diff --git a/tasmota/tasmota_xsns_sensor/xsns_02_analog.ino b/tasmota/tasmota_xsns_sensor/xsns_02_analog.ino index 9e7be7dbf..d883dbc79 100644 --- a/tasmota/tasmota_xsns_sensor/xsns_02_analog.ino +++ b/tasmota/tasmota_xsns_sensor/xsns_02_analog.ino @@ -23,30 +23,47 @@ /*********************************************************************************************\ * ADC support for ESP8266 GPIO17 (=PIN_A0) and ESP32 up to 8 channels on GPIO32 to GPIO39 * + * Command AdcParam allows for configuration of multiple sequential ADC GPIOs. + * Due to it's sequential nature it loses configurations when in-between ADC GPIOs are redefined. + * --------------------------------- -------------------------------------------------------------------------------------------------- + * AdcParam + * AdcParam1 1 <- Set first ADC GPIO found, counting from GPIO0 up, to default parameters based on configured GPIO_ADC_xxxx + * AdcParam1 1,32000,40000,3350 <- Temperature parameters for first ADC GPIO found, counting from GPIO0 up, and configured as GPIO_ADC_TEMP + * AdcParam2 1,511 <- Button parameter for second ADC GPIO found, counting from GPIO0 up, and configured as GPIO_ADC_BUTTON1 + * AdcParam3 1,511 <- Button parameter for third ADC GPIO found, counting from GPIO0 up, and configured as GPIO_ADC_BUTTON2 * + * Version v14.1.0.4 supersedes previous command with command AdcGpio for easier configuration of multiple ADC GPIOs. + * As it is GPIO based it will not loose configurations when in-between GPIOs are redefined. + * --------------------------------- -------------------------------------------------------------------------------------------------- + * AdcGpio + * AdcGpio 1 <- ESP8266 Set ADC on GPIO17 to default parameters based on configured GPIO_ADC_xxxx + * AdcGpio 32000,40000,3350 <- ESP8266 Temperature parameters for ADC on GPIO17 configured as GPIO_ADC_TEMP (no index needed) + * AdcGpio33 1 <- ESP32 Set ADC on GPIO33 to default parameters based on configured GPIO_ADC_xxxx + * AdcGpio33 32000,40000,3350 <- ESP32 Temperature parameters for ADC on GPIO33 configured as GPIO_ADC_TEMP + * AdcGpio37 511 <- ESP32 Button parameter for ADC on GPIO37 configured as GPIO_ADC_BUTTON1 * * * For shelly RGBW PM: * Template {"NAME":"Shelly Plus RGBW PM Pot.meter","GPIO":[1,0,0,0,419,0,0,0,0,0,544,0,0,0,0,1,0,0,1,0,0,416,417,418,0,0,0,0,0,4736,11264,11296,4704,0,4705,0],"FLAG":0,"BASE":1} - * AdcParam1 1,32000,40000,3350 <- Temperature parameters - * AdcParam2 1,1161,3472,10,30 <- Voltage parameters - * AdcParam3 1,960,1017,0.01,0.706 <- Current parameters - * AdcParam4 1,1552,176,3,1 <- I1 Potentiometer RGBW or RGB if SO37 128 - * AdcParam4 1,1552,176,3,3 <- I1 Potentiometer RGBW or RGB if SO37 128 without fading - * AdcParam5 1,1552,176,3,1 <- I3 Potentiometer W if SO37 128 + * AdcGpio33 32000,40000,3350 <- Temperature parameters + * AdcGpio34 1161,3472,10,30 <- Voltage parameters + * AdcGpio35 960,1017,0.01,0.706 <- Current parameters + * AdcGpio36 1552,176,3,1 <- I1 Potentiometer RGBW or RGB if SO37 128 + * AdcGpio36 1552,176,3,3 <- I1 Potentiometer RGBW or RGB if SO37 128 without fading + * AdcGpio38 1552,176,3,1 <- I3 Potentiometer W if SO37 128 * Fade 1 * Speed 6 * VoltRes 2 * WattRes 2 * * Template {"NAME":"Shelly Plus RGBW PM Button","GPIO":[1,0,0,0,419,0,0,0,0,0,544,0,0,0,0,1,0,0,1,0,0,416,417,418,0,0,0,0,0,4736,11264,11296,4800,4801,4802,4803],"FLAG":0,"BASE":1} - * AdcParam1 1,32000,40000,3350 <- Temperature parameters - * AdcParam2 1,1161,3472,10,30 <- Voltage parameters - * AdcParam3 1,960,1017,0.01,0.706 <- Current parameters - * AdcParam4 1,511 <- I1 Button - * AdcParam5 1,511 <- I2 Button - * AdcParam6 1,511 <- I3 Button - * AdcParam7 1,511 <- I4 Button + * AdcGpio33 32000,40000,3350 <- Temperature parameters + * AdcGpio34 1161,3472,10,30 <- Voltage parameters + * AdcGpio35 960,1017,0.01,0.706 <- Current parameters + * AdcGpio36 511 <- I1 ADC Button + * AdcGpio37 511 <- I2 ADC Button + * AdcGpio38 511 <- I3 ADC Button + * AdcGpio39 511 <- I4 ADC Button * Fade 1 * Speed 6 * VoltRes 2 @@ -184,6 +201,8 @@ // lenght of filter #define ANALOG_MQ_SAMPLES 60 +/*********************************************************************************************/ + struct { uint8_t present; } Adcs; @@ -193,12 +212,9 @@ struct { float temperature; float current; float energy; - uint32_t previous_millis; - uint32_t param1; - uint32_t param2; - int param3; - int param4; + int param[4]; int indexOfPointer; + uint32_t previous_millis; uint16_t last_value; uint16_t type; uint8_t index; @@ -222,114 +238,171 @@ bool AdcPin(uint32_t pin) { return false; } -uint16_t AdcRead1(uint32_t pin) { -#ifdef ESP32 - return analogReadMilliVolts(pin) / (ANALOG_V33 * 1000) * ANALOG_RANGE; // Go back from mV to ADC -#else - return analogRead(pin); -#endif -} - /*********************************************************************************************/ -void AdcSaveSettings(uint32_t channel) { - char parameters[32] = { 0 }; - if (channel < Adcs.present) { - snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"), - Adc[channel].type, Adc[channel].param1, Adc[channel].param2, Adc[channel].param3, Adc[channel].param4); +#ifdef ESP32 +void AdcFreeUnusedSettings(void) { + // Go over all SET_ADC_PARAMx looking for pin numbers currently used on channels + // Clear non used freeing global text space + char parameters[40]; + for (uint32_t param_idx = 0; param_idx <= MAX_ADCS; param_idx++) { + if (strchr(SettingsText(SET_ADC_PARAM1 + param_idx), ',') != nullptr) { + uint32_t pin = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + param_idx), ",", 6)); + uint32_t channel; + for (channel = 0; channel < Adcs.present; channel++) { + if (pin == Adc[channel].pin) { break; } + } + if (channel == Adcs.present) { + SettingsUpdateText(SET_ADC_PARAM1 + param_idx, ""); + } + } } - SettingsUpdateText(SET_ADC_PARAM1 + channel, parameters); +} +#endif // ESP32 + +int AdcFindSlot(uint32_t channel) { + char parameters[40]; + for (uint32_t param_idx = 0; param_idx < MAX_ADCS; param_idx++) { + if (strchr(SettingsText(SET_ADC_PARAM1 + param_idx), ',') != nullptr) { +// if (Adc[channel].pin == atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + param_idx), ",", 6))) { // Assuming pin 0 is never an ADC channel + subStr(parameters, SettingsText(SET_ADC_PARAM1 + param_idx), ",", 6); + if (strlen(parameters) && (atoi(parameters) == Adc[channel].pin)) { + return param_idx; // Found + } + } + } + return -1; // Not found +} + +void AdcSaveSettings(uint32_t channel) { + char parameters[40]; + snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d,%d"), + Adc[channel].type, + Adc[channel].param[0], Adc[channel].param[1], Adc[channel].param[2], Adc[channel].param[3], + Adc[channel].pin); + +#ifdef ESP8266 + SettingsUpdateText(SET_ADC_PARAM1, parameters); // Save in only slot +#else // ESP32 + // Find used slot based on channel pin. If not find a free slot. + int param_idx = AdcFindSlot(channel); + if (-1 == param_idx) { + for (param_idx = 0; param_idx < MAX_ADCS; param_idx++) { // Find a free slot + if (strchr(SettingsText(SET_ADC_PARAM1 + param_idx), ',') == nullptr) { + break; + } + } + } + SettingsUpdateText(SET_ADC_PARAM1 + param_idx, parameters); // Save in current slot +#endif // ESP32 +} + +uint32_t AdcGetType(uint32_t channel, uint32_t param_idx) { + // Get params and adc_type + char parameters[40]; + for (uint32_t i = 0; i < 4; i++) { + Adc[channel].param[i] = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + param_idx), ",", i +2)); + } + return atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + param_idx), ",", 1)); } bool AdcGetSettings(uint32_t channel) { uint32_t adc_type = 0; - char parameters[32]; - if (strchr(SettingsText(SET_ADC_PARAM1 + channel), ',') != nullptr) { - adc_type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 1)); - Adc[channel].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 2)); - Adc[channel].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 3)); - Adc[channel].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 4)); - Adc[channel].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 5)); - if ((adc_type > 0) && (adc_type < GPIO_ADC_INPUT)) { // Former ADC_END - AdcSaveSettings(channel); - adc_type = Adc[channel].type; // Migrate for backwards compatibility + // Find corresponding pin (since v14.1.0.4) + int param_idx = AdcFindSlot(channel); + if (param_idx > -1) { + // Param is 148,32000,10000,3350,0,17 + adc_type = AdcGetType(channel, param_idx); + } else { + // Legacy support (No pin in param) + // Param is 1,32000,10000,33500000,0 or 148,32000,10000,33500000,0 or 148,32000,10000,3350,0 + if (strchr(SettingsText(SET_ADC_PARAM1 + channel), ',') != nullptr) { + adc_type = AdcGetType(channel, channel); + if ((adc_type > 0) && (adc_type < GPIO_ADC_INPUT)) { // Former ADC_END + adc_type = Adc[channel].type; // Migrate adc_type from 1..12 to UserSelectablePins index + } + if ((GPIO_ADC_TEMP == adc_type) && (Adc[channel].param[2] > 1000000)) { + Adc[channel].param[2] /= 10000; // Fix legacy value from 33500000 to 3350 + } + AdcSaveSettings(channel); // Add pin } } return (Adc[channel].type == adc_type); } void AdcInitParams(uint32_t channel) { - Adc[channel].param1 = 0; - Adc[channel].param2 = 0; - Adc[channel].param3 = 0; - Adc[channel].param4 = 0; + Adc[channel].param[0] = 0; + Adc[channel].param[1] = 0; + Adc[channel].param[2] = 0; + Adc[channel].param[3] = 0; uint32_t adc_type = Adc[channel].type; switch (adc_type) { case GPIO_ADC_INPUT: -// Adc[channel].param1 = 0; - Adc[channel].param2 = ANALOG_RANGE; - Adc[channel].param3 = 3; // Margin / Tolerance -// Adc[channel].param4 = 0; // Default mode (0) or Direct mode (1) using Dimmer or Channel command +// Adc[channel].param[0] = 0; + Adc[channel].param[1] = ANALOG_RANGE; + Adc[channel].param[2] = 3; // Margin / Tolerance +// Adc[channel].param[3] = 0; // Default mode (0) or Direct mode (1) using Dimmer or Channel command break; case GPIO_ADC_TEMP: // Default Shelly 2.5 and 1PM parameters - Adc[channel].param1 = ANALOG_NTC_BRIDGE_RESISTANCE; - Adc[channel].param2 = ANALOG_NTC_RESISTANCE; - Adc[channel].param3 = ANALOG_NTC_B_COEFFICIENT; -// Adc[channel].param4 = 0; // Default to Shelly mode with NTC towards GND + Adc[channel].param[0] = ANALOG_NTC_BRIDGE_RESISTANCE; + Adc[channel].param[1] = ANALOG_NTC_RESISTANCE; + Adc[channel].param[2] = ANALOG_NTC_B_COEFFICIENT; +// Adc[channel].param[3] = 0; // Default to Shelly mode with NTC towards GND break; case GPIO_ADC_LIGHT: - Adc[channel].param1 = ANALOG_LDR_BRIDGE_RESISTANCE; - Adc[channel].param2 = ANALOG_LDR_LUX_CALC_SCALAR; - Adc[channel].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000; -// Adc[channel].param4 = 0; + Adc[channel].param[0] = ANALOG_LDR_BRIDGE_RESISTANCE; + Adc[channel].param[1] = ANALOG_LDR_LUX_CALC_SCALAR; + Adc[channel].param[2] = ANALOG_LDR_LUX_CALC_EXPONENT * 10000; +// Adc[channel].param[3] = 0; break; case GPIO_ADC_BUTTON: case GPIO_ADC_BUTTON_INV: - Adc[channel].param1 = ANALOG_BUTTON_THRESHOLD; // Between 0 or 1 -// Adc[channel].param2 = 0; -// Adc[channel].param3 = 0; -// Adc[channel].param4 = 0; + Adc[channel].param[0] = ANALOG_BUTTON_THRESHOLD; // Between 0 or 1 +// Adc[channel].param[1] = 0; +// Adc[channel].param[2] = 0; +// Adc[channel].param[3] = 0; break; case GPIO_ADC_RANGE: -// Adc[channel].param1 = 0; - Adc[channel].param2 = ANALOG_RANGE; -// Adc[channel].param3 = 0; - Adc[channel].param4 = 100; +// Adc[channel].param[0] = 0; + Adc[channel].param[1] = ANALOG_RANGE; +// Adc[channel].param[2] = 0; + Adc[channel].param[3] = 100; break; case GPIO_ADC_CT_POWER: - Adc[channel].param1 = ANALOG_CT_FLAGS; // (uint32_t) 0 - Adc[channel].param2 = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000 - Adc[channel].param3 = ANALOG_CT_VOLTAGE; // (int) 10 + Adc[channel].param[0] = ANALOG_CT_FLAGS; // (uint32_t) 0 + Adc[channel].param[1] = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000 + Adc[channel].param[2] = ANALOG_CT_VOLTAGE; // (int) 10 +// Adc[channel].param[3] = 0; break; case GPIO_ADC_JOY: - Adc[channel].param1 = ANALOG_JOYSTICK_THRESHOLD; -// Adc[channel].param2 = 0; -// Adc[channel].param3 = 0; -// Adc[channel].param4 = 0; + Adc[channel].param[0] = ANALOG_JOYSTICK_THRESHOLD; +// Adc[channel].param[1] = 0; +// Adc[channel].param[2] = 0; +// Adc[channel].param[3] = 0; break; case GPIO_ADC_PH: - Adc[channel].param1 = ANALOG_PH_CALSOLUTION_LOW_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 1, which is the one with the lower PH - Adc[channel].param2 = ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 1 - Adc[channel].param3 = ANALOG_PH_CALSOLUTION_HIGH_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 2, which is the one with the higher PH - Adc[channel].param4 = ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 2 + Adc[channel].param[0] = ANALOG_PH_CALSOLUTION_LOW_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 1, which is the one with the lower PH + Adc[channel].param[1] = ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 1 + Adc[channel].param[2] = ANALOG_PH_CALSOLUTION_HIGH_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 2, which is the one with the higher PH + Adc[channel].param[3] = ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 2 break; case GPIO_ADC_MQ: - Adc[channel].param1 = ANALOG_MQ_TYPE; // Could be MQ-002, MQ-004, MQ-131 .... - Adc[channel].param2 = (int)(ANALOG_MQ_A * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression - Adc[channel].param3 = (int)(ANALOG_MQ_B * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression - Adc[channel].param4 = (int)(ANALOG_MQ_RatioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression + Adc[channel].param[0] = ANALOG_MQ_TYPE; // Could be MQ-002, MQ-004, MQ-131 .... + Adc[channel].param[1] = (int)(ANALOG_MQ_A * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression + Adc[channel].param[2] = (int)(ANALOG_MQ_B * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression + Adc[channel].param[3] = (int)(ANALOG_MQ_RatioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression break; case GPIO_ADC_VOLTAGE: case GPIO_ADC_CURRENT: -// Adc[channel].param1 = 0; - Adc[channel].param2 = ANALOG_RANGE; -// Adc[channel].param3 = 0; - Adc[channel].param4 = ANALOG_V33 * 10000; +// Adc[channel].param[0] = 0; + Adc[channel].param[1] = ANALOG_RANGE; +// Adc[channel].param[2] = 0; + Adc[channel].param[3] = ANALOG_V33 * 10000; break; } -// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: AdcParam%d %d,%d,%d,%d,%d"), channel+1, Adc[channel].pin, Adc[channel].param1, Adc[channel].param2, Adc[channel].param3, Adc[channel].param4); +// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: AdcParam%d %d,%d,%d,%d,%d"), channel+1, Adc[channel].pin, Adc[channel].param[0], Adc[channel].param[1], Adc[channel].param[2], Adc[channel].param[3]); } void AdcInit(void) { @@ -357,7 +430,7 @@ void AdcInit(void) { case GPIO_ADC_LIGHT: case GPIO_ADC_TEMP: case GPIO_ADC_INPUT: - Adc[Adcs.present].indexOfPointer = -1; + Adc[Adcs.present].indexOfPointer = -1; // Used to skip first update of GPIO_ADC_INPUT after restart Adc[Adcs.present].pin = pin; Adc[Adcs.present].type = adc_type; Adc[Adcs.present].index = TasmotaGlobal.gpio_pin[pin] & 0x001F; @@ -378,14 +451,22 @@ void AdcInit(void) { } } } - for (uint32_t channel = Adcs.present; channel < MAX_ADCS; channel++) { - if (strlen(SettingsText(SET_ADC_PARAM1 + channel))) { - AdcSaveSettings(channel); // Free space by unused params - } - } +#ifdef ESP32 + AdcFreeUnusedSettings(); +#endif // ESP32 } -uint16_t AdcRead(uint32_t pin, uint32_t factor) { +/*********************************************************************************************/ + +uint32_t AdcRead1(uint32_t pin) { +#ifdef ESP32 + return analogReadMilliVolts(pin) / (ANALOG_V33 * 1000) * ANALOG_RANGE; // Go back from mV to ADC +#else + return analogRead(pin); +#endif +} + +uint32_t AdcRead(uint32_t pin, uint32_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples @@ -418,7 +499,7 @@ void AdcEvery250ms(void) { #ifdef USE_LIGHT if (!light_controller.isCTRGBLinked()) { // SetOption37 >= 128 (Light) RGB and White channel separation (default 0) for (uint32_t channel = 0; channel < Adcs.present; channel++) { - if ((GPIO_ADC_INPUT == Adc[channel].type) && (Adc[channel].param4 > 0)) { + if ((GPIO_ADC_INPUT == Adc[channel].type) && (Adc[channel].param[3] > 0)) { dimmer_count++; } } @@ -431,17 +512,21 @@ void AdcEvery250ms(void) { offset = 1; #endif uint32_t adc_type = Adc[channel].type; + int param0 = Adc[channel].param[0]; + int param1 = Adc[channel].param[1]; + int param2 = Adc[channel].param[2]; + int param3 = Adc[channel].param[3]; if (GPIO_ADC_INPUT == adc_type) { int adc = AdcRead(Adc[channel].pin, 4); // 4 = 16 mS - bool swap = (Adc[channel].param2 < Adc[channel].param1); - uint32_t lo = (swap) ? Adc[channel].param2 : Adc[channel].param1; - uint32_t hi = (swap) ? Adc[channel].param1 : Adc[channel].param2; + bool swap = (param1 < param0); + uint32_t lo = (swap) ? param1 : param0; + uint32_t hi = (swap) ? param0 : param1; int new_value = changeUIntScale(adc, lo, hi, 0, 100); if (swap) { new_value = 100 - new_value; } - if ((new_value < Adc[channel].last_value -Adc[channel].param3) || - (new_value > Adc[channel].last_value +Adc[channel].param3) || + if ((new_value < Adc[channel].last_value -param2) || + (new_value > Adc[channel].last_value +param2) || ((0 == new_value) && (Adc[channel].last_value != 0)) || // Lowest end ((100 == new_value) && (Adc[channel].last_value != 100))) { // Highest end Adc[channel].last_value = new_value; @@ -450,7 +535,7 @@ void AdcEvery250ms(void) { continue; // Do not use potentiometer state on restart } #ifdef USE_LIGHT - if (0 == Adc[channel].param4) { // Default (0) or Direct mode (1) + if (0 == param3) { // Default (0) or Direct mode (1) #endif // USE_LIGHT Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), type_index + offset, new_value); XdrvRulesProcess(0); @@ -464,7 +549,7 @@ void AdcEvery250ms(void) { if (dimmer_count > 1) { dimmer_option = (0 == type_index) ? 1 : 2; // Change RGB (1) or W(W) (2) dimmer } else { - dimmer_option = (3 == Adc[channel].param4) ? 3 : 0; // Change both RGB and W(W) Dimmers (0) with no fading (3) + dimmer_option = (3 == param3) ? 3 : 0; // Change both RGB and W(W) Dimmers (0) with no fading (3) } snprintf_P(command, sizeof(command), PSTR(D_CMND_DIMMER "%d %d"), dimmer_option, new_value); } @@ -477,7 +562,7 @@ void AdcEvery250ms(void) { uint16_t new_value = AdcRead(Adc[channel].pin, 1); if (new_value && (new_value != Adc[channel].last_value)) { Adc[channel].last_value = new_value; - uint16_t value = new_value / Adc[channel].param1; + uint16_t value = new_value / param0; Response_P(PSTR("{\"ANALOG\":{\"Joy%s\":%d}}"), adc_channel, value); XdrvRulesProcess(0); } else { @@ -489,28 +574,30 @@ void AdcEvery250ms(void) { uint8_t AdcGetButton(uint32_t pin) { for (uint32_t channel = 0; channel < Adcs.present; channel++) { - uint32_t adc_type = Adc[channel].type; if (Adc[channel].pin == pin) { + uint32_t adc_type = Adc[channel].type; + uint32_t adc = AdcRead(Adc[channel].pin, 1); + uint32_t param0 = Adc[channel].param[0]; if (GPIO_ADC_BUTTON_INV == adc_type) { - return (AdcRead(Adc[channel].pin, 1) < Adc[channel].param1); + return (adc < param0); } else if (GPIO_ADC_BUTTON == adc_type) { - return (AdcRead(Adc[channel].pin, 1) > Adc[channel].param1); + return (adc > param0); } } } return 0; } -uint16_t AdcGetLux(uint32_t channel) { +uint32_t AdcGetLux(uint32_t channel) { int adc = AdcRead(Adc[channel].pin, 2); // Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/ - double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33; - double ldrVoltage = ANALOG_V33 - resistorVoltage; - double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[channel].param1; - double ldrLux = (double)Adc[channel].param2 * FastPrecisePow(ldrResistance, (double)Adc[channel].param3 / 10000); + float resistorVoltage = ((float)adc / ANALOG_RANGE) * ANALOG_V33; + float ldrVoltage = ANALOG_V33 - resistorVoltage; + float ldrResistance = ldrVoltage / resistorVoltage * (float)Adc[channel].param[0]; + float ldrLux = (float)Adc[channel].param[1] * FastPrecisePowf(ldrResistance, (float)Adc[channel].param[2] / 10000); - return (uint16_t)ldrLux; + return (uint32_t)ldrLux; } void AddSampleMq(uint32_t channel){ @@ -551,7 +638,7 @@ float AdcGetMq(uint32_t channel) { float _R0 = 10; float _ratio = _RS_Calc / _R0; // Get ratio RS_gas/RS_air - float ppm = Adc[channel].param2 / ANALOG_MQ_DECIMAL_MULTIPLIER * FastPrecisePow(_ratio, Adc[channel].param3 / ANALOG_MQ_DECIMAL_MULTIPLIER); // Source excel analisis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents + float ppm = Adc[channel].param[1] / ANALOG_MQ_DECIMAL_MULTIPLIER * FastPrecisePowf(_ratio, Adc[channel].param[2] / ANALOG_MQ_DECIMAL_MULTIPLIER); // Source excel analisis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents if (ppm < 0) { ppm = 0; } // No negative values accepted or upper datasheet recomendation. if (ppm > 100000) { ppm = 100000; } @@ -563,10 +650,10 @@ float AdcGetMq(uint32_t channel) { float AdcGetPh(uint32_t channel) { int adc = AdcRead(Adc[channel].pin, 2); - float y1 = (float)Adc[channel].param1 / ANALOG_PH_DECIMAL_MULTIPLIER; - int32_t x1 = Adc[channel].param2; - float y2 = (float)Adc[channel].param3 / ANALOG_PH_DECIMAL_MULTIPLIER; - int32_t x2 = Adc[channel].param4; + float y1 = (float)Adc[channel].param[0] / ANALOG_PH_DECIMAL_MULTIPLIER; + int32_t x1 = Adc[channel].param[1]; + float y2 = (float)Adc[channel].param[2] / ANALOG_PH_DECIMAL_MULTIPLIER; + int32_t x2 = Adc[channel].param[3]; float m = (y2 - y1) / (float)(x2 - x1); float ph = m * (float)(adc - x1) + y1; @@ -581,25 +668,25 @@ float AdcGetRange(uint32_t channel) { // Example: 514, 632, 236, 0, 100 // int( (( - ) / ( - ) ) * ( - ) ) + ) int adc = AdcRead(Adc[channel].pin, 5); - float adcrange = ( ((float)Adc[channel].param2 - (float)adc) / ( ((float)Adc[channel].param2 - (float)Adc[channel].param1)) * ((float)Adc[channel].param3 - (float)Adc[channel].param4) + (float)Adc[channel].param4 ); + float adcrange = ( ((float)Adc[channel].param[1] - (float)adc) / ( ((float)Adc[channel].param[1] - (float)Adc[channel].param[0])) * ((float)Adc[channel].param[2] - (float)Adc[channel].param[3]) + (float)Adc[channel].param[3] ); return adcrange; } -void AdcGetCurrentPower(uint8_t channel, uint8_t factor) { +void AdcGetCurrentPower(uint32_t channel, uint32_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples - uint8_t samples = 1 << factor; - uint16_t analog = 0; - uint16_t analog_min = ANALOG_RANGE; - uint16_t analog_max = 0; + uint32_t samples = 1 << factor; + uint32_t analog = 0; + uint32_t analog_min = ANALOG_RANGE; + uint32_t analog_max = 0; - if (0 == Adc[channel].param1) { - unsigned long tstart=millis(); + if (0 == Adc[channel].param[0]) { + uint32_t tstart = millis(); while (millis()-tstart < 35) { - analog = analogRead(Adc[channel].pin); + analog = AdcRead1(Adc[channel].pin); if (analog < analog_min) { analog_min = analog; } @@ -608,21 +695,20 @@ void AdcGetCurrentPower(uint8_t channel, uint8_t factor) { } } //AddLog(0, PSTR("min: %u, max:%u, dif:%u"), analog_min, analog_max, analog_max-analog_min); - Adc[channel].current = (float)(analog_max-analog_min) * ((float)(Adc[channel].param2) / 100000); - if (Adc[channel].current < (((float)Adc[channel].param4) / 10000.0)) - Adc[channel].current = 0.0; - } - else { - analog = AdcRead(Adc[channel].pin, 5); - if (analog > Adc[channel].param1) { - Adc[channel].current = ((float)(analog) - (float)Adc[channel].param1) * ((float)(Adc[channel].param2) / 100000); + Adc[channel].current = (float)(analog_max-analog_min) * ((float)(Adc[channel].param[1]) / 100000); + if (Adc[channel].current < (((float)Adc[channel].param[3]) / 10000.0)) { + Adc[channel].current = 0.0; } - else { + } else { + analog = AdcRead(Adc[channel].pin, 5); + if (analog > Adc[channel].param[0]) { + Adc[channel].current = ((float)(analog) - (float)Adc[channel].param[0]) * ((float)(Adc[channel].param[1]) / 100000); + } else { Adc[channel].current = 0; } } - float power = Adc[channel].current * (float)(Adc[channel].param3) / 10; + float power = Adc[channel].current * (float)(Adc[channel].param[2]) / 10; uint32_t current_millis = millis(); Adc[channel].energy = Adc[channel].energy + ((power * (current_millis - Adc[channel].previous_millis)) / 3600000000); Adc[channel].previous_millis = current_millis; @@ -632,31 +718,32 @@ void AdcEverySecond(void) { for (uint32_t channel = 0; channel < Adcs.present; channel++) { uint32_t type_index = Adc[channel].index; uint32_t adc_type = Adc[channel].type; + int param0 = Adc[channel].param[0]; + int param1 = Adc[channel].param[1]; + int param2 = Adc[channel].param[2]; + int param3 = Adc[channel].param[3]; if (GPIO_ADC_TEMP == adc_type) { int adc = AdcRead(Adc[channel].pin, 2); // Steinhart-Hart equation for thermistor as temperature sensor: - // double Rt = (adc * Adc[channel].param1 * MAX_ADC_V) / (ANALOG_RANGE * ANALOG_V33 - (double)adc * MAX_ADC_V); + // float Rt = (adc * Adc[channel].param[0] * MAX_ADC_V) / (ANALOG_RANGE * ANALOG_V33 - (float)adc * MAX_ADC_V); // MAX_ADC_V in ESP8266 is 1 // MAX_ADC_V in ESP32 is 3.3 - double Rt; + float Rt; #ifdef ESP8266 - if (Adc[channel].param4) { // Alternate mode - Rt = (double)Adc[channel].param1 * (ANALOG_RANGE * ANALOG_V33 - (double)adc) / (double)adc; + if (param3) { // Alternate mode + Rt = (float)param0 * (ANALOG_RANGE * ANALOG_V33 - (float)adc) / (float)adc; } else { - Rt = (double)Adc[channel].param1 * (double)adc / (ANALOG_RANGE * ANALOG_V33 - (double)adc); + Rt = (float)param0 * (float)adc / (ANALOG_RANGE * ANALOG_V33 - (float)adc); } #else - if (Adc[channel].param4) { // Alternate mode - Rt = (double)Adc[channel].param1 * (ANALOG_RANGE - (double)adc) / (double)adc; + if (param3) { // Alternate mode + Rt = (float)param0 * (ANALOG_RANGE - (float)adc) / (float)adc; } else { - Rt = (double)Adc[channel].param1 * (double)adc / (ANALOG_RANGE - (double)adc); + Rt = (float)param0 * (float)adc / (ANALOG_RANGE - (float)adc); } #endif - if (Adc[channel].param3 > 1000000) { - Adc[channel].param3 /= 10000; // Fix legacy value from 33500000 to 3350 - } - double BC = (double)Adc[channel].param3; // Shelly param3 = 3350 (ANALOG_NTC_B_COEFFICIENT) - double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[channel].param2)); // Shelly param2 = 10000 (ANALOG_NTC_RESISTANCE) + float BC = (float)param2; // Shelly param3 = 3350 (ANALOG_NTC_B_COEFFICIENT) + float T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (float)param1)); // Shelly param2 = 10000 (ANALOG_NTC_RESISTANCE) Adc[channel].temperature = ConvertTemp(TO_CELSIUS(T)); } else if (GPIO_ADC_CT_POWER == adc_type) { @@ -702,7 +789,7 @@ void AdcShow(bool json) { switch (adc_type) { case GPIO_ADC_INPUT: { #ifdef USE_LIGHT - if (0 == Adc[channel].param4) { // Default (0) or Direct mode (1) + if (0 == Adc[channel].param[3]) { // Default (0) or Direct mode (1) #endif // USE_LIGHT uint16_t analog = AdcRead(Adc[channel].pin, 5); if (json) { @@ -739,7 +826,7 @@ void AdcShow(bool json) { break; } case GPIO_ADC_LIGHT: { - uint16_t adc_light = AdcGetLux(channel); + uint32_t adc_light = AdcGetLux(channel); if (json) { AdcShowContinuation(&jsonflg); @@ -775,7 +862,7 @@ void AdcShow(bool json) { case GPIO_ADC_CT_POWER: { AdcGetCurrentPower(channel, 5); - float voltage = (float)(Adc[channel].param3) / 10; + float voltage = (float)(Adc[channel].param[2]) / 10; char voltage_chr[FLOATSZ]; dtostrfd(voltage, Settings->flag2.voltage_resolution, voltage_chr); char current_chr[FLOATSZ]; @@ -809,7 +896,7 @@ void AdcShow(bool json) { } case GPIO_ADC_JOY: { uint16_t new_value = AdcRead(Adc[channel].pin, 1); - uint16_t value = new_value / Adc[channel].param1; + uint16_t value = new_value / Adc[channel].param[0]; if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"Joy%s\":%d"), adc_channel, value); @@ -836,13 +923,13 @@ void AdcShow(bool json) { char mq_chr[FLOATSZ]; dtostrfd(mq, 2, mq_chr); - float mqnumber =Adc[channel].param1; + float mqnumber =Adc[channel].param[0]; char mqnumber_chr[FLOATSZ]; dtostrfd(mqnumber, 0, mqnumber_chr); if (json) { AdcShowContinuation(&jsonflg); - ResponseAppend_P(PSTR("\"MQ%d_%d\":%s"), Adc[channel].param1, type_index + offset, mq_chr); + ResponseAppend_P(PSTR("\"MQ%d_%d\":%s"), Adc[channel].param[0], type_index + offset, mq_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_MQ, mqnumber_chr, mq_chr); @@ -877,8 +964,13 @@ uint32_t Decimals(int value) { } void CmndAdcGpio(void) { + // AdcGpio33 1 Set to default // AdcGpio33 32000, 10000, 3350 ADC_TEMP Shelly mode for (uint32_t channel = 0; channel < Adcs.present; channel++) { +#ifdef ESP8266 + // AdcGpio 32000, 10000, 3350 ADC_TEMP Shelly mode + XdrvMailbox.index = Adc[channel].pin; +#endif if (XdrvMailbox.index == Adc[channel].pin) { XdrvMailbox.index = channel +1; if (XdrvMailbox.data_len) { @@ -914,37 +1006,37 @@ void CmndAdcParam(void) { AdcGetSettings(channel); if (ArgC() > 2) { // Process parameter entry char argument[XdrvMailbox.data_len]; - Adc[channel].param1 = strtol(ArgV(argument, 2), nullptr, 10); // param1 = int - Adc[channel].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int + Adc[channel].param[0] = strtol(ArgV(argument, 2), nullptr, 10); // param1 = int + Adc[channel].param[1] = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int if ((GPIO_ADC_INPUT == adc_type) || (GPIO_ADC_TEMP == adc_type) || (GPIO_ADC_RANGE == adc_type)) { - Adc[channel].param3 = abs(strtol(ArgV(argument, 4), nullptr, 10)); // param3 = abs(int) - Adc[channel].param4 = abs(strtol(ArgV(argument, 5), nullptr, 10)); // param4 = abs(int) + Adc[channel].param[2] = abs(strtol(ArgV(argument, 4), nullptr, 10)); // param3 = abs(int) + Adc[channel].param[3] = abs(strtol(ArgV(argument, 5), nullptr, 10)); // param4 = abs(int) } else { - Adc[channel].param3 = (int)(CharToFloat(ArgV(argument, 4)) * 10000); // param3 = float + Adc[channel].param[2] = (int)(CharToFloat(ArgV(argument, 4)) * 10000); // param3 = float if (ArgC() > 4) { - Adc[channel].param4 = (int)(CharToFloat(ArgV(argument, 5)) * 10000); // param4 = float + Adc[channel].param[3] = (int)(CharToFloat(ArgV(argument, 5)) * 10000); // param4 = float } else { - Adc[channel].param4 = 0; // param4 = fixed 0 + Adc[channel].param[3] = 0; // param4 = fixed 0 } } if (GPIO_ADC_PH == adc_type) { float phLow = CharToFloat(ArgV(argument, 2)); - Adc[channel].param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER; // param1 = float -// Adc[channel].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int + Adc[channel].param[0] = phLow * ANALOG_PH_DECIMAL_MULTIPLIER; // param1 = float +// Adc[channel].param[1] = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int float phHigh = CharToFloat(ArgV(argument, 4)); - Adc[channel].param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER; // param3 = float - Adc[channel].param4 = strtol(ArgV(argument, 5), nullptr, 10); // param4 = int + Adc[channel].param[2] = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER; // param3 = float + Adc[channel].param[3] = strtol(ArgV(argument, 5), nullptr, 10); // param4 = int -// AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[channel].param2, &phHigh, Adc[channel].param4); +// AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[channel].param[1], &phHigh, Adc[channel].param[3]); } if (GPIO_ADC_CT_POWER == adc_type) { - if (((1 == Adc[channel].param1) & CT_FLAG_ENERGY_RESET) > 0) { // param1 = int + if (((1 == Adc[channel].param[0]) & CT_FLAG_ENERGY_RESET) > 0) { // param1 = int for (uint32_t i = 0; i < Adcs.present; i++) { Adc[i].energy = 0; } - Adc[channel].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag + Adc[channel].param[0] ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag } } if (GPIO_ADC_MQ == adc_type) { @@ -952,32 +1044,32 @@ void CmndAdcParam(void) { float b = CharToFloat(ArgV(argument, 4)); // param3 = float float ratioMQCleanAir = CharToFloat(ArgV(argument, 5)); // param4 = float if ((0 == a) && (0 == b) && (0 == ratioMQCleanAir)) { - if (2 == Adc[channel].param1) { // param1 = int + if (2 == Adc[channel].param[0]) { // param1 = int a = 574.25; b = -2.222; ratioMQCleanAir = 9.83; } - else if (4 == Adc[channel].param1) { + else if (4 == Adc[channel].param[0]) { a = 1012.7; b = -2.786; ratioMQCleanAir = 4.4; } - else if (7 == Adc[channel].param1) { + else if (7 == Adc[channel].param[0]) { a = 99.042; b = -1.518; ratioMQCleanAir = 27.5; } - if (131 == Adc[channel].param1) { + if (131 == Adc[channel].param[0]) { a = 23.943; b = -1.11; ratioMQCleanAir = 15; } } - Adc[channel].param2 = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression - Adc[channel].param3 = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression - Adc[channel].param4 = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression + Adc[channel].param[1] = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression + Adc[channel].param[2] = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression + Adc[channel].param[3] = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression -// AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[channel].param1, &a, &b, &ratioMQCleanAir); +// AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[channel].param[0], &a, &b, &ratioMQCleanAir); } } else { // Set default values based on current adc type // AdcParam 1 @@ -990,27 +1082,31 @@ void CmndAdcParam(void) { AdcGetSettings(channel); Response_P(PSTR("{\"%s"), XdrvMailbox.command); // {"AdcParam or {"AdcGpio if (strstr_P(XdrvMailbox.command, PSTR(D_CMND_ADCGPIO))) { +#ifdef ESP8266 + ResponseAppend_P(PSTR("\":[")); +#else ResponseAppend_P(PSTR("%d\":["), Adc[channel].pin); +#endif } else { ResponseAppend_P(PSTR("%d\":[%d,"), channel +1, Adc[channel].pin); } - ResponseAppend_P(PSTR("%d,%d"), Adc[channel].param1, Adc[channel].param2); + ResponseAppend_P(PSTR("%d,%d"), Adc[channel].param[0], Adc[channel].param[1]); if ((GPIO_ADC_INPUT == adc_type) || (GPIO_ADC_TEMP == adc_type) || (GPIO_ADC_RANGE == adc_type) || (GPIO_ADC_MQ == adc_type)) { - ResponseAppend_P(PSTR(",%d,%d"), Adc[channel].param3, Adc[channel].param4); // param3 = int, param4 = int + ResponseAppend_P(PSTR(",%d,%d"), Adc[channel].param[2], Adc[channel].param[3]); // param3 = int, param4 = int } else { - float param = (float)Adc[channel].param3 / 10000; - ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[channel].param3), ¶m); // param3 = float + float param = (float)Adc[channel].param[2] / 10000; + ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[channel].param[2]), ¶m); // param3 = float if ((GPIO_ADC_CT_POWER == adc_type) || (GPIO_ADC_VOLTAGE == adc_type) || (GPIO_ADC_CURRENT == adc_type)) { - param = (float)Adc[channel].param4 / 10000; - ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[channel].param4), ¶m); // param4 = float + param = (float)Adc[channel].param[3] / 10000; + ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[channel].param[3]), ¶m); // param4 = float } else { - ResponseAppend_P(PSTR(",%d"), Adc[channel].param4); // param4 = int + ResponseAppend_P(PSTR(",%d"), Adc[channel].param[3]); // param4 = int } } ResponseAppend_P(PSTR("]}"));