Merge branch 'development' of github.com:arendst/Tasmota into pr_tm1638

This commit is contained in:
Ajith Vasudevan 2021-03-06 08:24:10 +05:30
commit 9e70eb9532
5 changed files with 61 additions and 52 deletions

View File

@ -68,6 +68,7 @@ TasmotaSerial::TasmotaSerial(int receive_pin, int transmit_pin, int hardware_fal
m_hardswap = true;
}
else {
if ((m_rx_pin < 0) && (m_tx_pin < 0)) { return; }
if (m_rx_pin > -1) {
m_buffer = (uint8_t*)malloc(serial_buffer_size);
if (m_buffer == NULL) return;
@ -110,6 +111,7 @@ bool TasmotaSerial::isValidGPIOpin(int pin) {
}
bool TasmotaSerial::begin(uint32_t speed, uint32_t config) {
if (!m_valid) { return false; }
if (config > 2) {
// Legacy support where software serial fakes two stop bits if either stop bits is 2 or parity is not None
m_stop_bits = ((config &0x30) >> 5) +1;

View File

@ -510,30 +510,32 @@ void EnergyEverySecond(void)
}
// Invalid data reset
uint32_t data_valid = Energy.phase_count;
for (uint32_t i = 0; i < Energy.phase_count; i++) {
if (Energy.data_valid[i] <= ENERGY_WATCHDOG) {
Energy.data_valid[i]++;
if (Energy.data_valid[i] > ENERGY_WATCHDOG) {
// Reset energy registers
Energy.voltage[i] = 0;
Energy.current[i] = 0;
Energy.active_power[i] = 0;
if (!isnan(Energy.apparent_power[i])) { Energy.apparent_power[i] = 0; }
if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; }
if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; }
if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; }
if (!isnan(Energy.export_active[i])) { Energy.export_active[i] = 0; }
if (TasmotaGlobal.uptime > 3) {
uint32_t data_valid = Energy.phase_count;
for (uint32_t i = 0; i < Energy.phase_count; i++) {
if (Energy.data_valid[i] <= ENERGY_WATCHDOG) {
Energy.data_valid[i]++;
if (Energy.data_valid[i] > ENERGY_WATCHDOG) {
// Reset energy registers
Energy.voltage[i] = 0;
Energy.current[i] = 0;
Energy.active_power[i] = 0;
if (!isnan(Energy.apparent_power[i])) { Energy.apparent_power[i] = 0; }
if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; }
if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; }
if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; }
if (!isnan(Energy.export_active[i])) { Energy.export_active[i] = 0; }
data_valid--;
data_valid--;
}
}
}
}
if (!data_valid) {
//Energy.start_energy = 0;
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by " STR(ENERGY_WATCHDOG) " seconds invalid data"));
if (!data_valid) {
//Energy.start_energy = 0;
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by " STR(ENERGY_WATCHDOG) " seconds invalid data"));
XnrgCall(FUNC_ENERGY_RESET);
XnrgCall(FUNC_ENERGY_RESET);
}
}
#ifdef USE_ENERGY_MARGIN_DETECTION

View File

@ -21,18 +21,16 @@
#ifdef USE_CSE7761
/*********************************************************************************************\
* CSE7761 - Energy (Sonoff Dual R3 Pow)
* {"NAME":"Sonoff Dual R3","GPIO":[0,0,1,0,0,0,3232,3200,0,0,225,0,0,0,0,0,0,0,0,0,1,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
*
* Based on datasheet from ChipSea
* Based on datasheet from ChipSea and analysing serial data
* See https://github.com/arendst/Tasmota/discussions/10793
\*********************************************************************************************/
#define XNRG_19 19
//#define CSE7761_SIMULATE
#define CSE7761_DUAL_K1 1 // Current channel sampling resistance in milli Ohm
#define CSE7761_DUAL_K2 1 // Voltage divider resistance in 1k/1M
#define CSE7761_DUAL_CLK1 3579545 // System clock (3.579545MHz) used in frequency calculation
#define CSE7761_UREF 10000 // Gain 1 * 10000 in V
#define CSE7761_IREF 160000 // Gain 16 * 10000 in A
#define CSE7761_PREF 50000 // in W
@ -83,6 +81,7 @@ struct {
uint32_t current_rms[2] = { 0 };
uint32_t energy[2] = { 0 };
uint32_t active_power[2] = { 0 };
uint8_t energy_update = 0;
uint8_t init = 4;
uint8_t ready = 0;
} CSE7761Data;
@ -157,30 +156,23 @@ uint32_t Cse7761Read(uint32_t reg) {
}
bool Cse7761ChipInit(void) {
uint16_t coefficient[8] = { 0 };
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i);
calc_chksum += coefficient[i];
calc_chksum = Cse7761Read(CSE7761_REG_RMSIAC + i);
}
calc_chksum = ~calc_chksum;
uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET);
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM);
if (calc_chksum != coeff_chksum) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default coefficients"));
coefficient[RmsIAC] = 0xCC11;
coefficient[RmsUC] = 0xA643;
coefficient[PowerPAC] = 0xADE1;
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
// Settings.energy_frequency_calibration = 2750;
Settings.energy_voltage_calibration = CSE7761_UREF;
Settings.energy_current_calibration = CSE7761_IREF;
Settings.energy_power_calibration = CSE7761_PREF;
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Not factory calibrated"));
}
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
delay(8);
// delay(8); // Exception on ESP8266
uint32_t timeout = millis() + 8;
while (!TimeReached(timeout)) { }
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS);
#ifdef CSE7761_SIMULATE
sys_status = 0x11;
@ -322,7 +314,8 @@ void Cse7761GetData(void) {
// The active power parameter PowerA/B is in twos complement format, 32-bit data, the highest bit is Sign bit.
uint32_t value = Cse7761Read(CSE7761_REG_RMSU);
#ifdef CSE7761_SIMULATE
value = 2342160;
// value = 2342160; // 234.2V
value = 2000000; // 200V
#endif
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
@ -339,12 +332,14 @@ void Cse7761GetData(void) {
value = Cse7761Read(CSE7761_REG_RMSIB);
#ifdef CSE7761_SIMULATE
value = 29760;
// value = 29760; // 0.186A
value = 800000; // 5A
#endif
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761Read(CSE7761_REG_POWERPB);
#ifdef CSE7761_SIMULATE
value = 2126641;
// value = 2126641; // 42.5W
value = 50000000; // 1000W
#endif
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
@ -354,8 +349,8 @@ void Cse7761GetData(void) {
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
if (Energy.power_on) { // Powered on
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
// Energy.frequency[0] = (float)Settings.energy_frequency_calibration / ((float)CSE7761Data.frequency + 1); // Hz
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
@ -365,6 +360,7 @@ void Cse7761GetData(void) {
} else {
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
CSE7761Data.energy[channel] += Energy.active_power[channel];
CSE7761Data.energy_update++;
}
}
} else { // Powered off
@ -406,13 +402,16 @@ void Cse7761EverySecond(void) {
}
else {
if (2 == CSE7761Data.ready) {
uint32_t energy_sum = (CSE7761Data.energy[0] + CSE7761Data.energy[1]) * 1000;
if (energy_sum) {
Energy.kWhtoday_delta += energy_sum / 36;
EnergyUpdateToday();
CSE7761Data.energy[0] = 0;
CSE7761Data.energy[1] = 0;
if (CSE7761Data.energy_update) {
uint32_t energy_sum = ((CSE7761Data.energy[0] + CSE7761Data.energy[1]) * 1000) / CSE7761Data.energy_update;
if (energy_sum) {
Energy.kWhtoday_delta += energy_sum / 36;
EnergyUpdateToday();
}
}
CSE7761Data.energy[0] = 0;
CSE7761Data.energy[1] = 0;
CSE7761Data.energy_update = 0;
}
}
}
@ -425,6 +424,12 @@ void Cse7761SnsInit(void) {
SetSerial(38400, TS_SERIAL_8E1);
ClaimSerial();
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
// Settings.energy_frequency_calibration = 2750;
Settings.energy_voltage_calibration = CSE7761_UREF;
Settings.energy_current_calibration = CSE7761_IREF;
Settings.energy_power_calibration = CSE7761_PREF;
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
@ -462,7 +467,7 @@ bool Cse7761Command(void) {
else if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) {
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
Settings.energy_power_calibration = (CSE7761Data.active_power[channel] * 100) / value;
Settings.energy_power_calibration = ((CSE7761Data.active_power[channel]) / value) * 100;
}
}
}

View File

@ -1 +1 @@
esptool.py --chip esp32 --baud 2000000 --before default_reset --after hard_reset write_flash -z --flash_mode qio --flash_freq 80m --flash_size detect 0x1000 bootloader_qio_80m.bin 0x8000 partitions_spiffs_12M.bin 0xe000 boot_app0.bin 0x10000 tasmota32-core2.bin
esptool.py --chip esp32 --baud 2000000 --before default_reset --after hard_reset write_flash -z --flash_mode dio --flash_freq 80m --flash_size detect 0x1000 bootloader_qio_80m.bin 0x8000 partitions_spiffs_12M.bin 0xe000 boot_app0.bin 0x10000 tasmota32-core2.bin

View File

@ -1 +1 @@
esptool.py --chip esp32 --baud 2000000 --before default_reset --after hard_reset write_flash -z --flash_mode qio --flash_freq 80m --flash_size detect 0x1000 bootloader_qio_80m.bin 0x8000 partitions_spiffs_12M.bin 0xe000 boot_app0.bin 0x10000 tasmota32-odroid.bin
esptool.py --chip esp32 --baud 2000000 --before default_reset --after hard_reset write_flash -z --flash_mode dio --flash_freq 80m --flash_size detect 0x1000 bootloader_qio_80m.bin 0x8000 partitions_spiffs_12M.bin 0xe000 boot_app0.bin 0x10000 tasmota32-odroid.bin