Merge branch 'development' into release

This commit is contained in:
Theo Arends 2020-03-08 15:10:47 +01:00
commit c65cc9f156
11 changed files with 200 additions and 1378 deletions

View File

@ -55,13 +55,13 @@ The following binary downloads have been compiled with ESP8266/Arduino library c
### Version 8.2.0 Elliot
- Change default my_user_config.h driver and sensor support removing most sensors and adding most drivers
- Change DHT driver (#7468, #7717)
- Change Lights: simplified gamma correction and 10 bits internal computation
- Change commands ``Prefix``, ``Ssid``, ``StateText``, ``NTPServer``, and ``FriendlyName`` displaying all items
- Change IRremoteESP8266 library updated to v2.7.4
- Change Zigbee command prefix from ``Zigbee*`` to ``Zb*``
- Change MQTT message size with additional 200 characters
- Change display of some date and time messages from "Wed Feb 19 10:45:12 2020" to "2020-02-19T10:45:12"
- Change switchmode 6 according to issue 7778 (#7831)
- Fix Sonoff Bridge, Sc, L1, iFan03 and CSE7766 serial interface to forced speed, config and disable logging
- Fix commands ``Display`` and ``Counter`` from overruling command processing (#7322)
- Fix ``White`` added to light status (#7142)
@ -108,8 +108,6 @@ The following binary downloads have been compiled with ESP8266/Arduino library c
- Add ``ZbZNPReceived``and ``ZbZCLReceived`` being published to MQTT when ``SetOption66 1``
- Add optional Wifi AccessPoint passphrase define WIFI_AP_PASSPHRASE in my_user_config.h (#7690)
- Add support for FiF LE-01MR energy meter by saper-2 (#7584)
- Add new DHT driver. The old driver can still be used using define USE_DHT_OLD (#7468)
- Add another new DHT driver based on ESPEasy. The old driver can still be used using define USE_DHT_OLD. The previous new driver can be used with define USE_DHT_V2 (#7717)
- Add initial support for Sensors AHT10 and AHT15 by Martin Wagner (#7596)
- Add support for Wemos Motor Shield V1 by Denis Sborets (#7764)
- Add Zigbee enhanced commands decoding, added ``ZbPing``

View File

@ -10,7 +10,7 @@
- Change default my_user_config.h driver and sensor support removing most sensors and adding most drivers
- Change IRremoteESP8266 library updated to v2.7.4
- Change switchmode 6 according to issue 7778 (#7831)
- Revert switchmode 6 according to issue 7778 (#7831)
- Add support for Jarolift rollers by Keeloq algorithm
- Add Zigbee features and improvements and remove support for Zigbee commands starting with ``Zigbee...``
- Add support for MaxBotix HRXL-MaxSonar ultrasonic range finders by Jon Little (#7814)

View File

@ -218,9 +218,20 @@ void SwitchHandler(uint8_t mode)
}
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i]) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer...
switchflag = POWER_TOGGLE; // ...and Toggle
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case PUSHBUTTONHOLD_INV:
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i])) {
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; // Start timer on button press...
}
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i]) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer.
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
/*
// Reverted Fix switchmode 6 according to issue 7778 (#7831)
case PUSHBUTTONHOLD_INV:
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i])) {
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; // Start timer on button press...
@ -230,6 +241,7 @@ void SwitchHandler(uint8_t mode)
Switch.hold_timer[i] = 0; // Button released : stop timer.
}
break;
*/
case TOGGLEMULTI:
case FOLLOWMULTI:
case FOLLOWMULTI_INV:

View File

@ -1496,6 +1496,37 @@ chknext:
fvar=!global_state.mqtt_down;
goto exit;
}
if (!strncmp(vname,"mp(",3)) {
lp+=3;
float fvar1;
lp=GetNumericResult(lp,OPER_EQU,&fvar1,0);
SCRIPT_SKIP_SPACES
while (*lp!=')') {
char *opp=lp;
lp++;
float fvar2;
lp=GetNumericResult(lp,OPER_EQU,&fvar2,0);
SCRIPT_SKIP_SPACES
fvar=fvar1;
if ((*opp=='<' && fvar1<fvar2) ||
(*opp=='>' && fvar1>fvar2) ||
(*opp=='=' && fvar1==fvar2))
{
if (*lp!='<' && *lp!='>' && *lp!='=' && *lp!=')' && *lp!=SCRIPT_EOL) {
float fvar3;
lp=GetNumericResult(lp,OPER_EQU,&fvar3,0);
SCRIPT_SKIP_SPACES
fvar=fvar3;
} else {
fvar=fvar2;
}
break;
}
while (*lp!='<' && *lp!='>' && *lp!='=' && *lp!=')' && *lp!=SCRIPT_EOL) lp++;
}
len=0;
goto exit;
}
break;
case 'p':
if (!strncmp(vname,"pin[",4)) {

View File

@ -1,7 +1,7 @@
/*
xdrv_37_sonoff_d1.ino - sonoff D1 dimmer support for Tasmota
Copyright (C) 2020 Theo Arends and robbz23 (protocol analysis)
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -29,83 +29,43 @@
* 64 - Dimmer percentage (01 to 64 = 1 to 100%)
* FF FF FF FF FF FF FF FF - Not used
* 6C - CRC over bytes 2 to F (Addition)
*
* Based on Gravitate1:
* When I switch the light ON via the app, I get:
* AA 55 01 04 00 0A 01 64 FF FF FF FF FF FF FF FF 6C
*
* When I switch it OFF, I get:
* AA 55 01 04 00 0A 00 64 FF FF FF FF FF FF FF FF 6B
*
* When I set it to 1%, I get:
* AA 55 01 04 00 0A FF 01 FF FF FF FF FF FF FF FF 07
* AB 55 FD F7 FF FF F5 01 FF FF FF FF FF FF FF FF 09
*
* When I set it to 6%, I get:
* AA 55 01 04 00 0A FF 06 FF FF FF FF FF FF FF FF 0C
* AB 55 FD F7 FF FF F5 06 FF FF FF FF FF FF FF FF 0E
*
* When I set it to 100%, I get:
* AA 55 01 04 00 0A FF 64 FF FF FF FF FF FF FF FF 6A
* AB 55 FD F7 FF FF F5 64 FF FF FF FF FF FF FF FF 6C
*
* Based on robbz23:
* 00:17:59 CMD: Baudrate 9600
* 00:17:59 SER: Set to 8N1 9600 bit/s
* 00:17:59 RSL: stat/tasmota_D9E56D/RESULT = {"Baudrate":9600}
*
* 00:25:32 CMD: SerialSend5 aa 55 01 04 00 0a 01 22 ffffffffffffffff 29
* 00:25:32 RSL: stat/tasmota_D9E56D/RESULT = {"SerialSend":"Done"}
*
* 00:26:35 CMD: SerialSend5 aa 55 01 04 00 0a 01 22 ffffffffffffffff 2a
* 00:26:35 RSL: stat/tasmota_D9E56D/RESULT = {"SerialSend":"Done"}
* 00:26:35 RSL: tele/tasmota_D9E56D/RESULT = {"SerialReceived":AA 55 01 04 00 00 05}
*
* 00:28:58 CMD: SerialSend5 aa 55 01 04 00 0a 01 01 ffffffffffffffff 09
* 00:28:58 RSL: stat/tasmota_D9E56D/RESULT = {"SerialSend":"Done"}
* 00:28:58 RSL: tele/tasmota_D9E56D/RESULT = {"SerialReceived":AA 55 01 04 00 00 05}
*
* 00:29:12 RSL: tele/tasmota_D9E56D/RESULT = {"SerialReceived":AA 55 01 04 00 0A 01 3C FF FF FF FF FF FF FF FF 44}
* 00:29:43 RSL: tele/tasmota_D9E56D/RESULT = {"SerialReceived":AA 55 01 04 00 0A 01 01 FF FF FF FF FF FF FF FF 09}
* 00:29:53 RSL: tele/tasmota_D9E56D/RESULT = {"SerialReceived":AA 55 01 04 00 0A 01 64 FF FF FF FF FF FF FF FF 6C}
*
* 00:30:02 RSL: tele/tasmota_D9E56D/RESULT = {"SerialReceived":AA 55 01 04 00 0A FF 1E FF FF FF FF FF FF FF FF 24}
\*********************************************************************************************/
#define XDRV_37 37
struct SONOFFD1 {
uint8_t receive_flag = 0;
uint8_t dimmer;
uint8_t receive_len = 0;
uint8_t power = 255; // Not initialized
uint8_t dimmer = 255; // Not initialized
} SnfD1;
/********************************************************************************************/
void SonoffD1Received(void)
{
char svalue[32];
if (serial_in_byte_counter < 8) { return; } // Received ack from Rf chip (aa 55 01 04 00 00 05)
uint8_t action = serial_in_buffer[6] & 1;
if (action != SnfD1.power) {
SnfD1.power = action;
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SD1: Remote power (%d, %d)"), SnfD1.power, SnfD1.dimmer);
ExecuteCommandPower(1, action, SRC_SWITCH);
}
uint8_t action = serial_in_buffer[6];
uint8_t dimmer = serial_in_buffer[7];
if (action < 2) {
// AA 55 01 04 00 0A 01 64 FF FF FF FF FF FF FF FF 6C - Power On, Dimmer 100%
// AA 55 01 04 00 0A 00 64 FF FF FF FF FF FF FF FF 6B - Power Off, Dimmer 100%
bool is_switch_change = (action != power);
if (is_switch_change) {
ExecuteCommandPower(1, action, SRC_SWITCH);
}
}
else if (0xFF == action) {
if (dimmer != SnfD1.dimmer) {
SnfD1.dimmer = dimmer;
bool is_brightness_change = SnfD1.dimmer != Settings.light_dimmer;
if (power && (SnfD1.dimmer > 0) && is_brightness_change) {
char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_DIMMER " %d"), SnfD1.dimmer);
ExecuteCommand(scmnd, SRC_SWITCH);
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SD1: Remote dimmer (%d, %d)"), SnfD1.power, SnfD1.dimmer);
char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_DIMMER " %d"), SnfD1.dimmer);
ExecuteCommand(scmnd, SRC_SWITCH);
}
/*
// Send Acknowledge - Copy first 5 bytes, reset byte 6 and store crc in byte 7
// AA 55 01 04 00 00 05
serial_in_buffer[5] = 0; // Ack
@ -114,41 +74,38 @@ void SonoffD1Received(void)
if ((i > 1) && (i < 6)) { serial_in_buffer[6] += serial_in_buffer[i]; }
Serial.write(serial_in_buffer[i]);
}
*/
}
bool SonoffD1SerialInput(void)
{
uint8_t packet_length = 0;
if (0xAA == serial_in_byte) { // 0xAA - Start of text
serial_in_byte_counter = 0;
SnfD1.receive_flag = true;
SnfD1.receive_len = 7;
}
if (SnfD1.receive_flag) {
if (SnfD1.receive_len) {
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
if (serial_in_byte_counter == 6) {
packet_length = 7 + serial_in_byte; // 8 or 17
if (6 == serial_in_byte_counter) {
SnfD1.receive_len += serial_in_byte; // 8 or 17
}
if (serial_in_byte_counter == packet_length) {
if (serial_in_byte_counter == SnfD1.receive_len) {
// Sonoff D1 codes
// AA 55 01 04 00 0A 01 64 FF FF FF FF FF FF FF FF 6C - Power On, Dimmer 100%
// AA 55 01 04 00 0A 00 64 FF FF FF FF FF FF FF FF 6B - Power Off, Dimmer 100%
// AA 55 01 04 00 0A FF 01 FF FF FF FF FF FF FF FF 07 - Power ignore, Dimmer 1%
// AB 55 FD F7 FF FF F5 01 FF FF FF FF FF FF FF FF 09 - Response 2
// AA 55 01 04 00 0A FF 06 FF FF FF FF FF FF FF FF 0C - Power ignore, Dimmer 6%
// AB 55 FD F7 FF FF F5 06 FF FF FF FF FF FF FF FF 0E - Response 2
// AA 55 01 04 00 0A FF 64 FF FF FF FF FF FF FF FF 6A - Power ignore, Dimmer 100%
// AB 55 FD F7 FF FF F5 64 FF FF FF FF FF FF FF FF 6C - Response 2
// aa 55 01 04 00 0a 01 01 ff ff ff ff ff ff ff ff 09 - Power On, Dimmer 1%
// aa 55 01 04 00 0a 01 28 ff ff ff ff ff ff ff ff 30 - Power On, Dimmer 40%
// aa 55 01 04 00 0a 01 3c ff ff ff ff ff ff ff ff 44 - Power On, Dimmer 60%
// aa 55 01 04 00 0a 01 64 ff ff ff ff ff ff ff ff 6c - Power On, Dimmer 100%
// aa 55 01 04 00 0a 00 64 ff ff ff ff ff ff ff ff 6b - Power Off (with last dimmer 100%)
// aa 55 01 04 00 0a 01 64 ff ff ff ff ff ff ff ff 6c - Power On (with last dimmer 100%)
AddLogSerial(LOG_LEVEL_DEBUG);
uint8_t crc = 0;
for (uint32_t i = 2; i < packet_length -1; i++) {
for (uint32_t i = 2; i < SnfD1.receive_len -1; i++) {
crc += serial_in_buffer[i];
}
if (crc == serial_in_buffer[packet_length -1]) {
if (crc == serial_in_buffer[SnfD1.receive_len -1]) {
SonoffD1Received();
SnfD1.receive_flag = false;
SnfD1.receive_len = 0;
return true;
}
}
@ -159,13 +116,13 @@ bool SonoffD1SerialInput(void)
/********************************************************************************************/
void SonoffD1Send(uint8_t lpower, uint8_t dimmer)
void SonoffD1Send()
{
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
uint8_t buffer[17] = { 0xAA,0x55,0x01,0x04,0x00,0x0A,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00 };
buffer[6] = lpower;
buffer[7] = dimmer;
buffer[6] = SnfD1.power;
buffer[7] = SnfD1.dimmer;
for (uint32_t i = 0; i < sizeof(buffer); i++) {
if ((i > 1) && (i < sizeof(buffer) -1)) { buffer[16] += buffer[i]; }
@ -175,17 +132,29 @@ void SonoffD1Send(uint8_t lpower, uint8_t dimmer)
bool SonoffD1SendPower(void)
{
SonoffD1Send(XdrvMailbox.index &1, 0xFF);
uint8_t action = XdrvMailbox.index &1;
if (action != SnfD1.power) {
SnfD1.power = action;
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SD1: Tasmota power (%d, %d)"), SnfD1.power, SnfD1.dimmer);
SonoffD1Send();
}
return true;
}
bool SonoffD1SendDimmer(void)
{
uint8_t dimmer = changeUIntScale(((uint16_t *)XdrvMailbox.data)[0], 0, 255, 0, 100);
uint8_t dimmer = LightGetDimmer(1);
dimmer = (dimmer < Settings.dimmer_hw_min) ? Settings.dimmer_hw_min : dimmer;
dimmer = (dimmer > Settings.dimmer_hw_max) ? Settings.dimmer_hw_max : dimmer;
if (dimmer != SnfD1.dimmer) {
SnfD1.dimmer = dimmer;
SonoffD1Send(0xFF, dimmer);
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SD1: Tasmota dimmer (%d, %d)"), SnfD1.power, SnfD1.dimmer);
SonoffD1Send();
}
return true;
}

View File

@ -1,307 +0,0 @@
/*
xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT_OLD
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
* Source: Adafruit Industries https://github.com/adafruit/DHT-sensor-library
\*********************************************************************************************/
#define XSNS_06 6
#define DHT_MAX_SENSORS 4
#define DHT_MAX_RETRY 8
uint32_t dht_max_cycles;
uint8_t dht_data[5];
uint8_t dht_sensors = 0;
uint8_t dht_pin_out = 0; // Shelly GPIO00 output only
bool dht_active = true; // DHT configured
bool dht_dual_mode = false; // Single pin mode
struct DHTSTRUCT {
uint8_t pin;
uint8_t type;
char stype[12];
uint32_t lastreadtime;
uint8_t lastresult;
float t = NAN;
float h = NAN;
} Dht[DHT_MAX_SENSORS];
void DhtReadPrep(void)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
if (!dht_dual_mode) {
digitalWrite(Dht[i].pin, HIGH);
} else {
digitalWrite(dht_pin_out, HIGH);
}
}
}
int32_t DhtExpectPulse(uint8_t sensor, bool level)
{
int32_t count = 0;
while (digitalRead(Dht[sensor].pin) == level) {
if (count++ >= (int32_t)dht_max_cycles) {
return -1; // Timeout
}
}
return count;
}
bool DhtRead(uint8_t sensor)
{
int32_t cycles[80];
uint8_t error = 0;
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
// digitalWrite(Dht[sensor].pin, HIGH);
// delay(250);
if (Dht[sensor].lastresult > DHT_MAX_RETRY) {
Dht[sensor].lastresult = 0;
if (!dht_dual_mode) {
digitalWrite(Dht[sensor].pin, HIGH); // Retry read prep
} else {
digitalWrite(dht_pin_out, HIGH);
}
delay(250);
}
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, OUTPUT);
digitalWrite(Dht[sensor].pin, LOW);
} else {
digitalWrite(dht_pin_out, LOW);
}
if (GPIO_SI7021 == Dht[sensor].type) {
delayMicroseconds(500);
} else {
delay(20);
}
noInterrupts();
if (!dht_dual_mode) {
digitalWrite(Dht[sensor].pin, HIGH);
delayMicroseconds(40);
pinMode(Dht[sensor].pin, INPUT_PULLUP);
} else {
digitalWrite(dht_pin_out, HIGH);
delayMicroseconds(40);
}
delayMicroseconds(10);
if (-1 == DhtExpectPulse(sensor, LOW)) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE));
error = 1;
}
else if (-1 == DhtExpectPulse(sensor, HIGH)) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_HIGH " " D_PULSE));
error = 1;
}
else {
for (uint32_t i = 0; i < 80; i += 2) {
cycles[i] = DhtExpectPulse(sensor, LOW);
cycles[i+1] = DhtExpectPulse(sensor, HIGH);
}
}
interrupts();
if (error) { return false; }
for (uint32_t i = 0; i < 40; ++i) {
int32_t lowCycles = cycles[2*i];
int32_t highCycles = cycles[2*i+1];
if ((-1 == lowCycles) || (-1 == highCycles)) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_PULSE));
return false;
}
dht_data[i/8] <<= 1;
if (highCycles > lowCycles) {
dht_data[i / 8] |= 1;
}
}
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
if (dht_data[4] != checksum) {
char hex_char[15];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"),
ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum);
return false;
}
return true;
}
void DhtReadTempHum(uint8_t sensor)
{
if ((NAN == Dht[sensor].h) || (Dht[sensor].lastresult > DHT_MAX_RETRY)) { // Reset after 8 misses
Dht[sensor].t = NAN;
Dht[sensor].h = NAN;
}
if (DhtRead(sensor)) {
switch (Dht[sensor].type) {
case GPIO_DHT11:
Dht[sensor].h = dht_data[0];
Dht[sensor].t = dht_data[2] + ((float)dht_data[3] * 0.1f); // Issue #3164
break;
case GPIO_DHT22:
case GPIO_SI7021:
Dht[sensor].h = ((dht_data[0] << 8) | dht_data[1]) * 0.1;
Dht[sensor].t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1;
if (dht_data[2] & 0x80) {
Dht[sensor].t *= -1;
}
break;
}
Dht[sensor].t = ConvertTemp(Dht[sensor].t);
Dht[sensor].h = ConvertHumidity(Dht[sensor].h);
Dht[sensor].lastresult = 0;
} else {
Dht[sensor].lastresult++;
}
}
/********************************************************************************************/
bool DhtPinState()
{
if ((XdrvMailbox.index >= GPIO_DHT11) && (XdrvMailbox.index <= GPIO_SI7021)) {
if (dht_sensors < DHT_MAX_SENSORS) {
Dht[dht_sensors].pin = XdrvMailbox.payload;
Dht[dht_sensors].type = XdrvMailbox.index;
dht_sensors++;
XdrvMailbox.index = GPIO_DHT11;
} else {
XdrvMailbox.index = 0;
}
return true;
}
return false;
}
void DhtInit(void)
{
if (dht_sensors) {
dht_max_cycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for reading pulses from DHT sensor.
if (pin[GPIO_DHT11_OUT] < 99) {
dht_pin_out = pin[GPIO_DHT11_OUT];
dht_dual_mode = true; // Dual pins mode as used by Shelly
dht_sensors = 1; // We only support one sensor in pseudo mode
pinMode(dht_pin_out, OUTPUT);
}
for (uint32_t i = 0; i < dht_sensors; i++) {
pinMode(Dht[i].pin, INPUT_PULLUP);
Dht[i].lastreadtime = 0;
Dht[i].lastresult = 0;
GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames);
if (dht_sensors > 1) {
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}
}
void DhtEverySecond(void)
{
if (uptime &1) {
// <1mS
DhtReadPrep();
} else {
for (uint32_t i = 0; i < dht_sensors; i++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
DhtReadTempHum(i);
}
}
}
void DhtShow(bool json)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
char temperature[33];
dtostrfd(Dht[i].t, Settings.flag2.temperature_resolution, temperature);
char humidity[33];
dtostrfd(Dht[i].h, Settings.flag2.humidity_resolution, humidity);
if (json) {
ResponseAppend_P(JSON_SNS_TEMPHUM, Dht[i].stype, temperature, humidity);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzTempHumSensor(temperature, humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == tele_period) && (0 == i)) {
KnxSensor(KNX_TEMPERATURE, Dht[i].t);
KnxSensor(KNX_HUMIDITY, Dht[i].h);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, Dht[i].stype, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, humidity);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns06(uint8_t function)
{
bool result = false;
if (dht_active) {
switch (function) {
case FUNC_EVERY_SECOND:
DhtEverySecond();
break;
case FUNC_JSON_APPEND:
DhtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
DhtShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
DhtInit();
break;
case FUNC_PIN_STATE:
result = DhtPinState();
break;
}
}
return result;
}
#endif // USE_DHT

View File

@ -1,358 +0,0 @@
/*
xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT_V2
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
* Source: Adafruit Industries https://github.com/adafruit/DHT-sensor-library
\*********************************************************************************************/
#define XSNS_06 6
#define DHT_MAX_SENSORS 4
#define DHT_MAX_RETRY 8
uint32_t dht_max_cycles;
uint8_t dht_data[5];
uint8_t dht_sensors = 0;
uint8_t dht_pin_out = 0; // Shelly GPIO00 output only
bool dht_active = true; // DHT configured
bool dht_dual_mode = false; // Single pin mode
struct DHTSTRUCT {
uint8_t pin;
uint8_t type;
char stype[12];
uint32_t lastreadtime;
uint8_t lastresult;
float t = NAN;
float h = NAN;
} Dht[DHT_MAX_SENSORS];
void DhtReadPrep(void)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
if (!dht_dual_mode) {
digitalWrite(Dht[i].pin, HIGH);
} else {
digitalWrite(dht_pin_out, HIGH);
}
}
}
int32_t DhtExpectPulse(uint8_t sensor, bool level)
{
int32_t count = 0;
while (digitalRead(Dht[sensor].pin) == level) {
if (count++ >= (int32_t)dht_max_cycles) {
return -1; // Timeout
}
}
return count;
}
bool DhtRead(uint8_t sensor)
{
int32_t cycles[80];
uint8_t error = 0;
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
if (Dht[sensor].lastresult > DHT_MAX_RETRY) {
Dht[sensor].lastresult = 0;
if (!dht_dual_mode) {
digitalWrite(Dht[sensor].pin, HIGH); // Retry read prep
} else {
digitalWrite(dht_pin_out, HIGH);
}
delay(250);
}
// Activate sensor using its protocol
noInterrupts();
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, OUTPUT);
digitalWrite(Dht[sensor].pin, LOW);
} else {
digitalWrite(dht_pin_out, LOW);
}
switch (Dht[sensor].type) {
case GPIO_SI7021: // Start protocol for iTead SI7021
/*
Protocol:
Reverse-engineered on https://github.com/arendst/Tasmota/issues/735#issuecomment-348718383:
1. MCU PULLS LOW data bus for at 500us to activate sensor
2. MCU PULLS UP data bus for ~40us to ask sensor for response
3. SENSOR starts sending data (LOW 40us then HIGH ~25us for "0" or ~75us for "1")
4. SENSOR sends "1" start bit as a response
5. SENSOR sends 16 bits (2 bytes) of a humidity with one decimal (i.e. 35.6% is sent as 356)
6. SENSOR sends 16 bits (2 bytes) of a temperature with one decimal (i.e. 23.4C is sent as 234)
7. SENSOR sends 8 bits (1 byte) checksum of 4 data bytes
*/
// digitalWrite(Dht[sensor].pin, LOW);
delayMicroseconds(500);
if (!dht_dual_mode) {
digitalWrite(Dht[sensor].pin, HIGH);
} else {
digitalWrite(dht_pin_out, HIGH);
}
delayMicroseconds(40);
break;
case GPIO_DHT22: // Start protocol for DHT21, DHT22, AM2301, AM2302, AM2321
/*
Protocol:
1. MCU PULLS LOW data bus for 1 to 10ms to activate sensor
2. MCU PULLS UP data bus for 20-40us to ask sensor for response
3. SENSOR PULLS LOW data bus for 80us as a response
4. SENSOR PULLS UP data bus for 80us for data sending preparation
5. SENSOR starts sending data (LOW 50us then HIGH 26-28us for "0" or 70us for "1")
*/
// digitalWrite(Dht[sensor].pin, LOW);
delayMicroseconds(1100); // data sheet says "at least 1ms to 10ms"
if (!dht_dual_mode) {
digitalWrite(Dht[sensor].pin, HIGH);
} else {
digitalWrite(dht_pin_out, HIGH);
}
delayMicroseconds(30); // data sheet says "20 to 40us"
break;
case GPIO_DHT11: // Start protocol for DHT11
/*
Protocol:
1. MCU PULLS LOW data bus for at least 18ms to activate sensor
2. MCU PULLS UP data bus for 20-40us to ask sensor for response
3. SENSOR PULLS LOW data bus for 80us as a response
4. SENSOR PULLS UP data bus for 80us for data sending preparation
5. SENSOR starts sending data (LOW 50us then HIGH 26-28us for "0" or 70 us for "1")
*/
default:
// digitalWrite(Dht[sensor].pin, LOW);
delay(20); // data sheet says at least 18ms, 20ms just to be safe
if (!dht_dual_mode) {
digitalWrite(Dht[sensor].pin, HIGH);
} else {
digitalWrite(dht_pin_out, HIGH);
}
delayMicroseconds(30); // data sheet says "20 to 40us"
break;
}
// Listen to the sensor response
pinMode(Dht[sensor].pin, INPUT_PULLUP);
if (-1 == DhtExpectPulse(sensor, LOW)) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE));
error = 1;
}
else if (-1 == DhtExpectPulse(sensor, HIGH)) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_HIGH " " D_PULSE));
error = 1;
}
else {
for (uint32_t i = 0; i < 80; i += 2) {
cycles[i] = DhtExpectPulse(sensor, LOW);
cycles[i+1] = DhtExpectPulse(sensor, HIGH);
}
}
interrupts();
if (error) { return false; }
// Decode response
for (uint32_t i = 0; i < 40; ++i) {
int32_t lowCycles = cycles[2*i];
int32_t highCycles = cycles[2*i+1];
if ((-1 == lowCycles) || (-1 == highCycles)) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_PULSE));
return false;
}
dht_data[i/8] <<= 1;
if (highCycles > lowCycles) {
dht_data[i / 8] |= 1;
}
}
// Check response
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
if (dht_data[4] != checksum) {
char hex_char[15];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"),
ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum);
return false;
}
return true;
}
void DhtReadTempHum(uint8_t sensor)
{
if ((NAN == Dht[sensor].h) || (Dht[sensor].lastresult > DHT_MAX_RETRY)) { // Reset after 8 misses
Dht[sensor].t = NAN;
Dht[sensor].h = NAN;
}
if (DhtRead(sensor)) {
switch (Dht[sensor].type) {
case GPIO_DHT11:
Dht[sensor].h = dht_data[0];
Dht[sensor].t = dht_data[2] + ((float)dht_data[3] * 0.1f); // Issue #3164
break;
case GPIO_DHT22:
case GPIO_SI7021:
Dht[sensor].h = ((dht_data[0] << 8) | dht_data[1]) * 0.1;
Dht[sensor].t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1;
if (dht_data[2] & 0x80) {
Dht[sensor].t *= -1;
}
break;
}
Dht[sensor].t = ConvertTemp(Dht[sensor].t);
Dht[sensor].h = ConvertHumidity(Dht[sensor].h);
Dht[sensor].lastresult = 0;
} else {
Dht[sensor].lastresult++;
}
}
/********************************************************************************************/
bool DhtPinState()
{
if ((XdrvMailbox.index >= GPIO_DHT11) && (XdrvMailbox.index <= GPIO_SI7021)) {
if (dht_sensors < DHT_MAX_SENSORS) {
Dht[dht_sensors].pin = XdrvMailbox.payload;
Dht[dht_sensors].type = XdrvMailbox.index;
dht_sensors++;
XdrvMailbox.index = GPIO_DHT11;
} else {
XdrvMailbox.index = 0;
}
return true;
}
return false;
}
void DhtInit(void)
{
if (dht_sensors) {
dht_max_cycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for reading pulses from DHT sensor.
if (pin[GPIO_DHT11_OUT] < 99) {
dht_pin_out = pin[GPIO_DHT11_OUT];
dht_dual_mode = true; // Dual pins mode as used by Shelly
dht_sensors = 1; // We only support one sensor in pseudo mode
pinMode(dht_pin_out, OUTPUT);
}
for (uint32_t i = 0; i < dht_sensors; i++) {
pinMode(Dht[i].pin, INPUT_PULLUP);
Dht[i].lastreadtime = 0;
Dht[i].lastresult = 0;
GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames);
if (dht_sensors > 1) {
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v2) " D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}
}
void DhtEverySecond(void)
{
if (uptime &1) {
// <1mS
DhtReadPrep();
} else {
for (uint32_t i = 0; i < dht_sensors; i++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
DhtReadTempHum(i);
}
}
}
void DhtShow(bool json)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
char temperature[33];
dtostrfd(Dht[i].t, Settings.flag2.temperature_resolution, temperature);
char humidity[33];
dtostrfd(Dht[i].h, Settings.flag2.humidity_resolution, humidity);
if (json) {
ResponseAppend_P(JSON_SNS_TEMPHUM, Dht[i].stype, temperature, humidity);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzTempHumSensor(temperature, humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == tele_period) && (0 == i)) {
KnxSensor(KNX_TEMPERATURE, Dht[i].t);
KnxSensor(KNX_HUMIDITY, Dht[i].h);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, Dht[i].stype, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, humidity);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns06(uint8_t function)
{
bool result = false;
if (dht_active) {
switch (function) {
case FUNC_EVERY_SECOND:
DhtEverySecond();
break;
case FUNC_JSON_APPEND:
DhtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
DhtShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
DhtInit();
break;
case FUNC_PIN_STATE:
result = DhtPinState();
break;
}
}
return result;
}
#endif // USE_DHT

View File

@ -1,304 +0,0 @@
/*
xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT_V3
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
*
* This version is based on ESPEasy _P005_DHT.ino 20191201
\*********************************************************************************************/
#define XSNS_06 6
#define DHT_MAX_SENSORS 4
#define DHT_MAX_RETRY 8
uint8_t dht_data[5];
uint8_t dht_sensors = 0;
uint8_t dht_pin_out = 0; // Shelly GPIO00 output only
bool dht_active = true; // DHT configured
bool dht_dual_mode = false; // Single pin mode
struct DHTSTRUCT {
uint8_t pin;
uint8_t type;
char stype[12];
uint32_t lastreadtime;
uint8_t lastresult;
float t = NAN;
float h = NAN;
} Dht[DHT_MAX_SENSORS];
bool DhtExpectPulse(uint8_t sensor, int level)
{
unsigned long timeout = micros() + 100;
while (digitalRead(Dht[sensor].pin) != level) {
if (micros() > timeout) { return false; }
delayMicroseconds(1);
}
return true;
}
int DhtReadDat(uint8_t sensor)
{
uint8_t result = 0;
for (uint32_t i = 0; i < 8; i++) {
if (!DhtExpectPulse(sensor, HIGH)) { return -1; }
delayMicroseconds(35); // was 30
if (digitalRead(Dht[sensor].pin)) {
result |= (1 << (7 - i));
}
if (!DhtExpectPulse(sensor, LOW)) { return -1; }
}
return result;
}
bool DhtRead(uint8_t sensor)
{
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, OUTPUT);
digitalWrite(Dht[sensor].pin, LOW);
} else {
digitalWrite(dht_pin_out, LOW);
}
switch (Dht[sensor].type) {
case GPIO_DHT11:
delay(19); // minimum 18ms
break;
case GPIO_DHT22:
delay(2); // minimum 1ms
break;
case GPIO_SI7021:
delayMicroseconds(500);
break;
}
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, INPUT_PULLUP);
} else {
digitalWrite(dht_pin_out, HIGH);
}
switch (Dht[sensor].type) {
case GPIO_DHT11:
case GPIO_DHT22:
delayMicroseconds(50);
break;
case GPIO_SI7021:
// See: https://github.com/letscontrolit/ESPEasy/issues/1798
delayMicroseconds(20);
break;
}
noInterrupts();
if (!DhtExpectPulse(sensor, LOW)) {
interrupts();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE));
return false;
}
if (!DhtExpectPulse(sensor, HIGH)) {
interrupts();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_HIGH " " D_PULSE));
return false;
}
if (!DhtExpectPulse(sensor, LOW)) {
interrupts();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE));
return false;
}
int data = 0;
for (uint32_t i = 0; i < 5; i++) {
data = DhtReadDat(sensor);
if (-1 == data) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_PULSE));
break;
}
dht_data[i] = data;
}
interrupts();
if (-1 == data) { return false; }
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
if (dht_data[4] != checksum) {
char hex_char[15];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"),
ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum);
return false;
}
return true;
}
void DhtReadTempHum(uint8_t sensor)
{
if ((NAN == Dht[sensor].h) || (Dht[sensor].lastresult > DHT_MAX_RETRY)) { // Reset after 8 misses
Dht[sensor].t = NAN;
Dht[sensor].h = NAN;
}
if (DhtRead(sensor)) {
switch (Dht[sensor].type) {
case GPIO_DHT11:
Dht[sensor].h = dht_data[0];
Dht[sensor].t = dht_data[2] + ((float)dht_data[3] * 0.1f); // Issue #3164
break;
case GPIO_DHT22:
case GPIO_SI7021:
Dht[sensor].h = ((dht_data[0] << 8) | dht_data[1]) * 0.1;
Dht[sensor].t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1;
if (dht_data[2] & 0x80) {
Dht[sensor].t *= -1;
}
break;
}
Dht[sensor].t = ConvertTemp(Dht[sensor].t);
Dht[sensor].h = ConvertHumidity(Dht[sensor].h);
Dht[sensor].lastresult = 0;
} else {
Dht[sensor].lastresult++;
}
}
/********************************************************************************************/
bool DhtPinState()
{
if ((XdrvMailbox.index >= GPIO_DHT11) && (XdrvMailbox.index <= GPIO_SI7021)) {
if (dht_sensors < DHT_MAX_SENSORS) {
Dht[dht_sensors].pin = XdrvMailbox.payload;
Dht[dht_sensors].type = XdrvMailbox.index;
dht_sensors++;
XdrvMailbox.index = GPIO_DHT11;
} else {
XdrvMailbox.index = 0;
}
return true;
}
return false;
}
void DhtInit(void)
{
if (dht_sensors) {
if (pin[GPIO_DHT11_OUT] < 99) {
dht_pin_out = pin[GPIO_DHT11_OUT];
dht_dual_mode = true; // Dual pins mode as used by Shelly
dht_sensors = 1; // We only support one sensor in pseudo mode
pinMode(dht_pin_out, OUTPUT);
}
for (uint32_t i = 0; i < dht_sensors; i++) {
pinMode(Dht[i].pin, INPUT_PULLUP);
Dht[i].lastreadtime = 0;
Dht[i].lastresult = 0;
GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames);
if (dht_sensors > 1) {
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v3) " D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}
}
void DhtEverySecond(void)
{
if (uptime &1) {
// <1mS
// DhtReadPrep();
} else {
for (uint32_t i = 0; i < dht_sensors; i++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
DhtReadTempHum(i);
}
}
}
void DhtShow(bool json)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
char temperature[33];
dtostrfd(Dht[i].t, Settings.flag2.temperature_resolution, temperature);
char humidity[33];
dtostrfd(Dht[i].h, Settings.flag2.humidity_resolution, humidity);
if (json) {
ResponseAppend_P(JSON_SNS_TEMPHUM, Dht[i].stype, temperature, humidity);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzTempHumSensor(temperature, humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == tele_period) && (0 == i)) {
KnxSensor(KNX_TEMPERATURE, Dht[i].t);
KnxSensor(KNX_HUMIDITY, Dht[i].h);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, Dht[i].stype, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, humidity);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns06(uint8_t function)
{
bool result = false;
if (dht_active) {
switch (function) {
case FUNC_EVERY_SECOND:
DhtEverySecond();
break;
case FUNC_JSON_APPEND:
DhtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
DhtShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
DhtInit();
break;
case FUNC_PIN_STATE:
result = DhtPinState();
break;
}
}
return result;
}
#endif // USE_DHT

View File

@ -1,293 +0,0 @@
/*
xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT_V4
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
*
* This version is based on ESPEasy _P005_DHT.ino 20191201 and stripped
\*********************************************************************************************/
#define XSNS_06 6
#define DHT_MAX_SENSORS 4
#define DHT_MAX_RETRY 8
uint8_t dht_data[5];
uint8_t dht_sensors = 0;
uint8_t dht_pin_out = 0; // Shelly GPIO00 output only
bool dht_active = true; // DHT configured
bool dht_dual_mode = false; // Single pin mode
struct DHTSTRUCT {
uint8_t pin;
uint8_t type;
char stype[12];
uint32_t lastreadtime;
uint8_t lastresult;
float t = NAN;
float h = NAN;
} Dht[DHT_MAX_SENSORS];
bool DhtExpectPulse(uint32_t sensor, uint32_t level)
{
unsigned long timeout = micros() + 100;
while (digitalRead(Dht[sensor].pin) != level) {
if (micros() > timeout) { return false; }
delayMicroseconds(1);
}
return true;
}
bool DhtRead(uint32_t sensor)
{
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, OUTPUT);
digitalWrite(Dht[sensor].pin, LOW);
} else {
digitalWrite(dht_pin_out, LOW);
}
switch (Dht[sensor].type) {
case GPIO_DHT11: // DHT11
delay(19); // minimum 18ms
break;
case GPIO_DHT22: // DHT21, DHT22, AM2301, AM2302, AM2321
delay(2); // minimum 1ms
break;
case GPIO_SI7021: // iTead SI7021
delayMicroseconds(500);
break;
}
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, INPUT_PULLUP);
} else {
digitalWrite(dht_pin_out, HIGH);
}
switch (Dht[sensor].type) {
case GPIO_DHT11: // DHT11
case GPIO_DHT22: // DHT21, DHT22, AM2301, AM2302, AM2321
delayMicroseconds(50);
break;
case GPIO_SI7021: // iTead SI7021
delayMicroseconds(20); // See: https://github.com/letscontrolit/ESPEasy/issues/1798
break;
}
uint32_t level = 9;
noInterrupts();
for (uint32_t i = 0; i < 3; i++) {
level = i &1;
if (!DhtExpectPulse(sensor, level)) { break; } // Expect LOW, HIGH, LOW
level = 9;
}
if (9 == level) {
int data = 0;
for (uint32_t i = 0; i < 5; i++) {
data = 0;
for (uint32_t j = 0; j < 8; j++) {
level = 1;
if (!DhtExpectPulse(sensor, level)) { break; } // Expect HIGH
delayMicroseconds(35); // Was 30
if (digitalRead(Dht[sensor].pin)) {
data |= (1 << (7 - j));
}
level = 0;
if (!DhtExpectPulse(sensor, level)) { break; } // Expect LOW
level = 9;
}
if (level < 2) { break; }
dht_data[i] = data;
}
}
interrupts();
if (level < 2) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " %s " D_PULSE), (0 == level) ? D_START_SIGNAL_LOW : D_START_SIGNAL_HIGH);
return false;
}
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
if (dht_data[4] != checksum) {
char hex_char[15];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"),
ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum);
return false;
}
return true;
}
void DhtReadTempHum(uint32_t sensor)
{
if ((NAN == Dht[sensor].h) || (Dht[sensor].lastresult > DHT_MAX_RETRY)) { // Reset after 8 misses
Dht[sensor].t = NAN;
Dht[sensor].h = NAN;
}
if (DhtRead(sensor)) {
switch (Dht[sensor].type) {
case GPIO_DHT11:
Dht[sensor].h = dht_data[0];
Dht[sensor].t = dht_data[2] + ((float)dht_data[3] * 0.1f); // Issue #3164
break;
case GPIO_DHT22:
case GPIO_SI7021:
Dht[sensor].h = ((dht_data[0] << 8) | dht_data[1]) * 0.1;
Dht[sensor].t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1;
if (dht_data[2] & 0x80) {
Dht[sensor].t *= -1;
}
break;
}
Dht[sensor].t = ConvertTemp(Dht[sensor].t);
if (Dht[sensor].h > 100) { Dht[sensor].h = 100.0; }
if (Dht[sensor].h < 0) { Dht[sensor].h = 0.0; }
Dht[sensor].h = ConvertHumidity(Dht[sensor].h);
Dht[sensor].lastresult = 0;
} else {
Dht[sensor].lastresult++;
}
}
/********************************************************************************************/
bool DhtPinState()
{
if ((XdrvMailbox.index >= GPIO_DHT11) && (XdrvMailbox.index <= GPIO_SI7021)) {
if (dht_sensors < DHT_MAX_SENSORS) {
Dht[dht_sensors].pin = XdrvMailbox.payload;
Dht[dht_sensors].type = XdrvMailbox.index;
dht_sensors++;
XdrvMailbox.index = GPIO_DHT11;
} else {
XdrvMailbox.index = 0;
}
return true;
}
return false;
}
void DhtInit(void)
{
if (dht_sensors) {
if (pin[GPIO_DHT11_OUT] < 99) {
dht_pin_out = pin[GPIO_DHT11_OUT];
dht_dual_mode = true; // Dual pins mode as used by Shelly
dht_sensors = 1; // We only support one sensor in pseudo mode
pinMode(dht_pin_out, OUTPUT);
}
for (uint32_t i = 0; i < dht_sensors; i++) {
pinMode(Dht[i].pin, INPUT_PULLUP);
Dht[i].lastreadtime = 0;
Dht[i].lastresult = 0;
GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames);
if (dht_sensors > 1) {
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v4) " D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}
}
void DhtEverySecond(void)
{
if (uptime &1) {
} else {
for (uint32_t i = 0; i < dht_sensors; i++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
DhtReadTempHum(i);
}
}
}
void DhtShow(bool json)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
char temperature[33];
dtostrfd(Dht[i].t, Settings.flag2.temperature_resolution, temperature);
char humidity[33];
dtostrfd(Dht[i].h, Settings.flag2.humidity_resolution, humidity);
if (json) {
ResponseAppend_P(JSON_SNS_TEMPHUM, Dht[i].stype, temperature, humidity);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzTempHumSensor(temperature, humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == tele_period) && (0 == i)) {
KnxSensor(KNX_TEMPERATURE, Dht[i].t);
KnxSensor(KNX_HUMIDITY, Dht[i].h);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, Dht[i].stype, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, humidity);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns06(uint8_t function)
{
bool result = false;
if (dht_active) {
switch (function) {
case FUNC_EVERY_SECOND:
DhtEverySecond();
break;
case FUNC_JSON_APPEND:
DhtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
DhtShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
DhtInit();
break;
case FUNC_PIN_STATE:
result = DhtPinState();
break;
}
}
return result;
}
#endif // USE_DHT

View File

@ -21,6 +21,9 @@
Version yyyymmdd Action Description
--------------------------------------------------------------------------------------------
0.9.4.0 20200304 integrate - sensor types can be ignored (default for LYWSD03),
add CGD1 (Alarm clock), correct PDU-types for LYWSD02
---
0.9.3.0 20200222 integrate - use now the correct id-word instead of MAC-OUI,
add CGG1
---
@ -48,7 +51,7 @@
/*********************************************************************************************\
* MINRF
* BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02
* BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02, GCx
*
* Usage: Configure NRF24
\*********************************************************************************************/
@ -62,12 +65,19 @@
#define LYWSD02 3
#define LYWSD03 4
#define CGG1 5
#define CGD1 6
const uint16_t kMINRFSlaveID[5]={ 0x0098, // Flora
/* define sensors to ignore, which can improve performance
pattern: #define IGNORE_sensorname
*/
#define IGNORE_LYWSD03
const uint16_t kMINRFSlaveID[6]={ 0x0098, // Flora
0x01aa, // MJ_HT_V1
0x045b, // LYWSD02
0x055b, // LYWSD03
0x0347 // CGG1
0x0347, // CGG1
0x0576 // CGD1
};
const char kMINRFSlaveType1[] PROGMEM = "Flora";
@ -75,19 +85,21 @@ const char kMINRFSlaveType2[] PROGMEM = "MJ_HT_V1";
const char kMINRFSlaveType3[] PROGMEM = "LYWSD02";
const char kMINRFSlaveType4[] PROGMEM = "LYWSD03";
const char kMINRFSlaveType5[] PROGMEM = "CGG1";
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4,kMINRFSlaveType5};
const char kMINRFSlaveType6[] PROGMEM = "CGD1";
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4,kMINRFSlaveType5,kMINRFSlaveType6};
// PDU's or different channels 37-39
const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46};
const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5};
const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71da7646}; // 1 and 3 unsure
const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71dafb46};
// const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0xffffffff}; //encrypted - 58 58
const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58
const uint32_t kMINRFCGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd};
const uint32_t kMINRFCGGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd};
const uint32_t kMINRFCGDPDU[3] = {0x5da0d752,0xc10c16e7,0x29c497c1};
// start-LSFR for different channels 37-39
const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGG1
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGx
#pragma pack(1) // important!!
@ -196,6 +208,15 @@ union LYWSD02Packet_t { // related to the whole 32-byte-packet/buffer
} TH; // mode 04 or 06
};
union CGDPacket_t { // related to the whole 32-byte-packet/buffer
struct {
uint8_t serial[6];
uint16_t mode;
int16_t temp; // -9 - 59 °C
uint16_t hum;
} TH; // This is no MiBeacon
};
struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24
uint8_t pduType;
uint8_t payloadSize;
@ -254,6 +275,7 @@ union FIFO_t{
floraPacket_t floraPacket;
MJ_HT_V1Packet_t MJ_HT_V1Packet;
LYWSD02Packet_t LYWSD02Packet;
CGDPacket_t CGDPacket;
uint8_t raw[32];
};
@ -266,7 +288,7 @@ struct {
uint16_t timer;
uint8_t currentChan=0;
FIFO_t buffer;
uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - special "flora"-packet, 2 - special "MJ_HT_V1"-packet
uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - 6 "special" sensor packets
#ifdef DEBUG_TASMOTA_SENSOR
uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes
@ -276,10 +298,10 @@ struct {
} MINRF;
struct mi_sensor_t{
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; ; CGG1=5
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; CGG1=5; CGD1=6
uint8_t serial[6];
uint8_t showedUp;
float temp; //Flora, MJ_HT_V1, LYWSD0x
float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx
union {
struct {
float moisture;
@ -289,7 +311,7 @@ struct mi_sensor_t{
struct {
float hum;
uint8_t bat;
}; // MJ_HT_V1, LYWSD0x
}; // MJ_HT_V1, LYWSD0x, CGx
};
};
@ -372,6 +394,9 @@ bool MINRFreceivePacket(void)
case 5:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGG1" mode
break;
case 6:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGD1" mode
break;
}
// DEBUG_SENSOR_LOG(PSTR("MINRF: LSFR:%x"),_lsfr);
// if (_lsfr>254) _lsfr=0;
@ -481,7 +506,10 @@ void MINRFchangePacketModeTo(uint8_t _mode) {
NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 30 -> LYWSD03 (= no data message)
break;
case 5: // special CGG1 packet
NRF24radio.openReadingPipe(0,kMINRFCGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1
NRF24radio.openReadingPipe(0,kMINRFCGGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1
break;
case 6: // special CGD1 packet
NRF24radio.openReadingPipe(0,kMINRFCGDPDU[_nextchannel]); // cd fd 08 0c -> CGD1
break;
}
// DEBUG_SENSOR_LOG(PSTR("MINRF: Change Mode to %u"),_mode);
@ -499,7 +527,7 @@ uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){
DEBUG_SENSOR_LOG(PSTR("MINRF: will test ID-type: %x"), _type);
bool _success = false;
for (uint32_t i=0;i<5;i++){
for (uint32_t i=0;i<6;i++){ // i < sizeof(kMINRFSlaveID) gives compiler warning
if(_type == kMINRFSlaveID[i]){
DEBUG_SENSOR_LOG(PSTR("MINRF: ID is type %u"), i);
_type = i+1;
@ -536,9 +564,9 @@ uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){
_newSensor.fertility =-1000.0f;
_newSensor.lux = 0x00ffffff;
break;
case 2: case 3: case 4:
case 2: case 3: case 4: case 5: case 6:
_newSensor.hum=-1.0f;
_newSensor.bat=0xff;
_newSensor.bat=0x00;
break;
default:
break;
@ -574,7 +602,7 @@ void MINRFhandleFloraPacket(void){
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
float _tempFloat;
switch(MINRF.buffer.floraPacket.L.mode) { // we can use any struct with a mode, they are all same at this point
case 4:
_tempFloat=(float)(MINRF.buffer.floraPacket.T.data)/10.0f;
@ -617,7 +645,7 @@ void MINRFhandleMJ_HT_V1Packet(void){
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
float _tempFloat;
switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 0x0d:
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f;
@ -653,7 +681,7 @@ void MINRFhandleLYWSD02Packet(void){
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
float _tempFloat;
switch(MINRF.buffer.LYWSD02Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 4:
_tempFloat=(float)(MINRF.buffer.LYWSD02Packet.TH.data)/10.0f;
@ -695,7 +723,7 @@ void MINRFhandleCGG1Packet(void){ // we assume, that the packet structure is equ
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
float _tempFloat;
switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 0x0d:
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f;
@ -720,6 +748,31 @@ void MINRFhandleCGG1Packet(void){ // we assume, that the packet structure is equ
}
}
void MINRFhandleCGD1Packet(void){ //
if(MINRF.buffer.CGDPacket.TH.mode!=0x0401){ // not really a mode
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected CGD1-packet"));
MINRF_LOG_BUFFER(MINRF.buffer.raw);
return;
}
MINRFreverseMAC(MINRF.buffer.CGDPacket.TH.serial);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.CGDPacket.TH.serial, 0x0576); // This must be hard-coded, no object-id in Cleargrass-packet
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
float _tempFloat;
_tempFloat=(float)(MINRF.buffer.CGDPacket.TH.temp)/10.0f;
if(_tempFloat<60){
MIBLEsensors.at(_slot).temp = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("CGD1: temp updated"));
}
_tempFloat=(float)(MINRF.buffer.CGDPacket.TH.hum)/10.0f;
if(_tempFloat<100){
MIBLEsensors.at(_slot).hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("CGD1: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("CGD1: U16: %x Temp U16: %x Hum"), MINRF.buffer.CGDPacket.TH.temp, MINRF.buffer.CGDPacket.TH.hum);
}
/*********************************************************************************************\
* Main loop of the driver
\*********************************************************************************************/
@ -769,11 +822,32 @@ void MINRF_EVERY_50_MSECOND() { // Every 50mseconds
else if (MINRF.packetMode == CGG1){
MINRFhandleCGG1Packet();
}
if (MINRF.packetMode == CGG1){
MINRFinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0
else if (MINRF.packetMode == CGD1){
MINRFhandleCGD1Packet();
}
else {
MINRFinitBLE(++MINRF.packetMode);
#ifdef IGNORE_FLORA
if (MINRF.packetMode+1 == FLORA) MINRF.packetMode++;
#endif // IGNORE_LYWSD03
#ifdef IGNORE_MJ_HT_V1
if (MINRF.packetMode+1 == MJ_HT_V1) MINRF.packetMode++;
#endif //IGNORE_MJ_HT_V1
#ifdef IGNORE_LYWSD02
if (MINRF.packetMode+1 == LYWSD02) MINRF.packetMode++;
#endif // IGNORE_LYWSD02
#ifdef IGNORE_LYWSD03
if (MINRF.packetMode+1 == LYWSD03) MINRF.packetMode++;
#endif // IGNORE_LYWSD03
#ifdef IGNORE_CGG1
if (MINRF.packetMode+1 == CGG1) MINRF.packetMode++;
#endif // IGNORE_CGG1
#ifdef IGNORE_CGD1
if (MINRF.packetMode+1 == CGD1) MINRF.packetMode=0;
#endif // IGNORE_CGD1
MINRFinitBLE(++MINRF.packetMode);
if (MINRF.packetMode > CGD1){
MINRFinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0
}
MINRFhopChannel();
@ -828,7 +902,7 @@ void MINRFShow(bool json)
if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity
ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
}
if(MIBLEsensors.at(i).bat!=0xff){ // this is the error code -> no battery
if(MIBLEsensors.at(i).bat!=0x00){ // this is the error code -> no battery
ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors.at(i).bat);
}
}
@ -868,7 +942,7 @@ void MINRFShow(bool json)
dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity);
WSContentSend_PD(HTTP_SNS_HUM, kMINRFSlaveType[MIBLEsensors.at(i).type-1], humidity);
}
if(MIBLEsensors.at(i).bat!=0xff){
if(MIBLEsensors.at(i).bat!=0x00){ // without "juice" nothing can be done
WSContentSend_PD(HTTP_BATTERY, kMINRFSlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).bat);
}
}