ +void MFRC522::PCD_ClearRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums. + byte mask ///< The bits to clear. + ) { + byte tmp; + tmp = PCD_ReadRegister(reg); + PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask +} // End PCD_ClearRegisterBitMask() + + +/** + * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PCD_CalculateCRC( byte *data, ///< In: Pointer to the data to transfer to the FIFO for CRC calculation. + byte length, ///< In: The number of bytes to transfer. + byte *result ///< Out: Pointer to result buffer. Result is written to result[0..1], low byte first. + ) { + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. + PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit + PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization + PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO + PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation + + // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73�s. + word i = 5000; + byte n; + while (1) { + n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved + if (n & 0x04) { // CRCIRq bit set - calculation done + break; + } + if (--i == 0) { // The emergency break. We will eventually terminate on this one after 89ms. Communication with the MFRC522 might be down. + return STATUS_TIMEOUT; + } + } + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO. + + // Transfer the result from the registers to the result buffer + result[0] = PCD_ReadRegister(CRCResultRegL); + result[1] = PCD_ReadRegister(CRCResultRegH); + return STATUS_OK; +} // End PCD_CalculateCRC() + + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for manipulating the MFRC522 +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Initializes the MFRC522 chip. + */ +void MFRC522::PCD_Init() { + // Set the chipSelectPin as digital output, do not select the slave yet + + // Set the resetPowerDownPin as digital output, do not reset or power down. + // pinMode(_resetPowerDownPin, OUTPUT); + + + // if (digitalRead(_resetPowerDownPin) == LOW) { //The MFRC522 chip is in power down mode. + // digitalWrite(_resetPowerDownPin, HIGH); // Exit power down mode. This triggers a hard reset. + // // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. + // delay(50); + // } + // else { // Perform a soft reset + PCD_Reset(); + // } + + // When communicating with a PICC we need a timeout if something goes wrong. + // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. + // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. + PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds + PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s. + PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. + PCD_WriteRegister(TReloadRegL, 0xE8); + + PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting + PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) + PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) +} // End PCD_Init() + +/** + * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. + */ +void MFRC522::PCD_Reset() { + PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command. + // The datasheet does not mention how long the SoftRest command takes to complete. + // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) + // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. + delay(50); + // Wait for the PowerDown bit in CommandReg to be cleared + while (PCD_ReadRegister(CommandReg) & (1<<4)) { + // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry. + } +} // End PCD_Reset() + +/** + * Turns the antenna on by enabling pins TX1 and TX2. + * After a reset these pins are disabled. + */ +void MFRC522::PCD_AntennaOn() { + byte value = PCD_ReadRegister(TxControlReg); + if ((value & 0x03) != 0x03) { + PCD_WriteRegister(TxControlReg, value | 0x03); + } +} // End PCD_AntennaOn() + +/** + * Turns the antenna off by disabling pins TX1 and TX2. + */ +void MFRC522::PCD_AntennaOff() { + PCD_ClearRegisterBitMask(TxControlReg, 0x03); +} // End PCD_AntennaOff() + +/** + * Get the current MFRC522 Receiver Gain (RxGain[2:0]) value. + * See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf + * NOTE: Return value scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits. + * + * @return Value of the RxGain, scrubbed to the 3 bits used. + */ +byte MFRC522::PCD_GetAntennaGain() { + return PCD_ReadRegister(RFCfgReg) & (0x07<<4); +} // End PCD_GetAntennaGain() + +/** + * Set the MFRC522 Receiver Gain (RxGain) to value specified by given mask. + * See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf + * NOTE: Given mask is scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits. + */ +void MFRC522::PCD_SetAntennaGain(byte mask) { + if (PCD_GetAntennaGain() != mask) { // only bother if there is a change + PCD_ClearRegisterBitMask(RFCfgReg, (0x07<<4)); // clear needed to allow 000 pattern + PCD_SetRegisterBitMask(RFCfgReg, mask & (0x07<<4)); // only set RxGain[2:0] bits + } +} // End PCD_SetAntennaGain() + +/** + * Performs a self-test of the MFRC522 + * See 16.1.1 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf + * + * @return Whether or not the test passed. + */ +bool MFRC522::PCD_PerformSelfTest() { + // This follows directly the steps outlined in 16.1.1 + // 1. Perform a soft reset. + PCD_Reset(); + + // 2. Clear the internal buffer by writing 25 bytes of 00h + byte ZEROES[25] = {0x00}; + PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // flush the FIFO buffer + PCD_WriteRegister(FIFODataReg, 25, ZEROES); // write 25 bytes of 00h to FIFO + PCD_WriteRegister(CommandReg, PCD_Mem); // transfer to internal buffer + + // 3. Enable self-test + PCD_WriteRegister(AutoTestReg, 0x09); + + // 4. Write 00h to FIFO buffer + PCD_WriteRegister(FIFODataReg, 0x00); + + // 5. Start self-test by issuing the CalcCRC command + PCD_WriteRegister(CommandReg, PCD_CalcCRC); + + // 6. Wait for self-test to complete + word i; + byte n; + for (i = 0; i < 0xFF; i++) { + n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved + if (n & 0x04) { // CRCIRq bit set - calculation done + break; + } + } + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO. + + // 7. Read out resulting 64 bytes from the FIFO buffer. + byte result[64]; + PCD_ReadRegister(FIFODataReg, 64, result, 0); + + // Auto self-test done + // Reset AutoTestReg register to be 0 again. Required for normal operation. + PCD_WriteRegister(AutoTestReg, 0x00); + + // Determine firmware version (see section 9.3.4.8 in spec) + byte version = PCD_ReadRegister(VersionReg); + + // Pick the appropriate reference values + const byte *reference; + switch (version) { + case 0x88: // Fudan Semiconductor FM17522 clone + reference = FM17522_firmware_reference; + break; + case 0x90: // Version 0.0 + reference = MFRC522_firmware_referenceV0_0; + break; + case 0x91: // Version 1.0 + reference = MFRC522_firmware_referenceV1_0; + break; + case 0x92: // Version 2.0 + reference = MFRC522_firmware_referenceV2_0; + break; + default: // Unknown version + return false; + } + + // Verify that the results match up to our expectations + for (i = 0; i < 64; i++) { + if (result[i] != pgm_read_byte(&(reference[i]))) { + return false; + } + } + + // Test passed; all is good. + return true; +} // End PCD_PerformSelfTest() + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for communicating with PICCs +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Executes the Transceive command. + * CRC validation can only be done if backData and backLen are specified. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PCD_TransceiveData( byte *sendData, ///< Pointer to the data to transfer to the FIFO. + byte sendLen, ///< Number of bytes to transfer to the FIFO. + byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. + byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. + byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL. + byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. + bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. + ) { + byte waitIRq = 0x30; // RxIRq and IdleIRq + return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC); +} // End PCD_TransceiveData() + +/** + * Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO. + * CRC validation can only be done if backData and backLen are specified. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PCD_CommunicateWithPICC( byte command, ///< The command to execute. One of the PCD_Command enums. + byte waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command. + byte *sendData, ///< Pointer to the data to transfer to the FIFO. + byte sendLen, ///< Number of bytes to transfer to the FIFO. + byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. + byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. + byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. + byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. + bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. + ) { + byte n, _validBits = 0; + unsigned int i; + + // Prepare values for BitFramingReg + byte txLastBits = validBits ? *validBits : 0; + byte bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. + PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits + PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization + PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO + PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments + PCD_WriteRegister(CommandReg, command); // Execute the command + if (command == PCD_Transceive) { + PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts + } + + // Wait for the command to complete. + // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. + // Each iteration of the do-while-loop takes 17.86�s. + i = 2000; + while (1) { + n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq + if (n & waitIRq) { // One of the interrupts that signal success has been set. + break; + } + if (n & 0x01) { // Timer interrupt - nothing received in 25ms + return STATUS_TIMEOUT; + } + if (--i == 0) { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down. + return STATUS_TIMEOUT; + } + } + + // Stop now if any errors except collisions were detected. + byte errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr + if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr + return STATUS_ERROR; + } + + // If the caller wants data back, get it from the MFRC522. + if (backData && backLen) { + n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO + if (n > *backLen) { + return STATUS_NO_ROOM; + } + *backLen = n; // Number of bytes returned + PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO + _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. + if (validBits) { + *validBits = _validBits; + } + } + + // Tell about collisions + if (errorRegValue & 0x08) { // CollErr + return STATUS_COLLISION; + } + + // Perform CRC_A validation if requested. + if (backData && backLen && checkCRC) { + // In this case a MIFARE Classic NAK is not OK. + if (*backLen == 1 && _validBits == 4) { + return STATUS_MIFARE_NACK; + } + // We need at least the CRC_A value and all 8 bits of the last byte must be received. + if (*backLen < 2 || _validBits != 0) { + return STATUS_CRC_WRONG; + } + // Verify CRC_A - do our own calculation and store the control in controlBuffer. + byte controlBuffer[2]; + n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]); + if (n != STATUS_OK) { + return n; + } + if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) { + return STATUS_CRC_WRONG; + } + } + + return STATUS_OK; +} // End PCD_CommunicateWithPICC() + +/** + * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PICC_RequestA(byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in + byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. + ) { + return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize); +} // End PICC_RequestA() + +/** + * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PICC_WakeupA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in + byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. + ) { + return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize); +} // End PICC_WakeupA() + +/** + * Transmits REQA or WUPA commands. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PICC_REQA_or_WUPA( byte command, ///< The command to send - PICC_CMD_REQA or PICC_CMD_WUPA + byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in + byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. + ) { + byte validBits; + byte status; + + if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long. + return STATUS_NO_ROOM; + } + PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. + validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] + status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits); + if (status != STATUS_OK) { + return status; + } + if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits. + return STATUS_ERROR; + } + return STATUS_OK; +} // End PICC_REQA_or_WUPA() + +/** + * Transmits SELECT/ANTICOLLISION commands to select a single PICC. + * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). + * On success: + * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) + * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. + * + * A PICC UID consists of 4, 7 or 10 bytes. + * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: + * UID size Number of UID bytes Cascade levels Example of PICC + * ======== =================== ============== =============== + * single 4 1 MIFARE Classic + * double 7 2 MIFARE Ultralight + * triple 10 3 Not currently in use? + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID. + byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size. + ) { + bool uidComplete; + bool selectDone; + bool useCascadeTag; + byte cascadeLevel = 1; + byte result; + byte count; + byte index; + byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. + int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. + byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A + byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. + byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. + byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. + byte *responseBuffer; + byte responseLength; + + // Description of buffer structure: + // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 + // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. + // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. + // Byte 3: UID-data + // Byte 4: UID-data + // Byte 5: UID-data + // Byte 6: BCC Block Check Character - XOR of bytes 2-5 + // Byte 7: CRC_A + // Byte 8: CRC_A + // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level. + // + // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) + // UID size Cascade level Byte2 Byte3 Byte4 Byte5 + // ======== ============= ===== ===== ===== ===== + // 4 bytes 1 uid0 uid1 uid2 uid3 + // 7 bytes 1 CT uid0 uid1 uid2 + // 2 uid3 uid4 uid5 uid6 + // 10 bytes 1 CT uid0 uid1 uid2 + // 2 CT uid3 uid4 uid5 + // 3 uid6 uid7 uid8 uid9 + + // Sanity checks + if (validBits > 80) { + return STATUS_INVALID; + } + + // Prepare MFRC522 + PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. + + // Repeat Cascade Level loop until we have a complete UID. + uidComplete = false; + while (!uidComplete) { + // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. + switch (cascadeLevel) { + case 1: + buffer[0] = PICC_CMD_SEL_CL1; + uidIndex = 0; + useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes + break; + + case 2: + buffer[0] = PICC_CMD_SEL_CL2; + uidIndex = 3; + useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes + break; + + case 3: + buffer[0] = PICC_CMD_SEL_CL3; + uidIndex = 6; + useCascadeTag = false; // Never used in CL3. + break; + + default: + return STATUS_INTERNAL_ERROR; + break; + } + + // How many UID bits are known in this Cascade Level? + currentLevelKnownBits = validBits - (8 * uidIndex); + if (currentLevelKnownBits < 0) { + currentLevelKnownBits = 0; + } + // Copy the known bits from uid->uidByte[] to buffer[] + index = 2; // destination index in buffer[] + if (useCascadeTag) { + buffer[index++] = PICC_CMD_CT; + } + byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. + if (bytesToCopy) { + byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag + if (bytesToCopy > maxBytes) { + bytesToCopy = maxBytes; + } + for (count = 0; count < bytesToCopy; count++) { + buffer[index++] = uid->uidByte[uidIndex + count]; + } + } + // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits + if (useCascadeTag) { + currentLevelKnownBits += 8; + } + + // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. + selectDone = false; + while (!selectDone) { + // Find out how many bits and bytes to send and receive. + if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. + //Serial.print(F("SELECT: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC); + buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes + // Calculate BCC - Block Check Character + buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 7, &buffer[7]); + if (result != STATUS_OK) { + return result; + } + txLastBits = 0; // 0 => All 8 bits are valid. + bufferUsed = 9; + // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) + responseBuffer = &buffer[6]; + responseLength = 3; + } + else { // This is an ANTICOLLISION. + //Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC); + txLastBits = currentLevelKnownBits % 8; + count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. + index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs + buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits + bufferUsed = index + (txLastBits ? 1 : 0); + // Store response in the unused part of buffer + responseBuffer = &buffer[index]; + responseLength = sizeof(buffer) - index; + } + + // Set bit adjustments + rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read. + PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + // Transmit the buffer and receive the response. + result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign); + if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. + result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] + if (result & 0x20) { // CollPosNotValid + return STATUS_COLLISION; // Without a valid collision position we cannot continue + } + byte collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32. + if (collisionPos == 0) { + collisionPos = 32; + } + if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen + return STATUS_INTERNAL_ERROR; + } + // Choose the PICC with the bit set. + currentLevelKnownBits = collisionPos; + count = (currentLevelKnownBits - 1) % 8; // The bit to modify + index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. + buffer[index] |= (1 << count); + } + else if (result != STATUS_OK) { + return result; + } + else { // STATUS_OK + if (currentLevelKnownBits >= 32) { // This was a SELECT. + selectDone = true; // No more anticollision + // We continue below outside the while. + } + else { // This was an ANTICOLLISION. + // We now have all 32 bits of the UID in this Cascade Level + currentLevelKnownBits = 32; + // Run loop again to do the SELECT. + } + } + } // End of while (!selectDone) + + // We do not check the CBB - it was constructed by us above. + + // Copy the found UID bytes from buffer[] to uid->uidByte[] + index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] + bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; + for (count = 0; count < bytesToCopy; count++) { + uid->uidByte[uidIndex + count] = buffer[index++]; + } + + // Check response SAK (Select Acknowledge) + if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). + return STATUS_ERROR; + } + // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. + result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) { + return STATUS_CRC_WRONG; + } + if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes + cascadeLevel++; + } + else { + uidComplete = true; + uid->sak = responseBuffer[0]; + } + } // End of while (!uidComplete) + + // Set correct uid->size + uid->size = 3 * cascadeLevel + 1; + + return STATUS_OK; +} // End PICC_Select() + +/** + * Instructs a PICC in state ACTIVE(*) to go to state HALT. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PICC_HaltA() { + byte result; + byte buffer[4]; + + // Build command buffer + buffer[0] = PICC_CMD_HLTA; + buffer[1] = 0; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 2, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + + // Send the command. + // The standard says: + // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the + // HLTA command, this response shall be interpreted as 'not acknowledge'. + // We interpret that this way: Only STATUS_TIMEOUT is an success. + result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0); + if (result == STATUS_TIMEOUT) { + return STATUS_OK; + } + if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) + return STATUS_ERROR; + } + return result; +} // End PICC_HaltA() + + +///////////////////////////////////////////////////////////////////////////////////// +// Functions for communicating with MIFARE PICCs +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Executes the MFRC522 MFAuthent command. + * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. + * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. + * For use with MIFARE Classic PICCs. + * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. + * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. + * + * All keys are set to FFFFFFFFFFFFh at chip delivery. + * + * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. + */ +byte MFRC522::PCD_Authenticate(byte command, ///< PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B + byte blockAddr, ///< The block number. See numbering in the comments in the .h file. + MIFARE_Key *key, ///< Pointer to the Crypteo1 key to use (6 bytes) + Uid *uid ///< Pointer to Uid struct. The first 4 bytes of the UID is used. + ) { + byte waitIRq = 0x10; // IdleIRq + + // Build command buffer + byte sendData[12]; + sendData[0] = command; + sendData[1] = blockAddr; + for (byte i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes + sendData[2+i] = key->keyByte[i]; + } + for (byte i = 0; i < 4; i++) { // The first 4 bytes of the UID + sendData[8+i] = uid->uidByte[i]; + } + + // Start the authentication. + return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData)); +} // End PCD_Authenticate() + +/** + * Used to exit the PCD from its authenticated state. + * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. + */ +void MFRC522::PCD_StopCrypto1() { + // Clear MFCrypto1On bit + PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] +} // End PCD_StopCrypto1() + +/** + * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. + * + * For MIFARE Classic the sector containing the block must be authenticated before calling this function. + * + * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. + * The MF0ICU1 returns a NAK for higher addresses. + * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. + * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. + * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. + * + * The buffer must be at least 18 bytes because a CRC_A is also returned. + * Checks the CRC_A before returning STATUS_OK. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Read( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from. + byte *buffer, ///< The buffer to store the data in + byte *bufferSize ///< Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK. + ) { + byte result; + + // Sanity check + if (buffer == NULL || *bufferSize < 18) { + return STATUS_NO_ROOM; + } + + // Build command buffer + buffer[0] = PICC_CMD_MF_READ; + buffer[1] = blockAddr; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 2, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + + // Transmit the buffer and receive the response, validate CRC_A. + return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true); +} // End MIFARE_Read() + +/** + * Writes 16 bytes to the active PICC. + * + * For MIFARE Classic the sector containing the block must be authenticated before calling this function. + * + * For MIFARE Ultralight the operation is called "COMPATIBILITY WRITE". + * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) + * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. + * * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to. + byte *buffer, ///< The 16 bytes to write to the PICC + byte bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written. + ) { + byte result; + + // Sanity check + if (buffer == NULL || bufferSize < 16) { + return STATUS_INVALID; + } + + // Mifare Classic protocol requires two communications to perform a write. + // Step 1: Tell the PICC we want to write to block blockAddr. + byte cmdBuffer[2]; + cmdBuffer[0] = PICC_CMD_MF_WRITE; + cmdBuffer[1] = blockAddr; + result = PCD_MIFARE_Transceive(cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + + // Step 2: Transfer the data + result = PCD_MIFARE_Transceive(buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + + return STATUS_OK; +} // End MIFARE_Write() + +/** + * Writes a 4 byte page to the active MIFARE Ultralight PICC. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Ultralight_Write( byte page, ///< The page (2-15) to write to. + byte *buffer, ///< The 4 bytes to write to the PICC + byte bufferSize ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written. + ) { + byte result; + + // Sanity check + if (buffer == NULL || bufferSize < 4) { + return STATUS_INVALID; + } + + // Build commmand buffer + byte cmdBuffer[6]; + cmdBuffer[0] = PICC_CMD_UL_WRITE; + cmdBuffer[1] = page; + memcpy(&cmdBuffer[2], buffer, 4); + + // Perform the write + result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + return STATUS_OK; +} // End MIFARE_Ultralight_Write() + +/** + * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * Use MIFARE_Transfer() to store the result in a block. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Decrement( byte blockAddr, ///< The block (0-0xff) number. + long delta ///< This number is subtracted from the value of block blockAddr. + ) { + return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta); +} // End MIFARE_Decrement() + +/** + * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * Use MIFARE_Transfer() to store the result in a block. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Increment( byte blockAddr, ///< The block (0-0xff) number. + long delta ///< This number is added to the value of block blockAddr. + ) { + return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta); +} // End MIFARE_Increment() + +/** + * MIFARE Restore copies the value of the addressed block into a volatile memory. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * Use MIFARE_Transfer() to store the result in a block. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Restore( byte blockAddr ///< The block (0-0xff) number. + ) { + // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. + // Doing only a single step does not work, so I chose to transfer 0L in step two. + return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L); +} // End MIFARE_Restore() + +/** + * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_TwoStepHelper( byte command, ///< The command to use + byte blockAddr, ///< The block (0-0xff) number. + long data ///< The data to transfer in step 2 + ) { + byte result; + byte cmdBuffer[2]; // We only need room for 2 bytes. + + // Step 1: Tell the PICC the command and block address + cmdBuffer[0] = command; + cmdBuffer[1] = blockAddr; + result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + + // Step 2: Transfer the data + result = PCD_MIFARE_Transceive( (byte *)&data, 4, true); // Adds CRC_A and accept timeout as success. + if (result != STATUS_OK) { + return result; + } + + return STATUS_OK; +} // End MIFARE_TwoStepHelper() + +/** + * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_Transfer( byte blockAddr ///< The block (0-0xff) number. + ) { + byte result; + byte cmdBuffer[2]; // We only need room for 2 bytes. + + // Tell the PICC we want to transfer the result into block blockAddr. + cmdBuffer[0] = PICC_CMD_MF_TRANSFER; + cmdBuffer[1] = blockAddr; + result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + return STATUS_OK; +} // End MIFARE_Transfer() + +/** + * Helper routine to read the current value from a Value Block. + * + * Only for MIFARE Classic and only for blocks in "value block" mode, that + * is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing + * the block must be authenticated before calling this function. + * + * @param[in] blockAddr The block (0x00-0xff) number. + * @param[out] value Current value of the Value Block. + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_GetValue(byte blockAddr, long *value) { + byte status; + byte buffer[18]; + byte size = sizeof(buffer); + + // Read the block + status = MIFARE_Read(blockAddr, buffer, &size); + if (status == STATUS_OK) { + // Extract the value + *value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]); + } + return status; +} // End MIFARE_GetValue() + +/** + * Helper routine to write a specific value into a Value Block. + * + * Only for MIFARE Classic and only for blocks in "value block" mode, that + * is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing + * the block must be authenticated before calling this function. + * + * @param[in] blockAddr The block (0x00-0xff) number. + * @param[in] value New value of the Value Block. + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::MIFARE_SetValue(byte blockAddr, long value) { + byte buffer[18]; + + // Translate the long into 4 bytes; repeated 2x in value block + buffer[0] = buffer[ 8] = (value & 0xFF); + buffer[1] = buffer[ 9] = (value & 0xFF00) >> 8; + buffer[2] = buffer[10] = (value & 0xFF0000) >> 16; + buffer[3] = buffer[11] = (value & 0xFF000000) >> 24; + // Inverse 4 bytes also found in value block + buffer[4] = ~buffer[0]; + buffer[5] = ~buffer[1]; + buffer[6] = ~buffer[2]; + buffer[7] = ~buffer[3]; + // Address 2x with inverse address 2x + buffer[12] = buffer[14] = blockAddr; + buffer[13] = buffer[15] = ~blockAddr; + + // Write the whole data block + return MIFARE_Write(blockAddr, buffer, 16); +} // End MIFARE_SetValue() + +///////////////////////////////////////////////////////////////////////////////////// +// Support functions +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Wrapper for MIFARE protocol communication. + * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MFRC522::PCD_MIFARE_Transceive( byte *sendData, ///< Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A. + byte sendLen, ///< Number of bytes in sendData. + bool acceptTimeout ///< True => A timeout is also success + ) { + byte result; + byte cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. + + // Sanity check + if (sendData == NULL || sendLen > 16) { + return STATUS_INVALID; + } + + // Copy sendData[] to cmdBuffer[] and add CRC_A + memcpy(cmdBuffer, sendData, sendLen); + result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]); + if (result != STATUS_OK) { + return result; + } + sendLen += 2; + + // Transceive the data, store the reply in cmdBuffer[] + byte waitIRq = 0x30; // RxIRq and IdleIRq + byte cmdBufferSize = sizeof(cmdBuffer); + byte validBits = 0; + result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits); + if (acceptTimeout && result == STATUS_TIMEOUT) { + return STATUS_OK; + } + if (result != STATUS_OK) { + return result; + } + // The PICC must reply with a 4 bit ACK + if (cmdBufferSize != 1 || validBits != 4) { + return STATUS_ERROR; + } + if (cmdBuffer[0] != MF_ACK) { + return STATUS_MIFARE_NACK; + } + return STATUS_OK; +} // End PCD_MIFARE_Transceive() + +/** + * Returns a __FlashStringHelper pointer to a status code name. + * + * @return const __FlashStringHelper * + */ +const __FlashStringHelper *MFRC522::GetStatusCodeName(byte code ///< One of the StatusCode enums. + ) { + switch (code) { + case STATUS_OK: return F("Success."); break; + case STATUS_ERROR: return F("Error in communication."); break; + case STATUS_COLLISION: return F("Collission detected."); break; + case STATUS_TIMEOUT: return F("Timeout in communication."); break; + case STATUS_NO_ROOM: return F("A buffer is not big enough."); break; + case STATUS_INTERNAL_ERROR: return F("Internal error in the code. Should not happen."); break; + case STATUS_INVALID: return F("Invalid argument."); break; + case STATUS_CRC_WRONG: return F("The CRC_A does not match."); break; + case STATUS_MIFARE_NACK: return F("A MIFARE PICC responded with NAK."); break; + default: return F("Unknown error"); break; + } +} // End GetStatusCodeName() + +/** + * Translates the SAK (Select Acknowledge) to a PICC type. + * + * @return PICC_Type + */ +byte MFRC522::PICC_GetType(byte sak ///< The SAK byte returned from PICC_Select(). + ) { + if (sak & 0x04) { // UID not complete + return PICC_TYPE_NOT_COMPLETE; + } + + switch (sak) { + case 0x09: return PICC_TYPE_MIFARE_MINI; break; + case 0x08: return PICC_TYPE_MIFARE_1K; break; + case 0x18: return PICC_TYPE_MIFARE_4K; break; + case 0x00: return PICC_TYPE_MIFARE_UL; break; + case 0x10: + case 0x11: return PICC_TYPE_MIFARE_PLUS; break; + case 0x01: return PICC_TYPE_TNP3XXX; break; + default: break; + } + + if (sak & 0x20) { + return PICC_TYPE_ISO_14443_4; + } + + if (sak & 0x40) { + return PICC_TYPE_ISO_18092; + } + + return PICC_TYPE_UNKNOWN; +} // End PICC_GetType() + +/** + * Returns a __FlashStringHelper pointer to the PICC type name. + * + * @return const __FlashStringHelper * + */ +const __FlashStringHelper *MFRC522::PICC_GetTypeName(byte piccType ///< One of the PICC_Type enums. + ) { + switch (piccType) { + case PICC_TYPE_ISO_14443_4: return F("PICC compliant with ISO/IEC 14443-4"); break; + case PICC_TYPE_ISO_18092: return F("PICC compliant with ISO/IEC 18092 (NFC)");break; + case PICC_TYPE_MIFARE_MINI: return F("MIFARE Mini, 320 bytes"); break; + case PICC_TYPE_MIFARE_1K: return F("MIFARE 1KB"); break; + case PICC_TYPE_MIFARE_4K: return F("MIFARE 4KB"); break; + case PICC_TYPE_MIFARE_UL: return F("MIFARE Ultralight or Ultralight C"); break; + case PICC_TYPE_MIFARE_PLUS: return F("MIFARE Plus"); break; + case PICC_TYPE_TNP3XXX: return F("MIFARE TNP3XXX"); break; + case PICC_TYPE_NOT_COMPLETE: return F("SAK indicates UID is not complete."); break; + case PICC_TYPE_UNKNOWN: + default: return F("Unknown type"); break; + } +} // End PICC_GetTypeName() + +/** + * Dumps debug info about the selected PICC to Serial. + * On success the PICC is halted after dumping the data. + * For MIFARE Classic the factory default key of 0xFFFFFFFFFFFF is tried. + */ +void MFRC522::PICC_DumpToSerial(Uid *uid ///< Pointer to Uid struct returned from a successful PICC_Select(). + ) { + MIFARE_Key key; + + // UID + Serial.print(F("Card UID:")); + for (byte i = 0; i < uid->size; i++) { + if(uid->uidByte[i] < 0x10) + Serial.print(F(" 0")); + else + Serial.print(F(" ")); + Serial.print(uid->uidByte[i], HEX); + } + Serial.println(); + + // PICC type + byte piccType = PICC_GetType(uid->sak); + Serial.print(F("PICC type: ")); + Serial.println(PICC_GetTypeName(piccType)); + + // Dump contents + switch (piccType) { + case PICC_TYPE_MIFARE_MINI: + case PICC_TYPE_MIFARE_1K: + case PICC_TYPE_MIFARE_4K: + // All keys are set to FFFFFFFFFFFFh at chip delivery from the factory. + for (byte i = 0; i < 6; i++) { + key.keyByte[i] = 0xFF; + } + PICC_DumpMifareClassicToSerial(uid, piccType, &key); + break; + + case PICC_TYPE_MIFARE_UL: + PICC_DumpMifareUltralightToSerial(); + break; + + case PICC_TYPE_ISO_14443_4: + case PICC_TYPE_ISO_18092: + case PICC_TYPE_MIFARE_PLUS: + case PICC_TYPE_TNP3XXX: + Serial.println(F("Dumping memory contents not implemented for that PICC type.")); + break; + + case PICC_TYPE_UNKNOWN: + case PICC_TYPE_NOT_COMPLETE: + default: + break; // No memory dump here + } + + Serial.println(); + PICC_HaltA(); // Already done if it was a MIFARE Classic PICC. +} // End PICC_DumpToSerial() + +/** + * Dumps memory contents of a MIFARE Classic PICC. + * On success the PICC is halted after dumping the data. + */ +void MFRC522::PICC_DumpMifareClassicToSerial( Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select(). + byte piccType, ///< One of the PICC_Type enums. + MIFARE_Key *key ///< Key A used for all sectors. + ) { + byte no_of_sectors = 0; + switch (piccType) { + case PICC_TYPE_MIFARE_MINI: + // Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes. + no_of_sectors = 5; + break; + + case PICC_TYPE_MIFARE_1K: + // Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes. + no_of_sectors = 16; + break; + + case PICC_TYPE_MIFARE_4K: + // Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes. + no_of_sectors = 40; + break; + + default: // Should not happen. Ignore. + break; + } + + // Dump sectors, highest address first. + if (no_of_sectors) { + Serial.println(F("Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AccessBits")); + for (int8_t i = no_of_sectors - 1; i >= 0; i--) { + PICC_DumpMifareClassicSectorToSerial(uid, key, i); + } + } + PICC_HaltA(); // Halt the PICC before stopping the encrypted session. + PCD_StopCrypto1(); +} // End PICC_DumpMifareClassicToSerial() + +/** + * Dumps memory contents of a sector of a MIFARE Classic PICC. + * Uses PCD_Authenticate(), MIFARE_Read() and PCD_StopCrypto1. + * Always uses PICC_CMD_MF_AUTH_KEY_A because only Key A can always read the sector trailer access bits. + */ +void MFRC522::PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select(). + MIFARE_Key *key, ///< Key A for the sector. + byte sector ///< The sector to dump, 0..39. + ) { + byte status; + byte firstBlock; // Address of lowest address to dump actually last block dumped) + byte no_of_blocks; // Number of blocks in sector + bool isSectorTrailer; // Set to true while handling the "last" (ie highest address) in the sector. + + // The access bits are stored in a peculiar fashion. + // There are four groups: + // g[3] Access bits for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) + // g[2] Access bits for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) + // g[1] Access bits for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) + // g[0] Access bits for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) + // Each group has access bits [C1 C2 C3]. In this code C1 is MSB and C3 is LSB. + // The four CX bits are stored together in a nible cx and an inverted nible cx_. + byte c1, c2, c3; // Nibbles + byte c1_, c2_, c3_; // Inverted nibbles + bool invertedError; // True if one of the inverted nibbles did not match + byte g[4]; // Access bits for each of the four groups. + byte group; // 0-3 - active group for access bits + bool firstInGroup; // True for the first block dumped in the group + + // Determine position and size of sector. + if (sector < 32) { // Sectors 0..31 has 4 blocks each + no_of_blocks = 4; + firstBlock = sector * no_of_blocks; + } + else if (sector < 40) { // Sectors 32-39 has 16 blocks each + no_of_blocks = 16; + firstBlock = 128 + (sector - 32) * no_of_blocks; + } + else { // Illegal input, no MIFARE Classic PICC has more than 40 sectors. + return; + } + + // Dump blocks, highest address first. + byte byteCount; + byte buffer[18]; + byte blockAddr; + isSectorTrailer = true; + for (int8_t blockOffset = no_of_blocks - 1; blockOffset >= 0; blockOffset--) { + blockAddr = firstBlock + blockOffset; + // Sector number - only on first line + if (isSectorTrailer) { + if(sector < 10) + Serial.print(F(" ")); // Pad with spaces + else + Serial.print(F(" ")); // Pad with spaces + Serial.print(sector); + Serial.print(F(" ")); + } + else { + Serial.print(F(" ")); + } + // Block number + if(blockAddr < 10) + Serial.print(F(" ")); // Pad with spaces + else { + if(blockAddr < 100) + Serial.print(F(" ")); // Pad with spaces + else + Serial.print(F(" ")); // Pad with spaces + } + Serial.print(blockAddr); + Serial.print(F(" ")); + // Establish encrypted communications before reading the first block + if (isSectorTrailer) { + status = PCD_Authenticate(PICC_CMD_MF_AUTH_KEY_A, firstBlock, key, uid); + if (status != STATUS_OK) { + Serial.print(F("PCD_Authenticate() failed: ")); + Serial.println(GetStatusCodeName(status)); + return; + } + } + // Read block + byteCount = sizeof(buffer); + status = MIFARE_Read(blockAddr, buffer, &byteCount); + if (status != STATUS_OK) { + Serial.print(F("MIFARE_Read() failed: ")); + Serial.println(GetStatusCodeName(status)); + continue; + } + // Dump data + for (byte index = 0; index < 16; index++) { + if(buffer[index] < 0x10) + Serial.print(F(" 0")); + else + Serial.print(F(" ")); + Serial.print(buffer[index], HEX); + if ((index % 4) == 3) { + Serial.print(F(" ")); + } + } + // Parse sector trailer data + if (isSectorTrailer) { + c1 = buffer[7] >> 4; + c2 = buffer[8] & 0xF; + c3 = buffer[8] >> 4; + c1_ = buffer[6] & 0xF; + c2_ = buffer[6] >> 4; + c3_ = buffer[7] & 0xF; + invertedError = (c1 != (~c1_ & 0xF)) || (c2 != (~c2_ & 0xF)) || (c3 != (~c3_ & 0xF)); + g[0] = ((c1 & 1) << 2) | ((c2 & 1) << 1) | ((c3 & 1) << 0); + g[1] = ((c1 & 2) << 1) | ((c2 & 2) << 0) | ((c3 & 2) >> 1); + g[2] = ((c1 & 4) << 0) | ((c2 & 4) >> 1) | ((c3 & 4) >> 2); + g[3] = ((c1 & 8) >> 1) | ((c2 & 8) >> 2) | ((c3 & 8) >> 3); + isSectorTrailer = false; + } + + // Which access group is this block in? + if (no_of_blocks == 4) { + group = blockOffset; + firstInGroup = true; + } + else { + group = blockOffset / 5; + firstInGroup = (group == 3) || (group != (blockOffset + 1) / 5); + } + + if (firstInGroup) { + // Print access bits + Serial.print(F(" [ ")); + Serial.print((g[group] >> 2) & 1, DEC); Serial.print(F(" ")); + Serial.print((g[group] >> 1) & 1, DEC); Serial.print(F(" ")); + Serial.print((g[group] >> 0) & 1, DEC); + Serial.print(F(" ] ")); + if (invertedError) { + Serial.print(F(" Inverted access bits did not match! ")); + } + } + + if (group != 3 && (g[group] == 1 || g[group] == 6)) { // Not a sector trailer, a value block + long value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]); + Serial.print(F(" Value=0x")); Serial.print(value, HEX); + Serial.print(F(" Adr=0x")); Serial.print(buffer[12], HEX); + } + Serial.println(); + } + + return; +} // End PICC_DumpMifareClassicSectorToSerial() + +/** + * Dumps memory contents of a MIFARE Ultralight PICC. + */ +void MFRC522::PICC_DumpMifareUltralightToSerial() { + byte status; + byte byteCount; + byte buffer[18]; + byte i; + + Serial.println(F("Page 0 1 2 3")); + // Try the mpages of the original Ultralight. Ultralight C has more pages. + for (byte page = 0; page < 16; page +=4) { // Read returns data for 4 pages at a time. + // Read pages + byteCount = sizeof(buffer); + status = MIFARE_Read(page, buffer, &byteCount); + if (status != STATUS_OK) { + Serial.print(F("MIFARE_Read() failed: ")); + Serial.println(GetStatusCodeName(status)); + break; + } + // Dump data + for (byte offset = 0; offset < 4; offset++) { + i = page + offset; + if(i < 10) + Serial.print(F(" ")); // Pad with spaces + else + Serial.print(F(" ")); // Pad with spaces + Serial.print(i); + Serial.print(F(" ")); + for (byte index = 0; index < 4; index++) { + i = 4 * offset + index; + if(buffer[i] < 0x10) + Serial.print(F(" 0")); + else + Serial.print(F(" ")); + Serial.print(buffer[i], HEX); + } + Serial.println(); + } + } +} // End PICC_DumpMifareUltralightToSerial() + +/** + * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). + */ +void MFRC522::MIFARE_SetAccessBits( byte *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. + byte g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) + byte g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) + byte g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) + byte g3 ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) + ) { + byte c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); + byte c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); + byte c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); + + accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); + accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF); + accessBitBuffer[2] = c3 << 4 | c2; +} // End MIFARE_SetAccessBits() + + +/** + * Performs the "magic sequence" needed to get Chinese UID changeable + * Mifare cards to allow writing to sector 0, where the card UID is stored. + * + * Note that you do not need to have selected the card through REQA or WUPA, + * this sequence works immediately when the card is in the reader vicinity. + * This means you can use this method even on "bricked" cards that your reader does + * not recognise anymore (see MFRC522::MIFARE_UnbrickUidSector). + * + * Of course with non-bricked devices, you're free to select them before calling this function. + */ +bool MFRC522::MIFARE_OpenUidBackdoor(bool logErrors) { + // Magic sequence: + // > 50 00 57 CD (HALT + CRC) + // > 40 (7 bits only) + // < A (4 bits only) + // > 43 + // < A (4 bits only) + // Then you can write to sector 0 without authenticating + + PICC_HaltA(); // 50 00 57 CD + + byte cmd = 0x40; + byte validBits = 7; /* Our command is only 7 bits. After receiving card response, + this will contain amount of valid response bits. */ + byte response[32]; // Card's response is written here + byte received; + byte status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 40 + if(status != STATUS_OK) { + if(logErrors) { + Serial.println(F("Card did not respond to 0x40 after HALT command. Are you sure it is a UID changeable one?")); + Serial.print(F("Error name: ")); + Serial.println(GetStatusCodeName(status)); + } + return false; + } + if (received != 1 || response[0] != 0x0A) { + if (logErrors) { + Serial.print(F("Got bad response on backdoor 0x40 command: ")); + Serial.print(response[0], HEX); + Serial.print(F(" (")); + Serial.print(validBits); + Serial.print(F(" valid bits)\r\n")); + } + return false; + } + + cmd = 0x43; + validBits = 8; + status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 43 + if(status != STATUS_OK) { + if(logErrors) { + Serial.println(F("Error in communication at command 0x43, after successfully executing 0x40")); + Serial.print(F("Error name: ")); + Serial.println(GetStatusCodeName(status)); + } + return false; + } + if (received != 1 || response[0] != 0x0A) { + if (logErrors) { + Serial.print(F("Got bad response on backdoor 0x43 command: ")); + Serial.print(response[0], HEX); + Serial.print(F(" (")); + Serial.print(validBits); + Serial.print(F(" valid bits)\r\n")); + } + return false; + } + + // You can now write to sector 0 without authenticating! + return true; +} // End MIFARE_OpenUidBackdoor() + +/** + * Reads entire block 0, including all manufacturer data, and overwrites + * that block with the new UID, a freshly calculated BCC, and the original + * manufacturer data. + * + * It assumes a default KEY A of 0xFFFFFFFFFFFF. + * Make sure to have selected the card before this function is called. + */ +bool MFRC522::MIFARE_SetUid(byte *newUid, byte uidSize, bool logErrors) { + + // UID + BCC byte can not be larger than 16 together + if (!newUid || !uidSize || uidSize > 15) { + if (logErrors) { + Serial.println(F("New UID buffer empty, size 0, or size > 15 given")); + } + return false; + } + + // Authenticate for reading + MIFARE_Key key = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; + byte status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid); + if (status != STATUS_OK) { + + if (status == STATUS_TIMEOUT) { + // We get a read timeout if no card is selected yet, so let's select one + + // Wake the card up again if sleeping +// byte atqa_answer[2]; +// byte atqa_size = 2; +// PICC_WakeupA(atqa_answer, &atqa_size); + + if (!PICC_IsNewCardPresent() || !PICC_ReadCardSerial()) { + Serial.println(F("No card was previously selected, and none are available. Failed to set UID.")); + return false; + } + + status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid); + if (status != STATUS_OK) { + // We tried, time to give up + if (logErrors) { + Serial.println(F("Failed to authenticate to card for reading, could not set UID: ")); + Serial.println(GetStatusCodeName(status)); + } + return false; + } + } + else { + if (logErrors) { + Serial.print(F("PCD_Authenticate() failed: ")); + Serial.println(GetStatusCodeName(status)); + } + return false; + } + } + + // Read block 0 + byte block0_buffer[18]; + byte byteCount = sizeof(block0_buffer); + status = MIFARE_Read((byte)0, block0_buffer, &byteCount); + if (status != STATUS_OK) { + if (logErrors) { + Serial.print(F("MIFARE_Read() failed: ")); + Serial.println(GetStatusCodeName(status)); + Serial.println(F("Are you sure your KEY A for sector 0 is 0xFFFFFFFFFFFF?")); + } + return false; + } + + // Write new UID to the data we just read, and calculate BCC byte + byte bcc = 0; + for (int i = 0; i < uidSize; i++) { + block0_buffer[i] = newUid[i]; + bcc ^= newUid[i]; + } + + // Write BCC byte to buffer + block0_buffer[uidSize] = bcc; + + // Stop encrypted traffic so we can send raw bytes + PCD_StopCrypto1(); + + // Activate UID backdoor + if (!MIFARE_OpenUidBackdoor(logErrors)) { + if (logErrors) { + Serial.println(F("Activating the UID backdoor failed.")); + } + return false; + } + + // Write modified block 0 back to card + status = MIFARE_Write((byte)0, block0_buffer, (byte)16); + if (status != STATUS_OK) { + if (logErrors) { + Serial.print(F("MIFARE_Write() failed: ")); + Serial.println(GetStatusCodeName(status)); + } + return false; + } + + // Wake the card up again + byte atqa_answer[2]; + byte atqa_size = 2; + PICC_WakeupA(atqa_answer, &atqa_size); + + return true; +} + +/** + * Resets entire sector 0 to zeroes, so the card can be read again by readers. + */ +bool MFRC522::MIFARE_UnbrickUidSector(bool logErrors) { + MIFARE_OpenUidBackdoor(logErrors); + + byte block0_buffer[] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; + + // Write modified block 0 back to card + byte status = MIFARE_Write((byte)0, block0_buffer, (byte)16); + if (status != STATUS_OK) { + if (logErrors) { + Serial.print(F("MIFARE_Write() failed: ")); + Serial.println(GetStatusCodeName(status)); + } + return false; + } + return true; +} + +///////////////////////////////////////////////////////////////////////////////////// +// Convenience functions - does not add extra functionality +///////////////////////////////////////////////////////////////////////////////////// + +/** + * Returns true if a PICC responds to PICC_CMD_REQA. + * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. + * + * @return bool + */ +bool MFRC522::PICC_IsNewCardPresent() { + byte bufferATQA[2]; + byte bufferSize = sizeof(bufferATQA); + byte result = PICC_RequestA(bufferATQA, &bufferSize); + return (result == STATUS_OK || result == STATUS_COLLISION); +} // End PICC_IsNewCardPresent() + +/** + * Simple wrapper around PICC_Select. + * Returns true if a UID could be read. + * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. + * The read UID is available in the class variable uid. + * + * @return bool + */ +bool MFRC522::PICC_ReadCardSerial() { + byte result = PICC_Select(&uid); + return (result == STATUS_OK); +} // End PICC_ReadCardSerial() diff --git a/lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.h b/lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.h new file mode 100644 index 000000000..a58a9df1a --- /dev/null +++ b/lib/lib_i2c/MFRC522_I2C/src/MFRC522_I2C.h @@ -0,0 +1,407 @@ +/** + * MFRC522_I2C.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS I2C BY AROZCAN + * MFRC522_I2C.h - Based on ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI Library BY COOQROBOT. + * Based on code Dr.Leong ( WWW.B2CQSHOP.COM ) + * Created by Miguel Balboa (circuitito.com), Jan, 2012. + * Rewritten by Søren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.) + * Extended by Tom Clement with functionality to write to sector 0 of UID changeable Mifare cards. + * Extended by Ahmet Remzi Ozcan with I2C functionality. + * Author: arozcan @ https://github.com/arozcan/MFRC522-I2C-Library + * Released into the public domain. + * + * Please read this file for an overview and then MFRC522.cpp for comments on the specific functions. + * Search for "mf-rc522" on ebay.com to purchase the MF-RC522 board. + * + * There are three hardware components involved: + * 1) The micro controller: An Arduino + * 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless Reader IC + * 3) The PICC (short for Proximity Integrated Circuit Card): A card or tag using the ISO 14443A interface, eg Mifare or NTAG203. + * + * The microcontroller and card reader uses I2C for communication. + * The protocol is described in the MFRC522 datasheet: http://www.nxp.com/documents/data_sheet/MFRC522.pdf + * + * The card reader and the tags communicate using a 13.56MHz electromagnetic field. + * The protocol is defined in ISO/IEC 14443-3 Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision". + * A free version of the final draft can be found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf + * Details are found in chapter 6, Type A – Initialization and anticollision. + * + * If only the PICC UID is wanted, the above documents has all the needed information. + * To read and write from MIFARE PICCs, the MIFARE protocol is used after the PICC has been selected. + * The MIFARE Classic chips and protocol is described in the datasheets: + * 1K: http://www.nxp.com/documents/data_sheet/MF1S503x.pdf + * 4K: http://www.nxp.com/documents/data_sheet/MF1S703x.pdf + * Mini: http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf + * The MIFARE Ultralight chip and protocol is described in the datasheets: + * Ultralight: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf + * Ultralight C: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf + * + * MIFARE Classic 1K (MF1S503x): + * Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes. + * The blocks are numbered 0-63. + * Block 3 in each sector is the Sector Trailer. See http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7: + * Bytes 0-5: Key A + * Bytes 6-8: Access Bits + * Bytes 9: User data + * Bytes 10-15: Key B (or user data) + * Block 0 is read-only manufacturer data. + * To access a block, an authentication using a key from the block's sector must be performed first. + * Example: To read from block 10, first authenticate using a key from sector 3 (blocks 8-11). + * All keys are set to FFFFFFFFFFFFh at chip delivery. + * Warning: Please read section 8.7 "Memory Access". It includes this text: if the PICC detects a format violation the whole sector is irreversibly blocked. + * To use a block in "value block" mode (for Increment/Decrement operations) you need to change the sector trailer. Use PICC_SetAccessBits() to calculate the bit patterns. + * MIFARE Classic 4K (MF1S703x): + * Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes. + * The blocks are numbered 0-255. + * The last block in each sector is the Sector Trailer like above. + * MIFARE Classic Mini (MF1 IC S20): + * Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes. + * The blocks are numbered 0-19. + * The last block in each sector is the Sector Trailer like above. + * + * MIFARE Ultralight (MF0ICU1): + * Has 16 pages of 4 bytes = 64 bytes. + * Pages 0 + 1 is used for the 7-byte UID. + * Page 2 contains the last check digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) + * Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. + * Pages 4-15 are read/write unless blocked by the lock bytes in page 2. + * MIFARE Ultralight C (MF0ICU2): + * Has 48 pages of 4 bytes = 192 bytes. + * Pages 0 + 1 is used for the 7-byte UID. + * Page 2 contains the last check digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) + * Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. + * Pages 4-39 are read/write unless blocked by the lock bytes in page 2. + * Page 40 Lock bytes + * Page 41 16 bit one way counter + * Pages 42-43 Authentication configuration + * Pages 44-47 Authentication key + */ +#ifndef MFRC522_h +#define MFRC522_h + +#include +#include + +// Firmware data for self-test +// Reference values based on firmware version +// Hint: if needed, you can remove unused self-test data to save flash memory +// +// Version 0.0 (0x90) +// Philips Semiconductors; Preliminary Specification Revision 2.0 - 01 August 2005; 16.1 Sefttest +const byte MFRC522_firmware_referenceV0_0[] PROGMEM = { + 0x00, 0x87, 0x98, 0x0f, 0x49, 0xFF, 0x07, 0x19, + 0xBF, 0x22, 0x30, 0x49, 0x59, 0x63, 0xAD, 0xCA, + 0x7F, 0xE3, 0x4E, 0x03, 0x5C, 0x4E, 0x49, 0x50, + 0x47, 0x9A, 0x37, 0x61, 0xE7, 0xE2, 0xC6, 0x2E, + 0x75, 0x5A, 0xED, 0x04, 0x3D, 0x02, 0x4B, 0x78, + 0x32, 0xFF, 0x58, 0x3B, 0x7C, 0xE9, 0x00, 0x94, + 0xB4, 0x4A, 0x59, 0x5B, 0xFD, 0xC9, 0x29, 0xDF, + 0x35, 0x96, 0x98, 0x9E, 0x4F, 0x30, 0x32, 0x8D +}; +// Version 1.0 (0x91) +// NXP Semiconductors; Rev. 3.8 - 17 September 2014; 16.1.1 Self test +const byte MFRC522_firmware_referenceV1_0[] PROGMEM = { + 0x00, 0xC6, 0x37, 0xD5, 0x32, 0xB7, 0x57, 0x5C, + 0xC2, 0xD8, 0x7C, 0x4D, 0xD9, 0x70, 0xC7, 0x73, + 0x10, 0xE6, 0xD2, 0xAA, 0x5E, 0xA1, 0x3E, 0x5A, + 0x14, 0xAF, 0x30, 0x61, 0xC9, 0x70, 0xDB, 0x2E, + 0x64, 0x22, 0x72, 0xB5, 0xBD, 0x65, 0xF4, 0xEC, + 0x22, 0xBC, 0xD3, 0x72, 0x35, 0xCD, 0xAA, 0x41, + 0x1F, 0xA7, 0xF3, 0x53, 0x14, 0xDE, 0x7E, 0x02, + 0xD9, 0x0F, 0xB5, 0x5E, 0x25, 0x1D, 0x29, 0x79 +}; +// Version 2.0 (0x92) +// NXP Semiconductors; Rev. 3.8 - 17 September 2014; 16.1.1 Self test +const byte MFRC522_firmware_referenceV2_0[] PROGMEM = { + 0x00, 0xEB, 0x66, 0xBA, 0x57, 0xBF, 0x23, 0x95, + 0xD0, 0xE3, 0x0D, 0x3D, 0x27, 0x89, 0x5C, 0xDE, + 0x9D, 0x3B, 0xA7, 0x00, 0x21, 0x5B, 0x89, 0x82, + 0x51, 0x3A, 0xEB, 0x02, 0x0C, 0xA5, 0x00, 0x49, + 0x7C, 0x84, 0x4D, 0xB3, 0xCC, 0xD2, 0x1B, 0x81, + 0x5D, 0x48, 0x76, 0xD5, 0x71, 0x61, 0x21, 0xA9, + 0x86, 0x96, 0x83, 0x38, 0xCF, 0x9D, 0x5B, 0x6D, + 0xDC, 0x15, 0xBA, 0x3E, 0x7D, 0x95, 0x3B, 0x2F +}; +// Clone +// Fudan Semiconductor FM17522 (0x88) +const byte FM17522_firmware_reference[] PROGMEM = { + 0x00, 0xD6, 0x78, 0x8C, 0xE2, 0xAA, 0x0C, 0x18, + 0x2A, 0xB8, 0x7A, 0x7F, 0xD3, 0x6A, 0xCF, 0x0B, + 0xB1, 0x37, 0x63, 0x4B, 0x69, 0xAE, 0x91, 0xC7, + 0xC3, 0x97, 0xAE, 0x77, 0xF4, 0x37, 0xD7, 0x9B, + 0x7C, 0xF5, 0x3C, 0x11, 0x8F, 0x15, 0xC3, 0xD7, + 0xC1, 0x5B, 0x00, 0x2A, 0xD0, 0x75, 0xDE, 0x9E, + 0x51, 0x64, 0xAB, 0x3E, 0xE9, 0x15, 0xB5, 0xAB, + 0x56, 0x9A, 0x98, 0x82, 0x26, 0xEA, 0x2A, 0x62 +}; + +class MFRC522 { +public: + // MFRC522 registers. Described in chapter 9 of the datasheet. + enum PCD_Register { + // Page 0: Command and status + // 0x00 // reserved for future use + CommandReg = 0x01 , // starts and stops command execution + ComIEnReg = 0x02 , // enable and disable interrupt request control bits + DivIEnReg = 0x03 , // enable and disable interrupt request control bits + ComIrqReg = 0x04 , // interrupt request bits + DivIrqReg = 0x05 , // interrupt request bits + ErrorReg = 0x06 , // error bits showing the error status of the last command executed + Status1Reg = 0x07 , // communication status bits + Status2Reg = 0x08 , // receiver and transmitter status bits + FIFODataReg = 0x09 , // input and output of 64 byte FIFO buffer + FIFOLevelReg = 0x0A , // number of bytes stored in the FIFO buffer + WaterLevelReg = 0x0B , // level for FIFO underflow and overflow warning + ControlReg = 0x0C , // miscellaneous control registers + BitFramingReg = 0x0D , // adjustments for bit-oriented frames + CollReg = 0x0E , // bit position of the first bit-collision detected on the RF interface + // 0x0F // reserved for future use + + // Page 1: Command + // 0x10 // reserved for future use + ModeReg = 0x11 , // defines general modes for transmitting and receiving + TxModeReg = 0x12 , // defines transmission data rate and framing + RxModeReg = 0x13 , // defines reception data rate and framing + TxControlReg = 0x14 , // controls the logical behavior of the antenna driver pins TX1 and TX2 + TxASKReg = 0x15 , // controls the setting of the transmission modulation + TxSelReg = 0x16 , // selects the internal sources for the antenna driver + RxSelReg = 0x17 , // selects internal receiver settings + RxThresholdReg = 0x18 , // selects thresholds for the bit decoder + DemodReg = 0x19 , // defines demodulator settings + // 0x1A // reserved for future use + // 0x1B // reserved for future use + MfTxReg = 0x1C , // controls some MIFARE communication transmit parameters + MfRxReg = 0x1D , // controls some MIFARE communication receive parameters + // 0x1E // reserved for future use + SerialSpeedReg = 0x1F , // selects the speed of the serial UART interface + + // Page 2: Configuration + // 0x20 // reserved for future use + CRCResultRegH = 0x21 , // shows the MSB and LSB values of the CRC calculation + CRCResultRegL = 0x22 , + // 0x23 // reserved for future use + ModWidthReg = 0x24 , // controls the ModWidth setting? + // 0x25 // reserved for future use + RFCfgReg = 0x26 , // configures the receiver gain + GsNReg = 0x27 , // selects the conductance of the antenna driver pins TX1 and TX2 for modulation + CWGsPReg = 0x28 , // defines the conductance of the p-driver output during periods of no modulation + ModGsPReg = 0x29 , // defines the conductance of the p-driver output during periods of modulation + TModeReg = 0x2A , // defines settings for the internal timer + TPrescalerReg = 0x2B , // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg. + TReloadRegH = 0x2C , // defines the 16-bit timer reload value + TReloadRegL = 0x2D , + TCounterValueRegH = 0x2E , // shows the 16-bit timer value + TCounterValueRegL = 0x2F , + + // Page 3: Test Registers + // 0x30 // reserved for future use + TestSel1Reg = 0x31 , // general test signal configuration + TestSel2Reg = 0x32 , // general test signal configuration + TestPinEnReg = 0x33 , // enables pin output driver on pins D1 to D7 + TestPinValueReg = 0x34 , // defines the values for D1 to D7 when it is used as an I/O bus + TestBusReg = 0x35 , // shows the status of the internal test bus + AutoTestReg = 0x36 , // controls the digital self test + VersionReg = 0x37 , // shows the software version + AnalogTestReg = 0x38 , // controls the pins AUX1 and AUX2 + TestDAC1Reg = 0x39 , // defines the test value for TestDAC1 + TestDAC2Reg = 0x3A , // defines the test value for TestDAC2 + TestADCReg = 0x3B // shows the value of ADC I and Q channels + // 0x3C // reserved for production tests + // 0x3D // reserved for production tests + // 0x3E // reserved for production tests + // 0x3F // reserved for production tests + }; + + // MFRC522 commands. Described in chapter 10 of the datasheet. + enum PCD_Command { + PCD_Idle = 0x00, // no action, cancels current command execution + PCD_Mem = 0x01, // stores 25 bytes into the internal buffer + PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number + PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self test + PCD_Transmit = 0x04, // transmits data from the FIFO buffer + PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit + PCD_Receive = 0x08, // activates the receiver circuits + PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission + PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader + PCD_SoftReset = 0x0F // resets the MFRC522 + }; + + // MFRC522 RxGain[2:0] masks, defines the receiver's signal voltage gain factor (on the PCD). + // Described in 9.3.3.6 / table 98 of the datasheet at http://www.nxp.com/documents/data_sheet/MFRC522.pdf + enum PCD_RxGain { + RxGain_18dB = 0x00 << 4, // 000b - 18 dB, minimum + RxGain_23dB = 0x01 << 4, // 001b - 23 dB + RxGain_18dB_2 = 0x02 << 4, // 010b - 18 dB, it seems 010b is a duplicate for 000b + RxGain_23dB_2 = 0x03 << 4, // 011b - 23 dB, it seems 011b is a duplicate for 001b + RxGain_33dB = 0x04 << 4, // 100b - 33 dB, average, and typical default + RxGain_38dB = 0x05 << 4, // 101b - 38 dB + RxGain_43dB = 0x06 << 4, // 110b - 43 dB + RxGain_48dB = 0x07 << 4, // 111b - 48 dB, maximum + RxGain_min = 0x00 << 4, // 000b - 18 dB, minimum, convenience for RxGain_18dB + RxGain_avg = 0x04 << 4, // 100b - 33 dB, average, convenience for RxGain_33dB + RxGain_max = 0x07 << 4 // 111b - 48 dB, maximum, convenience for RxGain_48dB + }; + + // Commands sent to the PICC. + enum PICC_Command { + // The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4) + PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. + PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. + PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision. + PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1 + PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 2 + PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 3 + PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT. + // The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9) + // Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector. + // The read/write commands can also be used for MIFARE Ultralight. + PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A + PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B + PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight. + PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight. + PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register. + PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register. + PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register. + PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block. + // The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6) + // The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight. + PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC. + }; + + // MIFARE constants that does not fit anywhere else + enum MIFARE_Misc { + MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK. + MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes. + }; + + // PICC types we can detect. Remember to update PICC_GetTypeName() if you add more. + enum PICC_Type { + PICC_TYPE_UNKNOWN = 0, + PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4 + PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC) + PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes + PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB + PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB + PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C + PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus + PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure + PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete. + }; + + // Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more. + enum StatusCode { + STATUS_OK = 1, // Success + STATUS_ERROR = 2, // Error in communication + STATUS_COLLISION = 3, // Collission detected + STATUS_TIMEOUT = 4, // Timeout in communication. + STATUS_NO_ROOM = 5, // A buffer is not big enough. + STATUS_INTERNAL_ERROR = 6, // Internal error in the code. Should not happen ;-) + STATUS_INVALID = 7, // Invalid argument. + STATUS_CRC_WRONG = 8, // The CRC_A does not match + STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK. + }; + + // A struct used for passing the UID of a PICC. + typedef struct { + byte size; // Number of bytes in the UID. 4, 7 or 10. + byte uidByte[10]; + byte sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection. + } Uid; + + // A struct used for passing a MIFARE Crypto1 key + typedef struct { + byte keyByte[MF_KEY_SIZE]; + } MIFARE_Key; + + // Member variables + Uid uid; // Used by PICC_ReadCardSerial(). + + // Size of the MFRC522 FIFO + static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes. + + ///////////////////////////////////////////////////////////////////////////////////// + // Functions for setting up the Arduino + ///////////////////////////////////////////////////////////////////////////////////// + MFRC522(byte chipAddress); + + ///////////////////////////////////////////////////////////////////////////////////// + // Basic interface functions for communicating with the MFRC522 + ///////////////////////////////////////////////////////////////////////////////////// + void PCD_WriteRegister(byte reg, byte value); + void PCD_WriteRegister(byte reg, byte count, byte *values); + byte PCD_ReadRegister(byte reg); + void PCD_ReadRegister(byte reg, byte count, byte *values, byte rxAlign = 0); + void setBitMask(unsigned char reg, unsigned char mask); + void PCD_SetRegisterBitMask(byte reg, byte mask); + void PCD_ClearRegisterBitMask(byte reg, byte mask); + byte PCD_CalculateCRC(byte *data, byte length, byte *result); + + ///////////////////////////////////////////////////////////////////////////////////// + // Functions for manipulating the MFRC522 + ///////////////////////////////////////////////////////////////////////////////////// + void PCD_Init(); + void PCD_Reset(); + void PCD_AntennaOn(); + void PCD_AntennaOff(); + byte PCD_GetAntennaGain(); + void PCD_SetAntennaGain(byte mask); + bool PCD_PerformSelfTest(); + + ///////////////////////////////////////////////////////////////////////////////////// + // Functions for communicating with PICCs + ///////////////////////////////////////////////////////////////////////////////////// + byte PCD_TransceiveData(byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits = NULL, byte rxAlign = 0, bool checkCRC = false); + byte PCD_CommunicateWithPICC(byte command, byte waitIRq, byte *sendData, byte sendLen, byte *backData = NULL, byte *backLen = NULL, byte *validBits = NULL, byte rxAlign = 0, bool checkCRC = false); + byte PICC_RequestA(byte *bufferATQA, byte *bufferSize); + byte PICC_WakeupA(byte *bufferATQA, byte *bufferSize); + byte PICC_REQA_or_WUPA(byte command, byte *bufferATQA, byte *bufferSize); + byte PICC_Select(Uid *uid, byte validBits = 0); + byte PICC_HaltA(); + + ///////////////////////////////////////////////////////////////////////////////////// + // Functions for communicating with MIFARE PICCs + ///////////////////////////////////////////////////////////////////////////////////// + byte PCD_Authenticate(byte command, byte blockAddr, MIFARE_Key *key, Uid *uid); + void PCD_StopCrypto1(); + byte MIFARE_Read(byte blockAddr, byte *buffer, byte *bufferSize); + byte MIFARE_Write(byte blockAddr, byte *buffer, byte bufferSize); + byte MIFARE_Decrement(byte blockAddr, long delta); + byte MIFARE_Increment(byte blockAddr, long delta); + byte MIFARE_Restore(byte blockAddr); + byte MIFARE_Transfer(byte blockAddr); + byte MIFARE_Ultralight_Write(byte page, byte *buffer, byte bufferSize); + byte MIFARE_GetValue(byte blockAddr, long *value); + byte MIFARE_SetValue(byte blockAddr, long value); + + ///////////////////////////////////////////////////////////////////////////////////// + // Support functions + ///////////////////////////////////////////////////////////////////////////////////// + byte PCD_MIFARE_Transceive(byte *sendData, byte sendLen, bool acceptTimeout = false); + // old function used too much memory, now name moved to flash; if you need char, copy from flash to memory + //const char *GetStatusCodeName(byte code); + const __FlashStringHelper *GetStatusCodeName(byte code); + byte PICC_GetType(byte sak); + // old function used too much memory, now name moved to flash; if you need char, copy from flash to memory + //const char *PICC_GetTypeName(byte type); + const __FlashStringHelper *PICC_GetTypeName(byte type); + void PICC_DumpToSerial(Uid *uid); + void PICC_DumpMifareClassicToSerial(Uid *uid, byte piccType, MIFARE_Key *key); + void PICC_DumpMifareClassicSectorToSerial(Uid *uid, MIFARE_Key *key, byte sector); + void PICC_DumpMifareUltralightToSerial(); + void MIFARE_SetAccessBits(byte *accessBitBuffer, byte g0, byte g1, byte g2, byte g3); + bool MIFARE_OpenUidBackdoor(bool logErrors); + bool MIFARE_SetUid(byte *newUid, byte uidSize, bool logErrors); + bool MIFARE_UnbrickUidSector(bool logErrors); + + ///////////////////////////////////////////////////////////////////////////////////// + // Convenience functions - does not add extra functionality + ///////////////////////////////////////////////////////////////////////////////////// + bool PICC_IsNewCardPresent(); + bool PICC_ReadCardSerial(); + +private: + byte _chipAddress; + byte _resetPowerDownPin; // Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low) + byte MIFARE_TwoStepHelper(byte command, byte blockAddr, long data); +}; + +#endif diff --git a/lib/lib_i2c/MPU6886/library.properties b/lib/lib_i2c/MPU6886/library.properties new file mode 100644 index 000000000..1a08c8516 --- /dev/null +++ b/lib/lib_i2c/MPU6886/library.properties @@ -0,0 +1,9 @@ +name=MPU6886 +version= +author=M5StickC +maintainer=Stephan Hadinger +sentence=Support for MPU6886 +paragraph=Support for MPU6886 +category= +url=https://github.com/m5stack/M5StickC/blob/master/src/utility/ +architectures=esp32,esp8266 diff --git a/lib/libesp32/CORE2_Library/MPU6886.cpp b/lib/lib_i2c/MPU6886/src/MPU6886.cpp similarity index 68% rename from lib/libesp32/CORE2_Library/MPU6886.cpp rename to lib/lib_i2c/MPU6886/src/MPU6886.cpp index 418c94b39..9ae45461d 100755 --- a/lib/libesp32/CORE2_Library/MPU6886.cpp +++ b/lib/lib_i2c/MPU6886/src/MPU6886.cpp @@ -2,39 +2,33 @@ #include #include -MPU6886::MPU6886(){ - -} - void MPU6886::I2C_Read_NBytes(uint8_t driver_Addr, uint8_t start_Addr, uint8_t number_Bytes, uint8_t *read_Buffer){ - Wire1.beginTransmission(driver_Addr); - Wire1.write(start_Addr); - Wire1.endTransmission(false); + myWire.beginTransmission(driver_Addr); + myWire.write(start_Addr); + myWire.endTransmission(false); uint8_t i = 0; - Wire1.requestFrom(driver_Addr,number_Bytes); + myWire.requestFrom(driver_Addr,number_Bytes); //! Put read results in the Rx buffer - while (Wire1.available()) { - read_Buffer[i++] = Wire1.read(); + while (myWire.available()) { + read_Buffer[i++] = myWire.read(); } } void MPU6886::I2C_Write_NBytes(uint8_t driver_Addr, uint8_t start_Addr, uint8_t number_Bytes, uint8_t *write_Buffer){ - Wire1.beginTransmission(driver_Addr); - Wire1.write(start_Addr); - Wire1.write(*write_Buffer); - Wire1.endTransmission(); + myWire.beginTransmission(driver_Addr); + myWire.write(start_Addr); + myWire.write(*write_Buffer); + myWire.endTransmission(); } int MPU6886::Init(void){ unsigned char tempdata[1]; unsigned char regdata; - - Wire1.begin(21,22); - + I2C_Read_NBytes(MPU6886_ADDRESS, MPU6886_WHOAMI, 1, tempdata); if(tempdata[0] != 0x19) return -1; @@ -52,11 +46,11 @@ int MPU6886::Init(void){ I2C_Write_NBytes(MPU6886_ADDRESS, MPU6886_PWR_MGMT_1, 1, ®data); delay(10); - regdata = 0x10; + regdata = 0x10; // AFS_8G I2C_Write_NBytes(MPU6886_ADDRESS, MPU6886_ACCEL_CONFIG, 1, ®data); delay(1); - regdata = 0x18; + regdata = 0x18; // GFS_2000DPS I2C_Write_NBytes(MPU6886_ADDRESS, MPU6886_GYRO_CONFIG, 1, ®data); delay(1); @@ -128,24 +122,24 @@ void MPU6886::getTempAdc(int16_t *t){ -//!俯仰,航向,横滚:pitch,yaw,roll,指三维空间中飞行器的旋转状态。 -void MPU6886::getAhrsData(float *pitch,float *roll,float *yaw){ +// //!俯仰,航向,横滚:pitch,yaw,roll,指三维空间中飞行器的旋转状态。 +// void MPU6886::getAhrsData(float *pitch,float *roll,float *yaw){ - float accX = 0; - float accY = 0; - float accZ = 0; +// float accX = 0; +// float accY = 0; +// float accZ = 0; - float gyroX = 0; - float gyroY = 0; - float gyroZ = 0; +// float gyroX = 0; +// float gyroY = 0; +// float gyroZ = 0; - getGyroData(&gyroX,&gyroY,&gyroZ); - getAccelData(&accX,&accY,&accZ); +// getGyroData(&gyroX,&gyroY,&gyroZ); +// getAccelData(&accX,&accY,&accZ); - MahonyAHRSupdateIMU(gyroX * DEG_TO_RAD, gyroY * DEG_TO_RAD, gyroZ * DEG_TO_RAD, accX, accY, accZ,pitch,roll,yaw); +// MahonyAHRSupdateIMU(gyroX * DEG_TO_RAD, gyroY * DEG_TO_RAD, gyroZ * DEG_TO_RAD, accX, accY, accZ,pitch,roll,yaw); -} +// } void MPU6886::getGres(){ @@ -153,16 +147,20 @@ void MPU6886::getGres(){ { // Possible gyro scales (and their register bit settings) are: case GFS_250DPS: - gRes = 250.0/32768.0; + gRes = 250.0f/32768.0f; + gyRange = 250; break; case GFS_500DPS: - gRes = 500.0/32768.0; + gRes = 500.0f/32768.0f; + gyRange = 500; break; case GFS_1000DPS: - gRes = 1000.0/32768.0; + gRes = 1000.0f/32768.0f; + gyRange = 1000; break; case GFS_2000DPS: - gRes = 2000.0/32768.0; + gRes = 2000.0f/32768.0f; + gyRange = 2000; break; } @@ -177,15 +175,19 @@ void MPU6886::getAres(){ // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case AFS_2G: aRes = 2.0/32768.0; + acRange = 2000; break; case AFS_4G: aRes = 4.0/32768.0; + acRange = 4000; break; case AFS_8G: aRes = 8.0/32768.0; + acRange = 8000; break; case AFS_16G: aRes = 16.0/32768.0; + acRange = 16000; break; } @@ -215,7 +217,19 @@ void MPU6886::SetAccelFsr(Ascale scale) } +// x/y/z are in 1/1000 if g +// avoiding costly float calculations +void MPU6886::getAccelDataInt(int16_t* ax, int16_t* ay, int16_t* az) { + int16_t accX = 0; + int16_t accY = 0; + int16_t accZ = 0; + getAccelAdc(&accX, &accY, &accZ); + if (ax != nullptr) { *ax = ((int32_t)accX * acRange) / 0x7FFFL; } + if (ay != nullptr) { *ay = ((int32_t)accY * acRange) / 0x7FFFL; } + if (az != nullptr) { *az = ((int32_t)accZ * acRange) / 0x7FFFL; } + +} void MPU6886::getAccelData(float* ax, float* ay, float* az){ @@ -232,6 +246,20 @@ void MPU6886::getAccelData(float* ax, float* ay, float* az){ } +// x/y/z are in dps - degrees per second +// avoiding costly float calculations +void MPU6886::getGyroDataInt(int16_t* ax, int16_t* ay, int16_t* az) { + int16_t gyX = 0; + int16_t gyY = 0; + int16_t gyZ = 0; + getGyroAdc(&gyX, &gyY, &gyZ); + + if (ax != nullptr) { *ax = ((int32_t)gyX * gyRange) / 0x7FFFL; } + if (ay != nullptr) { *ay = ((int32_t)gyY * gyRange) / 0x7FFFL; } + if (az != nullptr) { *az = ((int32_t)gyZ * gyRange) / 0x7FFFL; } + +} + void MPU6886::getGyroData(float* gx, float* gy, float* gz){ int16_t gyroX = 0; int16_t gyroY = 0; diff --git a/lib/libesp32/CORE2_Library/MPU6886.h b/lib/lib_i2c/MPU6886/src/MPU6886.h similarity index 82% rename from lib/libesp32/CORE2_Library/MPU6886.h rename to lib/lib_i2c/MPU6886/src/MPU6886.h index b1a0fb16b..025f71587 100755 --- a/lib/libesp32/CORE2_Library/MPU6886.h +++ b/lib/lib_i2c/MPU6886/src/MPU6886.h @@ -10,7 +10,6 @@ #include #include -#include "MahonyAHRS.h" #define MPU6886_ADDRESS 0x68 #define MPU6886_WHOAMI 0x75 @@ -67,8 +66,15 @@ class MPU6886 { Gscale Gyscale = GFS_2000DPS; Ascale Acscale = AFS_8G; + int16_t acRange = 8000; // 1/1000 of g + int16_t gyRange = 2000; // dps - degree per second public: - MPU6886(); + MPU6886(void) {}; + #ifdef ESP32 + void setBus(uint32_t _bus) { myWire = _bus ? Wire1 : Wire; }; + #else + void setBus(uint32_t _bus) { myWire = Wire; }; + #endif int Init(void); void getAccelAdc(int16_t* ax, int16_t* ay, int16_t* az); void getGyroAdc(int16_t* gx, int16_t* gy, int16_t* gz); @@ -77,13 +83,17 @@ class MPU6886 { void getAccelData(float* ax, float* ay, float* az); void getGyroData(float* gx, float* gy, float* gz); void getTempData(float *t); + // int variants + void getAccelDataInt(int16_t* ax, int16_t* ay, int16_t* az); + void getGyroDataInt(int16_t* gx, int16_t* gy, int16_t* gz); void SetGyroFsr(Gscale scale); void SetAccelFsr(Ascale scale); - void getAhrsData(float *pitch,float *roll,float *yaw); + // void getAhrsData(float *pitch,float *roll,float *yaw); public: + TwoWire & myWire = Wire; // default to Wire (bus 0) float aRes, gRes; private: diff --git a/lib/libesp32/CORE2_Library/MahonyAHRS.cpp b/lib/libesp32/CORE2_Library/MahonyAHRS.cpp deleted file mode 100755 index cae005075..000000000 --- a/lib/libesp32/CORE2_Library/MahonyAHRS.cpp +++ /dev/null @@ -1,254 +0,0 @@ -//===================================================================================================== -// MahonyAHRS.c -//===================================================================================================== -// -// Madgwick's implementation of Mayhony's AHRS algorithm. -// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms -// -// Date Author Notes -// 29/09/2011 SOH Madgwick Initial release -// 02/10/2011 SOH Madgwick Optimised for reduced CPU load -// -//===================================================================================================== - -//--------------------------------------------------------------------------------------------------- -// Header files - -#include "MahonyAHRS.h" -#include "Arduino.h" -#include -//--------------------------------------------------------------------------------------------------- -// Definitions - -#define sampleFreq 25.0f // sample frequency in Hz -#define twoKpDef (2.0f * 1.0f) // 2 * proportional gain -#define twoKiDef (2.0f * 0.0f) // 2 * integral gain - -//#define twoKiDef (0.0f * 0.0f) - -//--------------------------------------------------------------------------------------------------- -// Variable definitions - -volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp) -volatile float twoKi = twoKiDef; // 2 * integral gain (Ki) -volatile float q0 = 1.0, q1 = 0.0, q2 = 0.0, q3 = 0.0; // quaternion of sensor frame relative to auxiliary frame -volatile float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki - -//--------------------------------------------------------------------------------------------------- -// Function declarations - -//float invSqrt(float x); - -//==================================================================================================== -// Functions - -//--------------------------------------------------------------------------------------------------- -// AHRS algorithm update - -void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { - float recipNorm; - float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; - float hx, hy, bx, bz; - float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz; - float halfex, halfey, halfez; - float qa, qb, qc; - - // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation) - if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) { - //MahonyAHRSupdateIMU(gx, gy, gz, ax, ay, az); - return; - } - - // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) - if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { - - // Normalise accelerometer measurement - recipNorm = sqrt(ax * ax + ay * ay + az * az); - ax *= recipNorm; - ay *= recipNorm; - az *= recipNorm; - - // Normalise magnetometer measurement - recipNorm = sqrt(mx * mx + my * my + mz * mz); - mx *= recipNorm; - my *= recipNorm; - mz *= recipNorm; - - // Auxiliary variables to avoid repeated arithmetic - q0q0 = q0 * q0; - q0q1 = q0 * q1; - q0q2 = q0 * q2; - q0q3 = q0 * q3; - q1q1 = q1 * q1; - q1q2 = q1 * q2; - q1q3 = q1 * q3; - q2q2 = q2 * q2; - q2q3 = q2 * q3; - q3q3 = q3 * q3; - - // Reference direction of Earth's magnetic field - hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2)); - hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1)); - bx = sqrt(hx * hx + hy * hy); - bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2)); - - // Estimated direction of gravity and magnetic field - halfvx = q1q3 - q0q2; - halfvy = q0q1 + q2q3; - halfvz = q0q0 - 0.5f + q3q3; - halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2); - halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3); - halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2); - - // Error is sum of cross product between estimated direction and measured direction of field vectors - halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy); - halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz); - halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx); - - // Compute and apply integral feedback if enabled - if(twoKi > 0.0f) { - integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki - integralFBy += twoKi * halfey * (1.0f / sampleFreq); - integralFBz += twoKi * halfez * (1.0f / sampleFreq); - gx += integralFBx; // apply integral feedback - gy += integralFBy; - gz += integralFBz; - } - else { - integralFBx = 0.0f; // prevent integral windup - integralFBy = 0.0f; - integralFBz = 0.0f; - } - - // Apply proportional feedback - gx += twoKp * halfex; - gy += twoKp * halfey; - gz += twoKp * halfez; - } - - // Integrate rate of change of quaternion - gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors - gy *= (0.5f * (1.0f / sampleFreq)); - gz *= (0.5f * (1.0f / sampleFreq)); - qa = q0; - qb = q1; - qc = q2; - q0 += (-qb * gx - qc * gy - q3 * gz); - q1 += (qa * gx + qc * gz - q3 * gy); - q2 += (qa * gy - qb * gz + q3 * gx); - q3 += (qa * gz + qb * gy - qc * gx); - - // Normalise quaternion - recipNorm = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); - q0 *= recipNorm; - q1 *= recipNorm; - q2 *= recipNorm; - q3 *= recipNorm; -} - -//--------------------------------------------------------------------------------------------------- -// IMU algorithm update - -void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az,float *pitch,float *roll,float *yaw) { - float recipNorm; - float halfvx, halfvy, halfvz; - float halfex, halfey, halfez; - float qa, qb, qc; - - - // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) - if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { - - // Normalise accelerometer measurement - recipNorm = invSqrt(ax * ax + ay * ay + az * az); - ax *= recipNorm; - ay *= recipNorm; - az *= recipNorm; - - // Estimated direction of gravity and vector perpendicular to magnetic flux - halfvx = q1 * q3 - q0 * q2; - halfvy = q0 * q1 + q2 * q3; - halfvz = q0 * q0 - 0.5f + q3 * q3; - - - - // Error is sum of cross product between estimated and measured direction of gravity - halfex = (ay * halfvz - az * halfvy); - halfey = (az * halfvx - ax * halfvz); - halfez = (ax * halfvy - ay * halfvx); - - // Compute and apply integral feedback if enabled - if(twoKi > 0.0f) { - integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki - integralFBy += twoKi * halfey * (1.0f / sampleFreq); - integralFBz += twoKi * halfez * (1.0f / sampleFreq); - gx += integralFBx; // apply integral feedback - gy += integralFBy; - gz += integralFBz; - } - else { - integralFBx = 0.0f; // prevent integral windup - integralFBy = 0.0f; - integralFBz = 0.0f; - } - - // Apply proportional feedback - gx += twoKp * halfex; - gy += twoKp * halfey; - gz += twoKp * halfez; - } - - // Integrate rate of change of quaternion - gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors - gy *= (0.5f * (1.0f / sampleFreq)); - gz *= (0.5f * (1.0f / sampleFreq)); - qa = q0; - qb = q1; - qc = q2; - q0 += (-qb * gx - qc * gy - q3 * gz); - q1 += (qa * gx + qc * gz - q3 * gy); - q2 += (qa * gy - qb * gz + q3 * gx); - q3 += (qa * gz + qb * gy - qc * gx); - - // Normalise quaternion - recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); - q0 *= recipNorm; - q1 *= recipNorm; - q2 *= recipNorm; - q3 *= recipNorm; - - - *pitch = asin(-2 * q1 * q3 + 2 * q0* q2); // pitch - *roll = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1); // roll - *yaw = atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3); //yaw - - *pitch *= RAD_TO_DEG; - *yaw *= RAD_TO_DEG; - // Declination of SparkFun Electronics (40°05'26.6"N 105°11'05.9"W) is - // 8° 30' E ± 0° 21' (or 8.5°) on 2016-07-19 - // - http://www.ngdc.noaa.gov/geomag-web/#declination - *yaw -= 8.5; - *roll *= RAD_TO_DEG; - - ///Serial.printf("%f %f %f \r\n", pitch, roll, yaw); -} - -//--------------------------------------------------------------------------------------------------- -// Fast inverse square-root -// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root - -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wstrict-aliasing" -float invSqrt(float x) { - float halfx = 0.5f * x; - float y = x; - long i = *(long*)&y; - i = 0x5f3759df - (i>>1); - y = *(float*)&i; - y = y * (1.5f - (halfx * y * y)); - return y; -} -#pragma GCC diagnostic pop -//==================================================================================================== -// END OF CODE -//==================================================================================================== diff --git a/lib/libesp32/CORE2_Library/MahonyAHRS.h b/lib/libesp32/CORE2_Library/MahonyAHRS.h deleted file mode 100755 index bae082d24..000000000 --- a/lib/libesp32/CORE2_Library/MahonyAHRS.h +++ /dev/null @@ -1,33 +0,0 @@ -//===================================================================================================== -// MahonyAHRS.h -//===================================================================================================== -// -// Madgwick's implementation of Mayhony's AHRS algorithm. -// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms -// -// Date Author Notes -// 29/09/2011 SOH Madgwick Initial release -// 02/10/2011 SOH Madgwick Optimised for reduced CPU load -// -//===================================================================================================== -#ifndef MahonyAHRS_h -#define MahonyAHRS_h - -//---------------------------------------------------------------------------------------------------- -// Variable declaration - -extern volatile float twoKp; // 2 * proportional gain (Kp) -extern volatile float twoKi; // 2 * integral gain (Ki) -//volatile float q0, q1, q2, q3; // quaternion of sensor frame relative to auxiliary frame - -//--------------------------------------------------------------------------------------------------- -// Function declarations - -void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz); -//void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az); -void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az,float *pitch,float *roll,float *yaw); -float invSqrt(float x); -#endif -//===================================================================================================== -// End of file -//===================================================================================================== diff --git a/tasmota/i18n.h b/tasmota/i18n.h index 061b240b4..da0893f89 100644 --- a/tasmota/i18n.h +++ b/tasmota/i18n.h @@ -782,6 +782,7 @@ const char JSON_SNS_RANGE[] PROGMEM = ",\"%s\":{\"" D_JSON_RANGE "\":%d}"; const char JSON_SNS_GNGPM[] PROGMEM = ",\"%s\":{\"" D_JSON_TOTAL_USAGE "\":%s,\"" D_JSON_FLOWRATE "\":%s}"; const char S_LOG_I2C_FOUND_AT[] PROGMEM = D_LOG_I2C "%s " D_FOUND_AT " 0x%x"; +const char S_LOG_I2C_FOUND_AT_PORT[] PROGMEM = D_LOG_I2C "%s " D_FOUND_AT " 0x%x (" D_PORT " %d)"; const char S_RSLT_POWER[] PROGMEM = D_RSLT_POWER; const char S_RSLT_RESULT[] PROGMEM = D_RSLT_RESULT; diff --git a/tasmota/my_user_config.h b/tasmota/my_user_config.h index b4bd5dfae..e33e5bf3c 100644 --- a/tasmota/my_user_config.h +++ b/tasmota/my_user_config.h @@ -607,6 +607,7 @@ // #define USE_EZORGB // [I2cDriver55] Enable support for EZO's RGB sensor (+0k5 code) - Shared EZO code required for any EZO device (+1k2 code) // #define USE_EZOPMP // [I2cDriver55] Enable support for EZO's PMP sensor (+0k3 code) - Shared EZO code required for any EZO device (+1k2 code) // #define USE_SEESAW_SOIL // [I2cDriver56] Enable Capacitice Soil Moisture & Temperature Sensor (I2C addresses 0x36 - 0x39) (+1k3 code) +// #define USE_MPU6886 // [I2cDriver58] Enable MPU6686 - found in M5Stack - support 2 I2C buses on ESP32 (I2C address 0x68) (+2k code) // #define USE_DISPLAY // Add I2C Display Support (+2k code) #define USE_DISPLAY_MODES1TO5 // Enable display mode 1 to 5 in addition to mode 0 diff --git a/tasmota/support.ino b/tasmota/support.ino index f4d030def..b1653ff2a 100644 --- a/tasmota/support.ino +++ b/tasmota/support.ino @@ -2053,10 +2053,19 @@ void I2cSetActive(uint32_t addr, uint32_t count = 1) // AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]); } -void I2cSetActiveFound(uint32_t addr, const char *types) +void I2cSetActiveFound(uint32_t addr, const char *types, uint32_t bus = 0); +void I2cSetActiveFound(uint32_t addr, const char *types, uint32_t bus) { I2cSetActive(addr); +#ifdef ESP32 + if (0 == bus) { + AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr); + } else { + AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT_PORT, types, addr, bus); + } +#else AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr); +#endif // ESP32 } bool I2cActive(uint32_t addr) @@ -2068,14 +2077,24 @@ bool I2cActive(uint32_t addr) return false; } +#ifdef ESP32 +bool I2cSetDevice(uint32_t addr, uint32_t bus = 0); +bool I2cSetDevice(uint32_t addr, uint32_t bus) +#else bool I2cSetDevice(uint32_t addr) +#endif { +#ifdef ESP32 + TwoWire & myWire = (bus == 0) ? Wire : Wire1; +#else + TwoWire & myWire = Wire; +#endif addr &= 0x7F; // Max I2C address is 127 if (I2cActive(addr)) { return false; // If already active report as not present; } - Wire.beginTransmission((uint8_t)addr); - return (0 == Wire.endTransmission()); + myWire.beginTransmission((uint8_t)addr); + return (0 == myWire.endTransmission()); } #endif // USE_I2C diff --git a/tasmota/xdrv_52_3_berry_wire.ino b/tasmota/xdrv_52_3_berry_wire.ino index a5fccb44e..5959b98b9 100644 --- a/tasmota/xdrv_52_3_berry_wire.ino +++ b/tasmota/xdrv_52_3_berry_wire.ino @@ -185,7 +185,7 @@ extern "C" { be_raise(vm, kTypeError, nullptr); } - // Berry: `validwrite(address:int, reg:int, val:int, size:int) -> bool or nil` + // Berry: `write(address:int, reg:int, val:int, size:int) -> bool or nil` int32_t b_wire_validwrite(struct bvm *vm); int32_t b_wire_validwrite(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments @@ -202,7 +202,7 @@ extern "C" { be_raise(vm, kTypeError, nullptr); } - // Berry: `validread(address:int, reg:int, size:int) -> int or nil` + // Berry: `read(address:int, reg:int, size:int) -> int or nil` int32_t b_wire_validread(struct bvm *vm); int32_t b_wire_validread(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments diff --git a/tasmota/xdrv_84_esp32_core2.ino b/tasmota/xdrv_84_esp32_core2.ino index dc196536c..9f0d3cc60 100644 --- a/tasmota/xdrv_84_esp32_core2.ino +++ b/tasmota/xdrv_84_esp32_core2.ino @@ -32,15 +32,14 @@ rtc better sync #include #include -#include #include #include +#include #define XDRV_84 84 struct CORE2_globs { AXP192 Axp; - MPU6886 Mpu; BM8563_RTC Rtc; bool ready; bool tset; @@ -56,9 +55,6 @@ struct CORE2_ADC { float vbus_c; float batt_c; float temp; - int16_t x; - int16_t y; - int16_t z; } core2_adc; // cause SC card is needed by scripter @@ -75,9 +71,6 @@ void CORE2_Module_Init(void) { // motor voltage core2_globs.Axp.SetLDOVoltage(3,2000); - core2_globs.Mpu.Init(); - I2cSetActiveFound(MPU6886_ADDRESS, "MPU6886"); - core2_globs.Rtc.begin(); I2cSetActiveFound(RTC_ADRESS, "RTC"); @@ -119,12 +112,6 @@ const char HTTP_CORE2[] PROGMEM = "{s}BATT Voltage" "{m}%s V" "{e}" "{s}BATT Current" "{m}%s mA" "{e}" "{s}Chip Temperature" "{m}%s C" "{e}"; -#ifdef USE_MPU6886 -const char HTTP_CORE2_MPU[] PROGMEM = - "{s}MPU x" "{m}%d mg" "{e}" - "{s}MPU y" "{m}%d mg" "{e}" - "{s}MPU z" "{m}%d mg" "{e}"; -#endif // USE_MPU6886 #endif // USE_WEBSERVER @@ -146,18 +133,9 @@ void CORE2_WebShow(uint32_t json) { dtostrfd(core2_adc.temp, 2, tstring); if (json) { - ResponseAppend_P(PSTR(",\"CORE2\":{\"VBV\":%s,\"BV\":%s,\"VBC\":%s,\"BC\":%s,\"CT\":%s"), vstring, cstring, bvstring, bcstring, tstring); - -#ifdef USE_MPU6886 - ResponseAppend_P(PSTR(",\"MPUX\":%d,\"MPUY\":%d,\"MPUZ\":%d"), core2_adc.x, core2_adc.y, core2_adc.z); -#endif - ResponseJsonEnd(); + ResponseAppend_P(PSTR(",\"CORE2\":{\"VBV\":%s,\"BV\":%s,\"VBC\":%s,\"BC\":%s,\"CT\":%s}"), vstring, cstring, bvstring, bcstring, tstring); } else { WSContentSend_PD(HTTP_CORE2, vstring, cstring, bvstring, bcstring, tstring); - -#ifdef USE_MPU6886 - WSContentSend_PD(HTTP_CORE2_MPU, core2_adc.x, core2_adc.y, core2_adc.z); -#endif // USE_MPU6886 } } @@ -342,15 +320,6 @@ void CORE2_GetADC(void) { core2_adc.batt_c = core2_globs.Axp.GetBatCurrent(); core2_adc.temp = core2_globs.Axp.GetTempInAXP192(); -#ifdef USE_MPU6886 - float x; - float y; - float z; - core2_globs.Mpu.getAccelData(&x, &y, &z); - core2_adc.x=x*1000; - core2_adc.y=y*1000; - core2_adc.z=z*1000; -#endif // USE_MPU6886 } /*********************************************************************************************\ diff --git a/tasmota/xsns_85_mpu6886.ino b/tasmota/xsns_85_mpu6886.ino new file mode 100644 index 000000000..0cbe317f9 --- /dev/null +++ b/tasmota/xsns_85_mpu6886.ino @@ -0,0 +1,128 @@ +/* + xsns_84_tof10120.ino - TOF10120 sensor support for Tasmota + + Copyright (C) 2021 Stephan Hadinger and Theo Arends + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#ifdef USE_I2C +#ifdef USE_MPU6886 + +#include +/*********************************************************************************************\ + * MPU6886 + * Internal chip found in M5Stack devices, using `Wire1` internal I2C bus + * + * I2C Address: 0x68 + * +\*********************************************************************************************/ + +#define XSNS_85 85 +#define XI2C_58 58 // See I2CDEVICES.md + +#define MPU6886_ADDRESS 0x68 + +struct { + MPU6886 Mpu; + bool ready = false; + int16_t ax=0, ay=0, az=0; // accelerator data + int16_t gyx=0, gyy=0, gyz=0; // accelerator data +} mpu6886_sensor; + +/********************************************************************************************/ + +const char HTTP_MPU6686[] PROGMEM = + "{s}MPU6686 acc_x" "{m}%3_f G" "{e}" + "{s}MPU6686 acc_y" "{m}%3_f G" "{e}" + "{s}MPU6686 acc_z" "{m}%3_f G" "{e}" + "{s}MPU6686 gyr_x" "{m}%i dps" "{e}" + "{s}MPU6686 gyr_y" "{m}%i dps" "{e}" + "{s}MPU6686 gyr_z" "{m}%i dps" "{e}" + ; + +void MPU6686_Show(uint32_t json) { + if (json) { + ResponseAppend_P(PSTR(",\"MPU6686\":{\"AX\":%i,\"AY\":%i,\"AZ\":%i,\"GX\":%i,\"GY\":%i,\"GZ\":%i}"), + mpu6886_sensor.ax, mpu6886_sensor.ay, mpu6886_sensor.az, + mpu6886_sensor.gyx, mpu6886_sensor.gyy, mpu6886_sensor.gyz); + } else { + float ax = mpu6886_sensor.ax / 1000.0f; + float ay = mpu6886_sensor.ay / 1000.0f; + float az = mpu6886_sensor.az / 1000.0f; + WSContentSend_PD(HTTP_MPU6686, &ax, &ay, &az, + mpu6886_sensor.gyx, mpu6886_sensor.gyy, mpu6886_sensor.gyz); + + } +} + +void MPU6686Detect(void) { +#ifdef ESP32 + if (!I2cSetDevice(MPU6886_ADDRESS, 0)) { + if (!I2cSetDevice(MPU6886_ADDRESS, 1)) { return; } // check on bus 1 + mpu6886_sensor.Mpu.setBus(1); // switch to bus 1 + I2cSetActiveFound(MPU6886_ADDRESS, "MPU6886", 1); + } else { + I2cSetActiveFound(MPU6886_ADDRESS, "MPU6886", 0); + } +#else + if (!I2cSetDevice(MPU6886_ADDRESS)) { return; } + I2cSetActiveFound(MPU6886_ADDRESS, "MPU6886"); +#endif + + mpu6886_sensor.Mpu.Init(); + mpu6886_sensor.ready = true; +} + +void MPU6886Every_Second(void) { + mpu6886_sensor.Mpu.getAccelDataInt(&mpu6886_sensor.ax, &mpu6886_sensor.ay, &mpu6886_sensor.az); + mpu6886_sensor.Mpu.getGyroDataInt(&mpu6886_sensor.gyx, &mpu6886_sensor.gyy, &mpu6886_sensor.gyz); + + // AddLog(LOG_LEVEL_DEBUG, PSTR(">> Acc x=%i y=%i z=%i gx=%i gy=%i gz=%i"), mpu6886_sensor.ax, mpu6886_sensor.ay, mpu6886_sensor.az, + // mpu6886_sensor.gyx, mpu6886_sensor.gyy, mpu6886_sensor.gyz); + +} + +/*********************************************************************************************\ + * Interface +\*********************************************************************************************/ + +bool Xsns85(uint8_t function) { + if (!I2cEnabled(XI2C_58)) { return false; } + + bool result = false; + + if (FUNC_INIT == function) { + MPU6686Detect(); + } + else if (mpu6886_sensor.ready) { + switch (function) { + case FUNC_EVERY_SECOND: + MPU6886Every_Second(); + break; + case FUNC_JSON_APPEND: + MPU6686_Show(1); + break; +#ifdef USE_WEBSERVER + case FUNC_WEB_SENSOR: + MPU6686_Show(0); + break; +#endif // USE_WEBSERVER + } + } + return result; +} + +#endif // USE_MPU6886 +#endif // USE_I2C \ No newline at end of file