diff --git a/tasmota/include/tasmota.h b/tasmota/include/tasmota.h index f3e9bfbde..db4bcec0b 100644 --- a/tasmota/include/tasmota.h +++ b/tasmota/include/tasmota.h @@ -405,7 +405,7 @@ enum XsnsFunctions { FUNC_SETTINGS_OVERRIDE, FUNC_I2C_INIT, FUNC_PRE_INIT, FUNC_ FUNC_COMMAND, FUNC_COMMAND_SENSOR, FUNC_COMMAND_DRIVER, FUNC_RULES_PROCESS, FUNC_SET_CHANNELS, - FUNC_last_function // Insert functions with return results before here + FUNC_last_function // Insert functions WITH return results before here }; enum AddressConfigSteps { ADDR_IDLE, ADDR_RECEIVE, ADDR_SEND }; diff --git a/tasmota/tasmota_support/support_button_v3.ino b/tasmota/tasmota_support/support_button_v3.ino index b12ef5714..92e278ec0 100644 --- a/tasmota/tasmota_support/support_button_v3.ino +++ b/tasmota/tasmota_support/support_button_v3.ino @@ -17,7 +17,7 @@ along with this program. If not, see . */ -#define BUTTON_V3 +//#define BUTTON_V3 #ifdef BUTTON_V3 /*********************************************************************************************\ * Button support with input filter diff --git a/tasmota/tasmota_support/support_button_v4.ino b/tasmota/tasmota_support/support_button_v4.ino new file mode 100644 index 000000000..4de6f9ae5 --- /dev/null +++ b/tasmota/tasmota_support/support_button_v4.ino @@ -0,0 +1,572 @@ +/* + support_button.ino - button support for Tasmota + + Copyright (C) 2022 Federico Leoni and Theo Arends + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#define BUTTON_V4 +#ifdef BUTTON_V4 +/*********************************************************************************************\ + * Button support with input filter + * + * Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c) +\*********************************************************************************************/ + +#define MAX_RELAY_BUTTON1 5 // Max number of relay controlled by BUTTON1 + +const uint8_t BUTTON_PROBE_INTERVAL = 10; // Time in milliseconds between button input probe +const uint8_t BUTTON_FAST_PROBE_INTERVAL = 2; // Time in milliseconds between button input probe for AC detection +const uint8_t BUTTON_AC_PERIOD = (20 + BUTTON_FAST_PROBE_INTERVAL - 1) / BUTTON_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals + +const char kMultiPress[] PROGMEM = "|SINGLE|DOUBLE|TRIPLE|QUAD|PENTA|CLEAR|"; + +#include + +Ticker TickerButton; + +struct BUTTON { + uint32_t debounce = 0; // Button debounce timer + uint32_t no_pullup_mask = 0; // key no pullup flag (1 = no pullup) + uint32_t pulldown_mask = 0; // key pulldown flag (1 = pulldown) + uint32_t inverted_mask = 0; // Key inverted flag (1 = inverted) + uint32_t virtual_pin_used = 0; // Key used bitmask + uint32_t virtual_pin = 0; // Key state bitmask + uint16_t hold_timer[MAX_KEYS] = { 0 }; // Timer for button hold + uint16_t dual_code = 0; // Sonoff dual received code + uint8_t state[MAX_KEYS] = { 0 }; + uint8_t last_state[MAX_KEYS]; // Last button states + uint8_t debounced_state[MAX_KEYS]; // Button debounced states + uint8_t window_timer[MAX_KEYS] = { 0 }; // Max time between button presses to record press count + uint8_t press_counter[MAX_KEYS] = { 0 }; // Number of button presses within Button.window_timer + uint8_t dual_receive_count = 0; // Sonoff dual input flag + uint8_t first_change = 0; + uint8_t present = 0; // Number of buttons found flag + bool probe_mutex; +} Button; + +#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2) +struct TOUCH_BUTTON { + uint32_t touch_mask = 0; // Touch flag (1 = enabled) + uint32_t calibration = 0; // Bitfield + uint8_t hits[MAX_KEYS] = { 0 }; // Hits in a row to filter out noise +} TouchButton; +#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2 + +/********************************************************************************************/ + +void ButtonPullupFlag(uint32_t button_bit) { + bitSet(Button.no_pullup_mask, button_bit); +} + +void ButtonPulldownFlag(uint32_t button_bit) { + bitSet(Button.pulldown_mask, button_bit); +} + +void ButtonInvertFlag(uint32_t button_bit) { + bitSet(Button.inverted_mask, button_bit); +} + +#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2) +void ButtonTouchFlag(uint32_t button_bit) { + bitSet(TouchButton.touch_mask, button_bit); +} +#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2 + + +void ButtonSetVirtualPinState(uint32_t index, uint32_t state) { + if (!Button.probe_mutex) { + bitWrite(Button.virtual_pin, index, state); + } +} + +/*********************************************************************************************/ + +void ButtonProbe(void) { + if (Button.probe_mutex || (TasmotaGlobal.uptime < 4)) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit + Button.probe_mutex = true; + + uint32_t state_filter; + uint32_t first_change = Button.first_change; + uint32_t debounce_flags = Settings->button_debounce % 10; + bool force_high = (debounce_flags &1); // 51, 101, 151 etc + bool force_low = (debounce_flags &2); // 52, 102, 152 etc + bool ac_detect = (debounce_flags == 9); // 39, 49, 59 etc + + if (ac_detect) { + if (Settings->button_debounce < 2 * BUTTON_AC_PERIOD * BUTTON_FAST_PROBE_INTERVAL + 9) { + state_filter = 2 * BUTTON_AC_PERIOD; + } else if (Settings->button_debounce > (0x7f - 2 * BUTTON_AC_PERIOD) * BUTTON_FAST_PROBE_INTERVAL) { + state_filter = 0x7f; + } else { + state_filter = (Settings->button_debounce - 9) / BUTTON_FAST_PROBE_INTERVAL; + } + } else { + state_filter = Settings->button_debounce / BUTTON_PROBE_INTERVAL; // 5, 10, 15 + } + + uint32_t not_activated; + for (uint32_t i = 0; i < MAX_KEYS; i++) { + if (PinUsed(GPIO_KEY1, i)) { +#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2) + if (bitRead(TouchButton.touch_mask, i)) { + if (ac_detect || bitRead(TouchButton.calibration, i +1)) { continue; } // Touch is slow. Takes 21mS to read + uint32_t value = touchRead(Pin(GPIO_KEY1, i)); +#ifdef SOC_TOUCH_VERSION_2 + not_activated = (value < Settings->touch_threshold); // ESPS3 No touch = 24200, Touch > 40000 +#else + not_activated = ((value == 0) || (value > Settings->touch_threshold)); // ESP32 No touch = 74, Touch < 40 +#endif + } else +#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2 + not_activated = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i)); + } + else if (bitRead(Button.virtual_pin_used, i)) { + not_activated = bitRead(Button.virtual_pin, i); + } + else { continue; } + + if (not_activated) { + + if (ac_detect) { // Enabled with ButtonDebounce x9 + Button.state[i] |= 0x80; + if (Button.state[i] > 0x80) { + Button.state[i]--; + if (0x80 == Button.state[i]) { + Button.debounced_state[i] = 0; + Button.first_change = false; + } + } + } else { + + if (force_high) { // Enabled with ButtonDebounce x1 + if (1 == Button.debounced_state[i]) { + Button.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0 + } + } + + if (Button.state[i] < state_filter) { + Button.state[i]++; + if (state_filter == Button.state[i]) { + Button.debounced_state[i] = 1; + } + } + } + } else { + + if (ac_detect) { // Enabled with ButtonDebounce x9 + /* + * Moes MS-104B and similar devices using an AC detection circuitry + * on their switch inputs generating an ~4 ms long low pulse every + * AC wave. We start the time measurement on the falling edge. + * + * state: bit7: previous state, bit6..0: counter + */ + if (Button.state[i] & 0x80) { + Button.state[i] &= 0x7f; + if (Button.state[i] < state_filter - 2 * BUTTON_AC_PERIOD) { + Button.state[i] += 2 * BUTTON_AC_PERIOD; + } else { + Button.state[i] = state_filter; + Button.debounced_state[i] = 1; + if (first_change) { + Button.last_state[i] = 1; + Button.first_change = false; + } + } + } else { + if (Button.state[i] > 0x00) { + Button.state[i]--; + if (0x00 == Button.state[i]) { + Button.debounced_state[i] = 0; + Button.first_change = false; + } + } + } + } else { + + if (force_low) { // Enabled with ButtonDebounce x2 + if (0 == Button.debounced_state[i]) { + Button.state[i] = 0; // With noisy input keep current state 0 unless constant 1 + } + } + + if (Button.state[i] > 0) { + Button.state[i]--; + if (0 == Button.state[i]) { + Button.debounced_state[i] = 0; + } + } + } + } + } + Button.probe_mutex = false; +} + +void ButtonInit(void) { + bool ac_detect = (Settings->button_debounce % 10 == 9); + + Button.present = 0; + Button.virtual_pin_used = 0; + +#ifdef ESP8266 + if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) { + Button.present++; + } +#endif // ESP8266 + + for (uint32_t i = 0; i < MAX_KEYS; i++) { + Button.last_state[i] = NOT_PRESSED; + bool used = false; + + if (PinUsed(GPIO_KEY1, i)) { + Button.present++; +#ifdef ESP8266 + pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP)); +#endif // ESP8266 +#ifdef ESP32 + pinMode(Pin(GPIO_KEY1, i), bitRead(Button.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Button.no_pullup_mask, i) ? INPUT : INPUT_PULLUP); +#endif // ESP32 + // Set global now so doesn't change the saved power state on first button check + Button.last_state[i] = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i)); + used = true; + } +#ifdef USE_ADC + else if (PinUsed(GPIO_ADC_BUTTON, i) || PinUsed(GPIO_ADC_BUTTON_INV, i)) { + Button.present++; + } +#endif // USE_ADC + else { + XdrvMailbox.index = i; + if (XdrvCall(FUNC_ADD_BUTTON)) { + + AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Add button %d"), i); + + bitSet(Button.virtual_pin_used, i); + Button.present++; + Button.last_state[i] = XdrvMailbox.payload; + used = true; + } + } + + if (used && ac_detect) { + Button.state[i] = 0x80 + 2 * BUTTON_AC_PERIOD; + Button.last_state[i] = 0; // Will set later in the debouncing code + } + Button.debounced_state[i] = Button.last_state[i]; + } + if (Button.present) { + Button.first_change = true; + TickerButton.attach_ms((ac_detect) ? BUTTON_FAST_PROBE_INTERVAL : BUTTON_PROBE_INTERVAL, ButtonProbe); + } +} + +uint8_t ButtonSerial(uint8_t serial_in_byte) { + if (Button.dual_receive_count) { + Button.dual_receive_count--; + if (Button.dual_receive_count) { + Button.dual_code = (Button.dual_code << 8) | serial_in_byte; + serial_in_byte = 0; + } else { + if (serial_in_byte != 0xA1) { + Button.dual_code = 0; // 0xA1 - End of Sonoff dual button code + } + } + } + if (0xA0 == serial_in_byte) { // 0xA0 - Start of Sonoff dual button code + serial_in_byte = 0; + Button.dual_code = 0; + Button.dual_receive_count = 3; + } + + return serial_in_byte; +} + +/*********************************************************************************************\ + * Button handler with single press only or multi-press and hold on all buttons + * + * ButtonDebounce (50) - Debounce time in mSec + * SetOption1 (0) - If set do not execute commands WifiConfig and Reset + * SetOption11 (0) - If set perform single press action on double press and reverse (on two relay devices only) + * SetOption13 (0) - If set act on single press only + * SetOption32 (40) - Button held for factor times longer + * SetOption40 (0) - Do not ignore button hold + * SetOption73 (0) - Decouple button from relay and send just mqtt topic +\*********************************************************************************************/ + +void ButtonHandler(void) { + if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit + + uint8_t hold_time_extent = IMMINENT_RESET_FACTOR; // Extent hold time factor in case of iminnent Reset command + uint16_t loops_per_second = 1000 / Settings->button_debounce; // ButtonDebounce (50) + char scmnd[20]; + + for (uint32_t button_index = 0; button_index < MAX_KEYS; button_index++) { + uint8_t button = NOT_PRESSED; + uint8_t button_present = 0; + +#ifdef ESP8266 + if (!button_index && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) { + button_present = 1; + if (Button.dual_code) { + AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Code %04X"), Button.dual_code); + button = PRESSED; + if (0xF500 == Button.dual_code) { // Button hold + Button.hold_timer[button_index] = (loops_per_second * Settings->param[P_HOLD_TIME] / 10) -1; // SetOption32 (40) + hold_time_extent = 1; + } + Button.dual_code = 0; + } + } else +#endif // ESP8266 + if (PinUsed(GPIO_KEY1, button_index)) { + +#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2) + if (bitRead(TouchButton.touch_mask, button_index) && bitRead(TouchButton.calibration, button_index +1)) { // Touch + uint32_t _value = touchRead(Pin(GPIO_KEY1, button_index)); +#ifdef SOC_TOUCH_VERSION_2 + if (_value > Settings->touch_threshold) { // ESPS3 No touch = 24200, Touch = 100000 +#else + if ((_value > 0) && (_value < Settings->touch_threshold)) { // ESP32 No touch = 74, Touch = 20 (Probably read-error (0)) +#endif + TouchButton.hits[button_index]++; + } else { + TouchButton.hits[button_index] = 0; + } + AddLog(LOG_LEVEL_INFO, PSTR("PLOT: %u, %u, %u,"), button_index +1, _value, TouchButton.hits[button_index]); // Button number (1..4), value, continuous hits under threshold + continue; + } else +#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2 + + button_present = 1; + button = Button.debounced_state[button_index]; + } +#ifdef USE_ADC + else if (PinUsed(GPIO_ADC_BUTTON, button_index)) { + button_present = 1; + button = AdcGetButton(Pin(GPIO_ADC_BUTTON, button_index)); + } + else if (PinUsed(GPIO_ADC_BUTTON_INV, button_index)) { + button_present = 1; + button = AdcGetButton(Pin(GPIO_ADC_BUTTON_INV, button_index)); + } +#endif // USE_ADC + else if (bitRead(Button.virtual_pin_used, button_index)) { + button_present = 1; + button = Button.debounced_state[button_index]; + } + + if (button_present) { + XdrvMailbox.index = button_index; + XdrvMailbox.payload = button; + if (XdrvCall(FUNC_BUTTON_PRESSED)) { + // Serviced + } +#ifdef ESP8266 + else if (SONOFF_4CHPRO == TasmotaGlobal.module_type) { + if (Button.hold_timer[button_index]) { Button.hold_timer[button_index]--; } + + bool button_pressed = false; + if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) { + AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 1-0"), button_index +1); + Button.hold_timer[button_index] = loops_per_second; + button_pressed = true; + } + if ((NOT_PRESSED == button) && (PRESSED == Button.last_state[button_index])) { + AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 0-1"), button_index +1); + if (!Button.hold_timer[button_index]) { button_pressed = true; } // Do not allow within 1 second + } + if (button_pressed) { + if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic + if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set + ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally + } + } else { + MqttButtonTopic(button_index +1, 1, 0); // SetOption73 (0) - Decouple button from relay and send just mqtt topic + } + } + } +#endif // ESP8266 + else { + if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) { + + if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action, + if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic + AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d immediate"), button_index +1); + if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set + ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally + } + } else { + MqttButtonTopic(button_index +1, 1, 0); // SetOption73 1 - Decouple button from relay and send just mqtt topic + } + } else { + Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1; + AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d multi-press %d"), button_index +1, Button.press_counter[button_index]); + Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window + } + TasmotaGlobal.blinks = 201; + } + + if (NOT_PRESSED == button) { + Button.hold_timer[button_index] = 0; + if (Settings->flag3.mqtt_buttons && (PRESSED == Button.last_state[button_index]) && !Button.press_counter[button_index]) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic + MqttButtonTopic(button_index +1, 6, 0); + } + } else { + Button.hold_timer[button_index]++; + if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action + if (Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button held for factor times longer + snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_SETOPTION "13 0")); // Disable single press only + ExecuteCommand(scmnd, SRC_BUTTON); + } + } else { + if (Button.hold_timer[button_index] == loops_per_second * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button hold + Button.press_counter[button_index] = 0; + if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic + MqttButtonTopic(button_index +1, 3, 1); + } else { + SendKey(KEY_BUTTON, button_index +1, POWER_HOLD); // Execute Hold command via MQTT if ButtonTopic is set + } + } else { + if (Settings->flag.button_restrict) { // SetOption1 (0) - Control button multipress + if (Settings->param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold + if (Button.hold_timer[button_index] > loops_per_second * Settings->param[P_HOLD_IGNORE] / 10) { + Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger + Button.press_counter[button_index] = 0; // Discard button press to disable functionality + } + } + } else { + if ((Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer + Button.press_counter[button_index] = 0; + snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1")); + ExecuteCommand(scmnd, SRC_BUTTON); + } + } + } + } + } + + if (!Settings->flag.button_single) { // SetOption13 (0) - Allow multi-press + if (Button.window_timer[button_index]) { + Button.window_timer[button_index]--; + } else { + if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0) && (Button.press_counter[button_index] < 7)) { + + bool single_press = false; + if (Button.press_counter[button_index] < 3) { // Single or Double press +#ifdef ESP8266 + if ((SONOFF_DUAL_R2 == TasmotaGlobal.module_type) || (SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) { + single_press = true; + } else +#endif // ESP8266 + { + single_press = (Settings->flag.button_swap +1 == Button.press_counter[button_index]); // SetOption11 (0) + if ((1 == Button.present) && (2 == TasmotaGlobal.devices_present)) { // Single Button with two devices only + if (Settings->flag.button_swap) { // SetOption11 (0) + Button.press_counter[button_index] = (single_press) ? 1 : 2; + } + } + } + } + + XdrvMailbox.index = button_index; + XdrvMailbox.payload = Button.press_counter[button_index]; + if (XdrvCall(FUNC_BUTTON_MULTI_PRESSED)) { + // Serviced + } else + +#ifdef ROTARY_V1 + if (!RotaryButtonPressed(button_index)) { +#endif + if (!Settings->flag3.mqtt_buttons && single_press && SendKey(KEY_BUTTON, button_index + Button.press_counter[button_index], POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set + // Success + } else { + if (Button.press_counter[button_index] < 6) { // Single to Penta press +// if (WifiState() > WIFI_RESTART) { // Wifimanager active +// TasmotaGlobal.restart_flag = 1; +// } + if (!Settings->flag3.mqtt_buttons) { // SetOption73 - Detach buttons from relays and enable MQTT action state for multipress + if (Button.press_counter[button_index] == 1) { // By default first press always send a TOGGLE (2) + ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); + } else { + SendKey(KEY_BUTTON, button_index +1, Button.press_counter[button_index] +9); // 2,3,4 and 5 press send just the key value (11,12,13 and 14) for rules + if (0 == button_index) { // BUTTON1 can toggle up to 5 relays if present. If a relay is not present will send out the key value (2,11,12,13 and 14) for rules + bool valid_relay = PinUsed(GPIO_REL1, Button.press_counter[button_index]-1); +#ifdef ESP8266 + if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) { + valid_relay = (Button.press_counter[button_index] <= TasmotaGlobal.devices_present); + } +#endif // ESP8266 +#ifdef USE_SHELLY_PRO + if (TasmotaGlobal.gpio_optiona.shelly_pro) { + valid_relay = (Button.press_counter[button_index] <= TasmotaGlobal.devices_present); + } +#endif // USE_SHELLY_PRO + if ((Button.press_counter[button_index] > 1) && valid_relay && (Button.press_counter[button_index] <= MAX_RELAY_BUTTON1)) { + ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally +// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Relay%d found on GPIO%d"), Button.press_counter[button_index], Pin(GPIO_REL1, Button.press_counter[button_index]-1)); + } + } + } + } + + } else { // 6 press start wificonfig 2 + if (!Settings->flag.button_restrict) { // SetOption1 - Control button multipress + snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2")); + ExecuteCommand(scmnd, SRC_BUTTON); + } + } + if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic + if (Button.press_counter[button_index] >= 1 && Button.press_counter[button_index] <= 5) { + MqttButtonTopic(button_index +1, Button.press_counter[button_index], 0); + } + } + } +#ifdef ROTARY_V1 + } +#endif + Button.press_counter[button_index] = 0; + } + } + } + + } + } + Button.last_state[button_index] = button; + } +} + +void MqttButtonTopic(uint32_t button_id, uint32_t action, uint32_t hold) { + SendKey(KEY_BUTTON, button_id, (hold) ? 3 : action +9); + + if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59) + char scommand[10]; + snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_BUTTON "%d"), button_id); + char mqttstate[7]; + Response_P(S_JSON_SVALUE_ACTION_SVALUE, scommand, (hold) ? SettingsText(SET_STATE_TXT4) : GetTextIndexed(mqttstate, sizeof(mqttstate), action, kMultiPress)); + MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand); + } +} + +void ButtonLoop(void) { + if (Button.present) { + if (TimeReached(Button.debounce)) { + SetNextTimeInterval(Button.debounce, Settings->button_debounce); // ButtonDebounce (50) + ButtonHandler(); + } + } +} + +#endif // BUTTON_V3 diff --git a/tasmota/tasmota_support/support_switch_v3.ino b/tasmota/tasmota_support/support_switch_v3.ino index f00160131..392c0afda 100644 --- a/tasmota/tasmota_support/support_switch_v3.ino +++ b/tasmota/tasmota_support/support_switch_v3.ino @@ -17,7 +17,7 @@ along with this program. If not, see . */ -#define SWITCH_V3 +//#define SWITCH_V3 #ifdef SWITCH_V3 /*********************************************************************************************\ * Switch support with input filter diff --git a/tasmota/tasmota_support/support_switch_v4.ino b/tasmota/tasmota_support/support_switch_v4.ino new file mode 100644 index 000000000..9b4a81f72 --- /dev/null +++ b/tasmota/tasmota_support/support_switch_v4.ino @@ -0,0 +1,490 @@ +/* + support_switch.ino - switch support for Tasmota + + Copyright (C) 2021 Theo Arends + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#define SWITCH_V4 +#ifdef SWITCH_V4 +/*********************************************************************************************\ + * Switch support with input filter + * + * Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c) +\*********************************************************************************************/ + +const uint8_t SWITCH_PROBE_INTERVAL = 10; // Time in milliseconds between switch input probe +const uint8_t SWITCH_FAST_PROBE_INTERVAL = 2; // Time in milliseconds between switch input probe for AC detection +const uint8_t SWITCH_AC_PERIOD = (20 + SWITCH_FAST_PROBE_INTERVAL - 1) / SWITCH_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals + +// Switch Mode definietions +#define SM_TIMER_MASK 0x3F +#define SM_NO_TIMER_MASK 0xFF +#define SM_FIRST_PRESS 0x40 +#define SM_SECOND_PRESS 0x80 +#define POWER_NONE 99 + +const char kSwitchPressStates[] PROGMEM = + "||||POWER_INCREMENT|POWER_INV|POWER_CLEAR|POWER_RELEASE|POWER_100||POWER_DELAYED"; + +#include + +Ticker TickerSwitch; + +struct SWITCH { + uint32_t debounce = 0; // Switch debounce timer + uint32_t no_pullup_mask = 0; // Switch pull-up bitmask flags + uint32_t pulldown_mask = 0; // Switch pull-down bitmask flags + uint32_t virtual_pin_used = 0; // Switch used bitmask + uint32_t virtual_pin = 0; // Switch state bitmask + uint8_t state[MAX_SWITCHES] = { 0 }; + uint8_t last_state[MAX_SWITCHES]; // Last wall switch states + uint8_t hold_timer[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold + uint8_t debounced_state[MAX_SWITCHES]; // Switch debounced states + uint8_t first_change = 0; + uint8_t present = 0; + bool probe_mutex; +} Switch; + +/********************************************************************************************/ + +void SwitchPullupFlag(uint32 switch_bit) { + bitSet(Switch.no_pullup_mask, switch_bit); +} + +void SwitchPulldownFlag(uint32 switch_bit) { + bitSet(Switch.pulldown_mask, switch_bit); +} + +void SwitchSetVirtualPinState(uint32_t index, uint32_t state) { + if (!Switch.probe_mutex) { + bitWrite(Switch.virtual_pin, index, state); + } +} + +void SwitchSetVirtual(uint32_t index, uint32_t state) { + bitSet(Switch.virtual_pin_used, index); + Switch.debounced_state[index] = state; +} + +uint8_t SwitchGetVirtual(uint32_t index) { + return Switch.debounced_state[index]; +} + +uint8_t SwitchLastState(uint32_t index) { + return Switch.last_state[index]; +} + +bool SwitchState(uint32_t index) { + uint32_t switchmode = Settings->switchmode[index]; + return ((FOLLOW_INV == switchmode) || + (PUSHBUTTON_INV == switchmode) || + (PUSHBUTTONHOLD_INV == switchmode) || + (FOLLOWMULTI_INV == switchmode) || + (PUSHHOLDMULTI_INV == switchmode) || + (PUSHON_INV == switchmode) || + (PUSH_IGNORE_INV == switchmode) + ) ^ Switch.last_state[index]; +} + +/*********************************************************************************************/ + +void SwitchProbe(void) { + if (Switch.probe_mutex || (TasmotaGlobal.uptime < 4)) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit + Switch.probe_mutex = true; + + uint32_t state_filter; + uint32_t first_change = Switch.first_change; + uint32_t debounce_flags = Settings->switch_debounce % 10; + bool force_high = (debounce_flags &1); // 51, 101, 151 etc + bool force_low = (debounce_flags &2); // 52, 102, 152 etc + bool ac_detect = (debounce_flags == 9); + + if (ac_detect) { + if (Settings->switch_debounce < 2 * SWITCH_AC_PERIOD * SWITCH_FAST_PROBE_INTERVAL + 9) { + state_filter = 2 * SWITCH_AC_PERIOD; + } else if (Settings->switch_debounce > (0x7f - 2 * SWITCH_AC_PERIOD) * SWITCH_FAST_PROBE_INTERVAL) { + state_filter = 0x7f; + } else { + state_filter = (Settings->switch_debounce - 9) / SWITCH_FAST_PROBE_INTERVAL; + } + } else { + state_filter = Settings->switch_debounce / SWITCH_PROBE_INTERVAL; // 5, 10, 15 + } + + uint32_t not_activated; + for (uint32_t i = 0; i < MAX_SWITCHES; i++) { + if (PinUsed(GPIO_SWT1, i)) { + not_activated = digitalRead(Pin(GPIO_SWT1, i)); + } + else if (bitRead(Switch.virtual_pin_used, i)) { + not_activated = bitRead(Switch.virtual_pin, i); + } + else { continue; } + + // Olimex user_switch2.c code to fix 50Hz induced pulses + if (not_activated) { + + if (ac_detect) { // Enabled with SwitchDebounce x9 + Switch.state[i] |= 0x80; + if (Switch.state[i] > 0x80) { + Switch.state[i]--; + if (0x80 == Switch.state[i]) { + Switch.debounced_state[i] = 0; + Switch.first_change = false; + } + } + } else { + + if (force_high) { // Enabled with SwitchDebounce x1 + if (1 == Switch.debounced_state[i]) { + Switch.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0 + } + } + + if (Switch.state[i] < state_filter) { + Switch.state[i]++; + if (state_filter == Switch.state[i]) { + Switch.debounced_state[i] = 1; + } + } + } + } else { + + if (ac_detect) { // Enabled with SwitchDebounce x9 + /* + * Moes MS-104B and similar devices using an AC detection circuitry + * on their switch inputs generating an ~4 ms long low pulse every + * AC wave. We start the time measurement on the falling edge. + * + * state: bit7: previous state, bit6..0: counter + */ + if (Switch.state[i] & 0x80) { + Switch.state[i] &= 0x7f; + if (Switch.state[i] < state_filter - 2 * SWITCH_AC_PERIOD) { + Switch.state[i] += 2 * SWITCH_AC_PERIOD; + } else { + Switch.state[i] = state_filter; + Switch.debounced_state[i] = 1; + if (first_change) { + Switch.last_state[i] = 1; + Switch.first_change = false; + } + } + } else { + if (Switch.state[i] > 0x00) { + Switch.state[i]--; + if (0x00 == Switch.state[i]) { + Switch.debounced_state[i] = 0; + Switch.first_change = false; + } + } + } + } else { + + if (force_low) { // Enabled with SwitchDebounce x2 + if (0 == Switch.debounced_state[i]) { + Switch.state[i] = 0; // With noisy input keep current state 0 unless constant 1 + } + } + + if (Switch.state[i] > 0) { + Switch.state[i]--; + if (0 == Switch.state[i]) { + Switch.debounced_state[i] = 0; + } + } + } + } + } + + Switch.probe_mutex = false; +} + +void SwitchInit(void) { + bool ac_detect = (Settings->switch_debounce % 10 == 9); + + Switch.present = 0; + Switch.virtual_pin_used = 0; + for (uint32_t i = 0; i < MAX_SWITCHES; i++) { + Switch.last_state[i] = NOT_PRESSED; // Init global to virtual switch state; + bool used = false; + + if (PinUsed(GPIO_SWT1, i)) { + Switch.present++; +#ifdef ESP8266 + pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_SWT1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP)); +#endif // ESP8266 +#ifdef ESP32 + pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Switch.no_pullup_mask, i) ? INPUT : INPUT_PULLUP); +#endif // ESP32 + Switch.last_state[i] = digitalRead(Pin(GPIO_SWT1, i)); // Set global now so doesn't change the saved power state on first switch check + used = true; + } + else { + XdrvMailbox.index = i; + if (XdrvCall(FUNC_ADD_SWITCH)) { + + AddLog(LOG_LEVEL_DEBUG, PSTR("SWT: Add switch %d"), i); + + bitSet(Switch.virtual_pin_used, i); + Switch.present++; + Switch.last_state[i] = XdrvMailbox.payload; + used = true; + } + } + + if (used && ac_detect) { + Switch.state[i] = 0x80 + 2 * SWITCH_AC_PERIOD; + Switch.last_state[i] = 0; // Will set later in the debouncing code + } + Switch.debounced_state[i] = Switch.last_state[i]; + } + if (Switch.present) { + Switch.first_change = true; + TickerSwitch.attach_ms((ac_detect) ? SWITCH_FAST_PROBE_INTERVAL : SWITCH_PROBE_INTERVAL, SwitchProbe); + } +} + +/*********************************************************************************************\ + * Switch handler +\*********************************************************************************************/ + +void SwitchHandler(uint32_t mode) { + if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit + + uint32_t loops_per_second = 1000 / Settings->switch_debounce; + + for (uint32_t i = 0; i < MAX_SWITCHES; i++) { + if (PinUsed(GPIO_SWT1, i) || bitRead(Switch.virtual_pin_used, i)) { + uint32_t button = Switch.debounced_state[i]; + uint32_t switchflag = POWER_TOGGLE +1; + uint32_t mqtt_action = POWER_NONE; + uint32_t switchmode = Settings->switchmode[i]; + + if (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK)) { + Switch.hold_timer[i]--; + if ((Switch.hold_timer[i] & SM_TIMER_MASK) == loops_per_second * Settings->param[P_HOLD_TIME] / 25) { + if ((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)){ + if (((switchmode == PUSHHOLDMULTI) & (NOT_PRESSED == Switch.last_state[i])) | ((switchmode == PUSHHOLDMULTI_INV) & (PRESSED == Switch.last_state[i]))) { + SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT + } + else if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) { + SendKey(KEY_SWITCH, i +1, POWER_DELAYED); // Execute command via MQTT + mqtt_action = POWER_DELAYED; + Switch.hold_timer[i] = 0; + } + } + } + if (0 == (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK))) { + switch (switchmode) { + case TOGGLEMULTI: + switchflag = POWER_TOGGLE; // Toggle after hold + break; + case FOLLOWMULTI: + switchflag = button &1; // Follow wall switch state after hold + break; + case FOLLOWMULTI_INV: + switchflag = ~button &1; // Follow inverted wall switch state after hold + break; + case PUSHHOLDMULTI: + if (NOT_PRESSED == button) { + Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25; + SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT + mqtt_action = POWER_INCREMENT; + } else { + Switch.hold_timer[i]= 0; + SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT + mqtt_action = POWER_CLEAR; + } + break; + case PUSHHOLDMULTI_INV: + if (PRESSED == button) { + Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25; + SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT + mqtt_action = POWER_INCREMENT; + } else { + Switch.hold_timer[i]= 0; + SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT + mqtt_action = POWER_CLEAR; + } + break; + default: + SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT + mqtt_action = POWER_HOLD; + break; + } + } + } + + if (button != Switch.last_state[i]) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i])) + switch (switchmode) { + case TOGGLE: + case PUSHBUTTON_TOGGLE: + switchflag = POWER_TOGGLE; // Toggle + break; + case FOLLOW: + switchflag = button &1; // Follow wall switch state + break; + case FOLLOW_INV: + switchflag = ~button &1; // Follow inverted wall switch state + break; + case PUSHBUTTON: + if (PRESSED == button) { + switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd + } + break; + case PUSHBUTTON_INV: + if (NOT_PRESSED == button) { + switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd + } + break; + case PUSHBUTTONHOLD: + if (PRESSED == button) { + Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press + } + if ((NOT_PRESSED == button) && (Switch.hold_timer[i])) { + Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer... + switchflag = POWER_TOGGLE; // ...and Toggle + } + break; + case PUSHBUTTONHOLD_INV: + if (NOT_PRESSED == button) { + Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press... + } + if ((PRESSED == button) && (Switch.hold_timer[i])) { + Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer. + switchflag = POWER_TOGGLE; // ...and Toggle + } + break; + case TOGGLEMULTI: + case FOLLOWMULTI: + case FOLLOWMULTI_INV: + if (Switch.hold_timer[i]) { + Switch.hold_timer[i] = 0; + SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT + mqtt_action = POWER_HOLD; + } else { + Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window + } + break; + case PUSHHOLDMULTI: + if (NOT_PRESSED == button) { + if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) { + Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0; + SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT + mqtt_action = POWER_INV; + } + } else { + if ((Switch.hold_timer[i] & SM_TIMER_MASK) > loops_per_second * Settings->param[P_HOLD_TIME] / 25) { + if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) { + Switch.hold_timer[i]= SM_FIRST_PRESS; + switchflag = POWER_TOGGLE; // Toggle with pushbutton + } + else{ + SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT + mqtt_action = POWER_100; + Switch.hold_timer[i]= 0; + } + } else { + Switch.hold_timer[i]= 0; + SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT + mqtt_action = POWER_RELEASE; + } + } + Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10; + break; + case PUSHHOLDMULTI_INV: + if (PRESSED == button) { + if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) { + Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0; + SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT + mqtt_action = POWER_INV; + } + } else { + if ((Switch.hold_timer[i] & SM_TIMER_MASK)> loops_per_second * Settings->param[P_HOLD_TIME] / 25) { + if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) { + Switch.hold_timer[i]= SM_FIRST_PRESS; + switchflag = POWER_TOGGLE; // Toggle with pushbutton + } + else{ + SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT + mqtt_action = POWER_100; + Switch.hold_timer[i]= 0; + } + } else { + Switch.hold_timer[i]= 0; + SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT + mqtt_action = POWER_RELEASE; + } + } + Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10; + break; + case PUSHON: + if (PRESSED == button) { + switchflag = POWER_ON; // Power ON with pushbutton to Gnd + } + break; + case PUSHON_INV: + if (NOT_PRESSED == button) { + switchflag = POWER_ON; // Power ON with releasing pushbutton from Gnd + } + break; + case PUSH_IGNORE: + case PUSH_IGNORE_INV: + Switch.last_state[i] = button; // Update switch state before publishing + MqttPublishSensor(); + break; + } + Switch.last_state[i] = button; + } + if (switchflag <= POWER_TOGGLE) { + if (!Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes + if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT + ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < TasmotaGlobal.devices_present) + } + } else { mqtt_action = switchflag; } + } + if ((mqtt_action != POWER_NONE) && Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes + if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59) + char mqtt_state_str[16]; + char *mqtt_state = mqtt_state_str; + if (mqtt_action <= 3) { + if (mqtt_action != 3) { SendKey(KEY_SWITCH, i +1, mqtt_action); } + mqtt_state = SettingsText(SET_STATE_TXT1 + mqtt_action); + } else { + GetTextIndexed(mqtt_state_str, sizeof(mqtt_state_str), mqtt_action, kSwitchPressStates); + } + Response_P(S_JSON_SVALUE_ACTION_SVALUE, GetSwitchText(i).c_str(), mqtt_state); + char scommand[10]; + snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_SWITCH "%d"), i +1); + MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand); + } + mqtt_action = POWER_NONE; + } + } + } +} + +void SwitchLoop(void) { + if (Switch.present) { + if (TimeReached(Switch.debounce)) { + SetNextTimeInterval(Switch.debounce, Settings->switch_debounce); + SwitchHandler(0); + } + } +} + +#endif // SWITCH_V3 diff --git a/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_tasmota.ino b/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_tasmota.ino index b31ed5b99..4ac0451d3 100644 --- a/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_tasmota.ino +++ b/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_tasmota.ino @@ -580,7 +580,7 @@ extern "C" { be_newobject(vm, "list"); for (uint32_t i = 0; i < MAX_SWITCHES; i++) { if (PinUsed(GPIO_SWT1, i)) { - be_pushbool(vm, Switch.virtual_state[i] == PRESSED); + be_pushbool(vm, SwitchGetVirtual(i) == PRESSED); be_data_push(vm, -2); be_pop(vm, 1); } diff --git a/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro.ino b/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro.ino index 9642163ce..94573422e 100644 --- a/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro.ino +++ b/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro.ino @@ -19,7 +19,7 @@ #ifdef ESP32 #ifdef USE_SPI -#ifdef USE_SHELLY_PRO +#ifdef USE_SHELLY_PRO_V1 /*********************************************************************************************\ * Shelly Pro support * diff --git a/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro_v2.ino b/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro_v2.ino new file mode 100644 index 000000000..2b43768f9 --- /dev/null +++ b/tasmota/tasmota_xdrv_driver/xdrv_88_esp32_shelly_pro_v2.ino @@ -0,0 +1,501 @@ +/* + xdrv_88_shelly_pro.ino - Shelly pro family support for Tasmota + + Copyright (C) 2022 Theo Arends + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#ifdef ESP32 +#ifdef USE_SPI +#ifdef USE_SHELLY_PRO +/*********************************************************************************************\ + * Shelly Pro support + * + * {"NAME":"Shelly Pro 1","GPIO":[0,1,0,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,0,0,0,32,4736,0,160,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"} + * {"NAME":"Shelly Pro 1PM","GPIO":[9568,1,9472,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,3459,0,0,32,4736,0,160,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"} + * {"NAME":"Shelly Pro 2","GPIO":[0,1,0,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,0,0,0,32,4736,4737,160,161],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350;AdcParam2 2,10000,10000,3350"} + * {"NAME":"Shelly Pro 2PM","GPIO":[9568,1,9472,1,768,0,0,0,672,704,736,9569,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,3460,0,0,32,4736,4737,160,161],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350;AdcParam2 2,10000,10000,3350"} + * + * {"NAME":"Shelly Pro 4PM","GPIO":[769,1,1,1,9568,0,0,0,1,705,9569,737,768,0,5600,0,0,0,0,5568,0,0,0,0,0,0,0,6214,736,704,3461,0,4736,1,0,672],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,5600,4700,3350"} + * {"NAME":"Shelly Pro 4PM No display","GPIO":[1,1,1,1,9568,0,0,0,1,1,9569,1,768,0,5600,0,0,0,0,5568,0,0,0,0,0,0,0,6214,736,704,3461,0,4736,1,0,672],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,5600,4700,3350"} + * + * Shelly Pro 1/2 uses SPI to control one 74HC595 for relays/leds and one ADE7953 (1PM) or two ADE7953 (2PM) for energy monitoring + * Shelly Pro 4 uses an SPI to control one MCP23S17 for buttons/switches/relays/leds and two ADE7953 for energy monitoring and a second SPI for the display +\*********************************************************************************************/ + +#define XDRV_88 88 + +#define SHELLY_PRO_PIN_LAN8720_RESET 5 +#define SHELLY_PRO_4_PIN_SPI_CS 16 +#define SHELLY_PRO_4_PIN_MCP23S17_INT 35 +#define SHELLY_PRO_4_MCP23S17_ADDRESS 0x40 + +struct SPro { + uint32_t last_update; + uint32_t probe_pin; + int switch_offset; + int button_offset; + uint8_t last_button[3]; + uint8_t pin_register_cs; + uint8_t pin_mcp23s17_int; + uint8_t ledlink; + uint8_t power; + uint8_t detected; +} SPro; + +/*********************************************************************************************\ + * Shelly Pro MCP23S17 support +\*********************************************************************************************/ + +enum SP4MCP23X17GPIORegisters { + // A side + SP4_MCP23S17_IODIRA = 0x00, + SP4_MCP23S17_IPOLA = 0x02, + SP4_MCP23S17_GPINTENA = 0x04, + SP4_MCP23S17_DEFVALA = 0x06, + SP4_MCP23S17_INTCONA = 0x08, + SP4_MCP23S17_IOCONA = 0x0A, + SP4_MCP23S17_GPPUA = 0x0C, + SP4_MCP23S17_INTFA = 0x0E, + SP4_MCP23S17_INTCAPA = 0x10, + SP4_MCP23S17_GPIOA = 0x12, + SP4_MCP23S17_OLATA = 0x14, + // B side + SP4_MCP23S17_IODIRB = 0x01, + SP4_MCP23S17_IPOLB = 0x03, + SP4_MCP23S17_GPINTENB = 0x05, + SP4_MCP23S17_DEFVALB = 0x07, + SP4_MCP23S17_INTCONB = 0x09, + SP4_MCP23S17_IOCONB = 0x0B, + SP4_MCP23S17_GPPUB = 0x0D, + SP4_MCP23S17_INTFB = 0x0F, + SP4_MCP23S17_INTCAPB = 0x11, + SP4_MCP23S17_GPIOB = 0x13, + SP4_MCP23S17_OLATB = 0x15, +}; + +uint8_t sp4_mcp23s17_olata = 0; +uint8_t sp4_mcp23s17_olatb = 0; + +void SP4Mcp23S17Enable(void) { + SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0)); + digitalWrite(SPro.pin_register_cs, 0); +} + +void SP4Mcp23S17Disable(void) { + SPI.endTransaction(); + digitalWrite(SPro.pin_register_cs, 1); +} + +uint32_t SP4Mcp23S17ReadGpio(void) { + // Read 16-bit gpio registers: (gpiob << 8) | gpioa + SP4Mcp23S17Enable(); + SPI.transfer(SHELLY_PRO_4_MCP23S17_ADDRESS | 1); + SPI.transfer(SP4_MCP23S17_GPIOA); + uint32_t gpio = SPI.transfer(0xFF); // SP4_MCP23S17_GPIOA + gpio |= (SPI.transfer(0xFF) << 8); // SP4_MCP23S17_GPIOB + SP4Mcp23S17Disable(); + return gpio; +} + +bool SP4Mcp23S17Read(uint8_t reg, uint8_t *value) { + SP4Mcp23S17Enable(); + SPI.transfer(SHELLY_PRO_4_MCP23S17_ADDRESS | 1); + SPI.transfer(reg); + *value = SPI.transfer(0xFF); + SP4Mcp23S17Disable(); + return true; +} + +bool SP4Mcp23S17Write(uint8_t reg, uint8_t value) { + SP4Mcp23S17Enable(); + SPI.transfer(SHELLY_PRO_4_MCP23S17_ADDRESS); + SPI.transfer(reg); + SPI.transfer(value); + SP4Mcp23S17Disable(); + return true; +} + +void SP4Mcp23S17Update(uint8_t pin, bool pin_value, uint8_t reg_addr) { + uint8_t bit = pin % 8; + uint8_t reg_value = 0; + if (reg_addr == SP4_MCP23S17_OLATA) { + reg_value = sp4_mcp23s17_olata; + } else if (reg_addr == SP4_MCP23S17_OLATB) { + reg_value = sp4_mcp23s17_olatb; + } else { + SP4Mcp23S17Read(reg_addr, ®_value); + } + if (pin_value) { + reg_value |= 1 << bit; + } else { + reg_value &= ~(1 << bit); + } + SP4Mcp23S17Write(reg_addr, reg_value); + if (reg_addr == SP4_MCP23S17_OLATA) { + sp4_mcp23s17_olata = reg_value; + } else if (reg_addr == SP4_MCP23S17_OLATB) { + sp4_mcp23s17_olatb = reg_value; + } +} + +void SP4Mcp23S17Setup(void) { + SP4Mcp23S17Write(SP4_MCP23S17_IOCONA, 0b01011000); // Enable INT mirror, Slew rate disabled, HAEN pins for addressing + SP4Mcp23S17Write(SP4_MCP23S17_GPINTENA, 0x6F); // Enable interrupt on change + SP4Mcp23S17Write(SP4_MCP23S17_GPINTENB, 0x80); // Enable interrupt on change + + // Read current output register state + SP4Mcp23S17Read(SP4_MCP23S17_OLATA, &sp4_mcp23s17_olata); + SP4Mcp23S17Read(SP4_MCP23S17_OLATB, &sp4_mcp23s17_olatb); +} + +void SP4Mcp23S17PinMode(uint8_t pin, uint8_t flags) { + uint8_t iodir = pin < 8 ? SP4_MCP23S17_IODIRA : SP4_MCP23S17_IODIRB; + uint8_t gppu = pin < 8 ? SP4_MCP23S17_GPPUA : SP4_MCP23S17_GPPUB; + if (flags == INPUT) { + SP4Mcp23S17Update(pin, true, iodir); + SP4Mcp23S17Update(pin, false, gppu); + } else if (flags == (INPUT | PULLUP)) { + SP4Mcp23S17Update(pin, true, iodir); + SP4Mcp23S17Update(pin, true, gppu); + } else if (flags == OUTPUT) { + SP4Mcp23S17Update(pin, false, iodir); + } +} + +bool SP4Mcp23S17DigitalRead(uint8_t pin) { + uint8_t bit = pin % 8; + uint8_t reg_addr = pin < 8 ? SP4_MCP23S17_GPIOA : SP4_MCP23S17_GPIOB; + uint8_t value = 0; + SP4Mcp23S17Read(reg_addr, &value); + return value & (1 << bit); +} + +void SP4Mcp23S17DigitalWrite(uint8_t pin, bool value) { + uint8_t reg_addr = pin < 8 ? SP4_MCP23S17_OLATA : SP4_MCP23S17_OLATB; + SP4Mcp23S17Update(pin, value, reg_addr); +} + +/*********************************************************************************************\ + * Shelly Pro 4 +\*********************************************************************************************/ + +const uint8_t sp4_relay_pin[] = { 8, 13, 14, 12 }; +const uint8_t sp4_switch_pin[] = { 6, 1, 0, 15 }; +const uint8_t sp4_button_pin[] = { 5, 2, 3 }; + +void ShellyPro4Init(void) { + /* + Shelly Pro 4PM MCP23S17 registers + bit 0 = input - Switch3 + bit 1 = input - Switch2 + bit 2 = input, pullup, inverted - Button Down + bit 3 = input, pullup, inverted - Button OK + bit 4 = output - Reset, display, ADE7953 + bit 5 = input, pullup, inverted - Button Up + bit 6 = input - Switch1 + bit 7 + bit 8 = output - Relay O1 + bit 9 + bit 10 + bit 11 + bit 12 = output - Relay O4 + bit 13 = output - Relay O2 + bit 14 = output - Relay O3 + bit 15 = input - Switch4 + */ + SP4Mcp23S17Setup(); + + for (uint32_t i = 0; i < 4; i++) { + SP4Mcp23S17PinMode(sp4_switch_pin[i], INPUT); // Switch1..4 + SP4Mcp23S17PinMode(sp4_relay_pin[i], OUTPUT); // Relay O1..O4 + } + SPro.switch_offset = -1; + + for (uint32_t i = 0; i < 3; i++) { + SP4Mcp23S17PinMode(sp4_button_pin[i], PULLUP); // Button Up, Down, OK + } + SPro.button_offset = -1; + + SP4Mcp23S17PinMode(4, OUTPUT); // Reset display, ADE7943 + SP4Mcp23S17DigitalWrite(4, 1); + +} + +void ShellyPro4Reset(void) { + SP4Mcp23S17DigitalWrite(4, 0); // Reset pin display, ADE7953 + delay(1); // To initiate a hardware reset, this pin must be brought low for a minimum of 10 μs. + SP4Mcp23S17DigitalWrite(4, 1); +} + +bool ShellyProAddButton(void) { + if (SPro.detected != 4) { return false; } + if (SPro.button_offset < 0) { SPro.button_offset = XdrvMailbox.index; } + uint32_t index = XdrvMailbox.index - SPro.button_offset; + if (index > 2) { return false; } + XdrvMailbox.payload = SP4Mcp23S17DigitalRead(sp4_button_pin[index]); + return true; +} + +bool ShellyProAddSwitch(void) { + if (SPro.detected != 4) { return false; } + if (SPro.switch_offset < 0) { SPro.switch_offset = XdrvMailbox.index; } + uint32_t index = XdrvMailbox.index - SPro.switch_offset; + if (index > 3) { return false; } + XdrvMailbox.payload = SP4Mcp23S17DigitalRead(sp4_switch_pin[index]); + return true; +} + +void ShellyProUpdateSwitches(void) { + if (SPro.detected != 4) { return; } + if (digitalRead(SPro.pin_mcp23s17_int)) { return; } + + uint32_t gpio = SP4Mcp23S17ReadGpio(); + + AddLog(LOG_LEVEL_DEBUG, PSTR("SHP: Input detected 0x%04X"), gpio); + + // Propagate state + uint32_t state; + for (uint32_t i = 0; i < 4; i++) { + state = (gpio >> sp4_switch_pin[i]) &1; + SwitchSetVirtualPinState(SPro.switch_offset +i, state); + } + for (uint32_t i = 0; i < 3; i++) { + state = (gpio >> sp4_button_pin[i]) &1; + ButtonSetVirtualPinState(SPro.button_offset +i, state); + } +} + +bool ShellyProButton(void) { + if (SPro.detected != 4) { return false; } + + uint32_t button_index = XdrvMailbox.index - SPro.button_offset; + if (button_index > 2) { return false; } // We only support Up, Down, Ok + + bool result = false; + uint32_t button = XdrvMailbox.payload; + if ((PRESSED == button) && (NOT_PRESSED == SPro.last_button[button_index])) { // Button pressed + + AddLog(LOG_LEVEL_DEBUG, PSTR("SHP: Button %d pressed"), button_index +1); + + // Do something with the Up,Down,Ok button + switch (button_index) { + case 0: // Up + break; + case 1: // Down + break; + case 2: // Ok + break; + } + result = true; // Disable further button processing + } + SPro.last_button[button_index] = button; + return result; +} + +/*********************************************************************************************\ + * Shelly Pro 1/2 +\*********************************************************************************************/ + +void ShellyProUpdate(void) { + /* + Shelly Pro 1/2/PM 74HC595 register + bit 0 = relay/led 1 + bit 1 = relay/led 2 + bit 2 = wifi led blue + bit 3 = wifi led green + bit 4 = wifi led red + bit 5 - 7 = nc + OE is connected to Gnd with 470 ohm resistor R62 AND a capacitor C81 to 3V3 + - this inhibits output of signals (also relay state) during power on for a few seconds + */ + uint8_t val = SPro.power | SPro.ledlink; + SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0)); + SPI.transfer(val); // Write 74HC595 shift register + SPI.endTransaction(); +// delayMicroseconds(2); // Wait for SPI clock to stop + digitalWrite(SPro.pin_register_cs, 1); // Latch data + delayMicroseconds(1); // Shelly 10mS + digitalWrite(SPro.pin_register_cs, 0); +} + +/*********************************************************************************************\ + * Shelly Pro +\*********************************************************************************************/ + +void ShellyProPreInit(void) { + if ((SPI_MOSI_MISO == TasmotaGlobal.spi_enabled) && + PinUsed(GPIO_SPI_CS) && // 74HC595 rclk / MCP23S17 + TasmotaGlobal.gpio_optiona.shelly_pro) { // Option_A7 + + if (PinUsed(GPIO_SWT1) || PinUsed(GPIO_KEY1)) { + SPro.detected = 1; // Shelly Pro 1 + if (PinUsed(GPIO_SWT1, 1) || PinUsed(GPIO_KEY1, 1)) { + SPro.detected = 2; // Shelly Pro 2 + } + SPro.ledlink = 0x18; // Blue led on - set by first call ShellyProPower() - Shelly 1/2 + } + if (SHELLY_PRO_4_PIN_SPI_CS == Pin(GPIO_SPI_CS)) { + SPro.detected = 4; // Shelly Pro 4PM (No SWT or KEY) + } + + if (SPro.detected) { + TasmotaGlobal.devices_present += SPro.detected; + + SPro.pin_register_cs = Pin(GPIO_SPI_CS); + pinMode(SPro.pin_register_cs, OUTPUT); + // Does nothing if SPI is already initiated (by ADE7953) so no harm done + SPI.begin(Pin(GPIO_SPI_CLK), Pin(GPIO_SPI_MISO), Pin(GPIO_SPI_MOSI), -1); + + if (4 == SPro.detected) { + digitalWrite(SPro.pin_register_cs, 1); + SPro.pin_mcp23s17_int = SHELLY_PRO_4_PIN_MCP23S17_INT; // GPIO35 = MCP23S17 common interrupt + pinMode(SPro.pin_mcp23s17_int, INPUT); + // Init MCP23S17 + ShellyPro4Init(); + } else { + digitalWrite(SPro.pin_register_cs, 0); + } + } + } +} + +void ShellyProInit(void) { + int pin_lan_reset = SHELLY_PRO_PIN_LAN8720_RESET; // GPIO5 = LAN8720 nRST +// delay(30); // (t-purstd) This pin must be brought low for a minimum of 25 mS after power on + digitalWrite(pin_lan_reset, 0); + pinMode(pin_lan_reset, OUTPUT); + delay(1); // (t-rstia) This pin must be brought low for a minimum of 100 uS + digitalWrite(pin_lan_reset, 1); + + AddLog(LOG_LEVEL_INFO, PSTR("HDW: Shelly Pro %d%s initialized"), SPro.detected, (PinUsed(GPIO_ADE7953_CS))?"PM":""); +} + +void ShellyProPower(void) { + if (4 == SPro.detected) { + + AddLog(LOG_LEVEL_DEBUG, PSTR("SHP: Set Power 0x%08X"), XdrvMailbox.index); + + power_t rpower = XdrvMailbox.index; + for (uint32_t i = 0; i < 4; i++) { + power_t state = rpower &1; + SP4Mcp23S17DigitalWrite(sp4_relay_pin[i], state); + rpower >>= 1; // Select next power + } + } else { + SPro.power = XdrvMailbox.index &3; + ShellyProUpdate(); + } +} + +void ShellyProUpdateLedLink(uint32_t ledlink) { + if (4 == SPro.detected) { + + + } else { + if (ledlink != SPro.ledlink) { + SPro.ledlink = ledlink; + ShellyProUpdate(); + } + } +} + +void ShellyProLedLink(void) { + if (4 == SPro.detected) { + + + } else { + /* + bit 2 = blue, 3 = green, 4 = red + Shelly Pro documentation + - Blue light indicator will be on if in AP mode. + - Red light indicator will be on if in STA mode and not connected to a Wi-Fi network. + - Yellow light indicator will be on if in STA mode and connected to a Wi-Fi network. + - Green light indicator will be on if in STA mode and connected to a Wi-Fi network and to the Shelly Cloud. + - The light indicator will be flashing Red/Blue if OTA update is in progress. + Tasmota behaviour + - Blue light indicator will blink if no wifi or mqtt. + - Green light indicator will be on if in STA mode and connected to a Wi-Fi network. + */ + SPro.last_update = TasmotaGlobal.uptime; + uint32_t ledlink = 0x1C; // All leds off + if (XdrvMailbox.index) { + ledlink &= 0xFB; // Blue blinks if wifi/mqtt lost + } + else if (!TasmotaGlobal.global_state.wifi_down) { + ledlink &= 0xF7; // Green On + } + ShellyProUpdateLedLink(ledlink); + } +} + +void ShellyProLedLinkWifiOff(void) { + if (4 == SPro.detected) { + + + } else { + /* + bit 2 = blue, 3 = green, 4 = red + - Green light indicator will be on if in STA mode and connected to a Wi-Fi network. + */ + if (SPro.last_update +1 < TasmotaGlobal.uptime) { + ShellyProUpdateLedLink((TasmotaGlobal.global_state.wifi_down) ? 0x1C : 0x14); // Green off if wifi OFF + } + } +} + +/*********************************************************************************************\ + * Interface +\*********************************************************************************************/ + +bool Xdrv88(uint32_t function) { + bool result = false; + + if (FUNC_MODULE_INIT == function) { + ShellyProPreInit(); + } else if (SPro.detected) { + switch (function) { + case FUNC_EVERY_50_MSECOND: + ShellyProUpdateSwitches(); + break; + case FUNC_BUTTON_PRESSED: + result = ShellyProButton(); + break; + case FUNC_EVERY_SECOND: + ShellyProLedLinkWifiOff(); + break; + case FUNC_SET_DEVICE_POWER: + ShellyProPower(); + return true; + case FUNC_LED_LINK: + ShellyProLedLink(); + break; + case FUNC_INIT: + ShellyProInit(); + break; + case FUNC_ADD_BUTTON: + result = ShellyProAddButton(); + break; + case FUNC_ADD_SWITCH: + result = ShellyProAddSwitch(); + break; + } + } + return result; +} + +#endif // USE_SHELLY_PRO +#endif // USE_SPI +#endif // ESP32 diff --git a/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino b/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino index c5f282bef..380ef16e8 100644 --- a/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino +++ b/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino @@ -36,21 +36,21 @@ * Based on datasheet from https://www.analog.com/en/products/ade7953.html * * Model differences: - * Function Model1 Model2 Model3 Model4 Model5 Remark - * ------------------------------ ------- ------- ------- ------ ------ ------------------------------------------------- - * Shelly 2.5 EM Plus2PM Pro1PM Pro2PM - * Processor ESP8266 ESP8266 ESP32 ESP32 ESP32 - * Interface I2C I2C I2C SPI SPI Interface type used - * Number of ADE9753 chips 1 1 1 1 2 Count of ADE9753 chips - * ADE9753 IRQ 1 2 3 4 5 Index defines model number - * Current measurement device shunt CT shunt shunt shunt CT = Current Transformer - * Common voltage Yes Yes Yes No No Show common voltage in GUI/JSON - * Common frequency Yes Yes Yes No No Show common frequency in GUI/JSON - * Swapped channel A/B Yes No No No No Defined by hardware design - Fixed by Tasmota - * Support Export Active No Yes No No No Only EM supports correct negative value detection - * Show negative (reactive) power No Yes No No No Only EM supports correct negative value detection - * Default phase calibration 0 200 0 0 0 CT needs different phase calibration than shunts - * Default reset pin on ESP8266 - 16 - - - Legacy support. Replaced by GPIO ADE7953RST + * Function Model1 Model2 Model3 Model4 Model5 Model6 Remark + * ------------------------------ ------- ------- ------- ------ ------ ------ ------------------------------------------------- + * Shelly 2.5 EM Plus2PM Pro1PM Pro2PM Pro4PM + * Processor ESP8266 ESP8266 ESP32 ESP32 ESP32 ESP32 + * Interface I2C I2C I2C SPI SPI SPI Interface type used + * Number of ADE9753 chips 1 1 1 1 2 2 Count of ADE9753 chips + * ADE9753 IRQ 1 2 3 4 5 6 Index defines model number + * Current measurement device shunt CT shunt shunt shunt shunt CT = Current Transformer + * Common voltage Yes Yes Yes No No No Show common voltage in GUI/JSON + * Common frequency Yes Yes Yes No No No Show common frequency in GUI/JSON + * Swapped channel A/B Yes No No No No No Defined by hardware design - Fixed by Tasmota + * Support Export Active No Yes No No No No Only EM supports correct negative value detection + * Show negative (reactive) power No Yes No No No No Only EM supports correct negative value detection + * Default phase calibration 0 200 0 0 0 0 CT needs different phase calibration than shunts + * Default reset pin on ESP8266 - 16 - - - - Legacy support. Replaced by GPIO ADE7953RST * * I2C Address: 0x38 ********************************************************************************************* @@ -82,7 +82,7 @@ #define ADE7953_PHCAL_DEFAULT 0 // = range -383 to 383 - Default phase calibration for Shunts #define ADE7953_PHCAL_DEFAULT_CT 200 // = range -383 to 383 - Default phase calibration for Current Transformers (Shelly EM) -enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM, ADE7953_SHELLY_PLUS_2PM, ADE7953_SHELLY_PRO_1PM, ADE7953_SHELLY_PRO_2PM }; +enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM, ADE7953_SHELLY_PLUS_2PM, ADE7953_SHELLY_PRO_1PM, ADE7953_SHELLY_PRO_2PM, ADE7953_SHELLY_PRO_4PM }; enum Ade7953_8BitRegisters { // Register Name Addres R/W Bt Ty Default Description @@ -225,7 +225,7 @@ struct Ade7953 { uint32_t active_power[2] = { 0, 0 }; int32_t calib_data[2][ADE7953_CALIBREGS]; uint8_t init_step = 0; - uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM, 3 = Shelly Pro 1PM, 4 = Shelly Pro 2PM + uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM, 3 = Shelly Pro 1PM, 4 = Shelly Pro 2PM, 5 = Shelly Pro 4PM uint8_t cs_index; #ifdef USE_ESP32_SPI SPISettings spi_settings; @@ -233,6 +233,8 @@ struct Ade7953 { #endif // USE_ESP32_SPI } Ade7953; +/*********************************************************************************************/ + int Ade7953RegSize(uint16_t reg) { int size = 0; switch ((reg >> 8) & 0x0F) { @@ -250,6 +252,18 @@ int Ade7953RegSize(uint16_t reg) { return size; } +void Ade7953SpiEnable(void) { + digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0); + delayMicroseconds(1); // CS 1uS to SCLK edge + SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0)); // Set up SPI at 1MHz, MSB first, Capture at rising edge +} + +void Ade7953SpiDisable(void) { + SPI.endTransaction(); + delayMicroseconds(2); // CS high 1.2uS after SCLK edge (when writing to COMM_LOCK bit) + digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1); +} + void Ade7953Write(uint16_t reg, uint32_t val) { int size = Ade7953RegSize(reg); if (size) { @@ -258,6 +272,7 @@ void Ade7953Write(uint16_t reg, uint32_t val) { #ifdef USE_ESP32_SPI if (Ade7953.pin_cs[0] >= 0) { +/* digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0); delayMicroseconds(1); // CS 1uS to SCLK edge SPI.beginTransaction(Ade7953.spi_settings); @@ -269,6 +284,15 @@ void Ade7953Write(uint16_t reg, uint32_t val) { SPI.endTransaction(); delayMicroseconds(2); // CS high 1.2uS after SCLK edge (when writing to COMM_LOCK bit) digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1); +*/ + Ade7953SpiEnable(); + SPI.transfer16(reg); + SPI.transfer(0x00); // Write + while (size--) { + SPI.transfer((val >> (8 * size)) & 0xFF); // Write data, MSB first + } + Ade7953SpiDisable(); + } else { #endif // USE_ESP32_SPI Wire.beginTransmission(ADE7953_ADDR); @@ -292,6 +316,7 @@ int32_t Ade7953Read(uint16_t reg) { if (size) { #ifdef USE_ESP32_SPI if (Ade7953.pin_cs[0] >= 0) { +/* digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0); delayMicroseconds(1); // CS 1uS to SCLK edge SPI.beginTransaction(Ade7953.spi_settings); @@ -302,6 +327,15 @@ int32_t Ade7953Read(uint16_t reg) { } SPI.endTransaction(); digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1); +*/ + Ade7953SpiEnable(); + SPI.transfer16(reg); + SPI.transfer(0x80); // Read + while (size--) { + response = response << 8 | SPI.transfer(0xFF); // receive DATA (MSB first) + } + Ade7953SpiDisable(); + } else { #endif // USE_ESP32_SPI Wire.beginTransmission(ADE7953_ADDR); @@ -449,9 +483,16 @@ void Ade7953GetData(void) { #ifdef USE_ESP32_SPI } #endif // USE_ESP32_SPI - AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, %d, Period %d, %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"), - acc_mode, reg[0][4], reg[1][4], reg[0][5], reg[1][5], - reg[0][0], reg[1][0], reg[0][1], reg[1][1], reg[0][2], reg[1][2], reg[0][3], reg[1][3]); + +#ifdef USE_ESP32_SPI + if (1 == Energy.phase_count) { + AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, Period %d, IRMS %d, WATT %d, VA %d, VAR %d"), + acc_mode, reg[0][4], reg[0][5], reg[0][0], reg[0][1], reg[0][2], reg[0][3]); + } else +#endif // USE_ESP32_SPI + AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, %d, Period %d, %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"), + acc_mode, reg[0][4], reg[1][4], reg[0][5], reg[1][5], + reg[0][0], reg[1][0], reg[0][1], reg[1][1], reg[0][2], reg[1][2], reg[0][3], reg[1][3]); // If the device is initializing, we read the energy registers to reset them, but don't report the values as the first read may be inaccurate if (Ade7953.init_step) { return; } @@ -459,7 +500,7 @@ void Ade7953GetData(void) { uint32_t apparent_power[2] = { 0, 0 }; uint32_t reactive_power[2] = { 0, 0 }; - for (uint32_t channel = 0; channel < 2; channel++) { + for (uint32_t channel = 0; channel < Energy.phase_count; channel++) { Ade7953.voltage_rms[channel] = reg[channel][4]; Ade7953.current_rms[channel] = reg[channel][0]; if (Ade7953.current_rms[channel] < 2000) { // No load threshold (20mA) @@ -477,7 +518,7 @@ void Ade7953GetData(void) { if (Energy.power_on) { // Powered on float divider; - for (uint32_t channel = 0; channel < 2; channel++) { + for (uint32_t channel = 0; channel < Energy.phase_count; channel++) { Energy.data_valid[channel] = 0; float power_calibration = (float)EnergyGetCalibration(channel, ENERGY_POWER_CALIBRATION) / 10; @@ -649,6 +690,11 @@ void Ade7953DrvInit(void) { pinMode(pin_reset, INPUT); } } +#ifdef USE_SHELLY_PRO + if (Ade7953.model == ADE7953_SHELLY_PRO_4PM) { + ShellyPro4Reset(); + } +#endif // USE_SHELLY_PRO delay(100); // Need 100mS to init ADE7953 #ifdef USE_ESP32_SPI