diff --git a/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino b/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino index 3faa57adf..6b01b4b61 100644 --- a/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino +++ b/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino @@ -21,7 +21,7 @@ #ifdef USE_ENERGY_SENSOR #ifdef USE_ADE7953 /*********************************************************************************************\ - * ADE7953 - Energy used in Shelly 2.5 (model 0), Shelly EM (model 1) and Shelly Plus 2PM (model 2) + * ADE7953 - Energy used in Shelly 2.5 (model 1), Shelly EM (model 2) and Shelly Plus 2PM (model 3) * * {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18} * {"NAME":"Shelly EM","GPIO":[0,0,0,0,0,0,0,0,640,3457,608,224,8832,1],"FLAG":0,"BASE":18} @@ -31,13 +31,15 @@ * Based on datasheet from https://www.analog.com/en/products/ade7953.html * * Model differences: - * Function Model1 Model2 Model3 - * ------------------------------ ------ ------ ------- + * Function Model1 Model2 Model3 Remark + * ------------------------------ ------ ------ ------- ------------------------------------------------- * Shelly 2.5 EM Plus2PM - * Swapped channel A/B Yes No No - * Show negative (reactive) power No Yes No - * Default phasecal 0 200 0 - * Default reset pin on ESP8266 - 16 - + * Current measurement device shunt CT shunt CT = Current Transformer + * Swapped channel A/B Yes No No Defined by hardware design - Fixed by Tasmota + * Support Export Active No Yes No Only EM supports correct negative value detection + * Show negative (reactive) power No Yes No Only EM supports correct negative value detection + * Default phase calibration 0 200 0 CT needs different phase calibration than shunts + * Default reset pin on ESP8266 - 16 - Legacy support. Replaced by GPIO ADE7953RST * * I2C Address: 0x38 ********************************************************************************************* @@ -202,23 +204,7 @@ const uint16_t Ade7953CalibRegs[] { ADE7943_PHCALB }; -// 24-bit data registers Shelly 2.5 -const uint16_t Ade7953RegistersAis2Bis1[] { - ADE7953_IRMSB, // IRMSB - RMS current channel B (Relay 1) - ADE7953_BWATT, // BWATT - Active power channel B - ADE7953_BVA, // BVA - Apparent power channel B - ADE7953_BVAR, // BVAR - Reactive power channel B - ADE7953_IRMSA, // IRMSA - RMS current channel A (Relay 2) - ADE7953_AWATT, // AWATT - Active power channel A - ADE7953_AVA, // AVA - Apparent power channel A - ADE7953_AVAR, // AVAR - Reactive power channel A - ADE7953_VRMS, // VRMS - RMS voltage (Both relays) - ADE7943_Period, // Period - 16-bit unsigned period register - ADE7953_ACCMODE // ACCMODE - Accumulation mode -}; - -// 24-bit data registers Shelly EM and Plus 2PM -const uint16_t Ade7953RegistersAis1Bis2[] { +const uint16_t Ade7953Registers[] { ADE7953_IRMSA, // IRMSA - RMS current channel A ADE7953_AWATT, // AWATT - Active power channel A ADE7953_AVA, // AVA - Apparent power channel A @@ -232,21 +218,6 @@ const uint16_t Ade7953RegistersAis1Bis2[] { ADE7953_ACCMODE // ACCMODE - Accumulation mode }; -// Active power -const uint16_t APSIGN[] { - 0x0400, // Bit 10 (21 bits) in ACCMODE Register for channel A (0 - positive, 1 - negative) - 0x0800 // Bit 11 (21 bits) in ACCMODE Register for channel B (0 - positive, 1 - negative) -}; -// Reactive power -const uint16_t VARSIGN[] { - 0x1000, // Bit 12 (21 bits) in ACCMODE Register for channel A (0 - positive, 1 - negative) - 0x2000 // Bit 13 (21 bits) in ACCMODE Register for channel B (0 - positive, 1 - negative) -}; -const uint32_t VARNLOAD[] { - 0x040000, // Bit 18 (21 bits) in ACCMODE Register for channel A (0 - out of no-load, 1 - no-load) - 0x200000 // Bit 21 (21 bits) in ACCMODE Register for channel B (0 - out of no-load, 1 - no-load) -}; - struct Ade7953 { uint32_t voltage_rms = 0; uint32_t period = 0; @@ -254,7 +225,7 @@ struct Ade7953 { uint32_t active_power[2] = { 0, 0 }; int32_t calib_data[sizeof(Ade7953CalibRegs)/sizeof(uint16_t)]; uint8_t init_step = 0; - uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM + uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM } Ade7953; int Ade7953RegSize(uint16_t reg) { @@ -281,10 +252,10 @@ void Ade7953Write(uint16_t reg, uint32_t val) { Wire.write((reg >> 8) & 0xFF); Wire.write(reg & 0xFF); while (size--) { - Wire.write((val >> (8 * size)) & 0xFF); // Write data, MSB first + Wire.write((val >> (8 * size)) & 0xFF); // Write data, MSB first } Wire.endTransmission(); - delayMicroseconds(5); // Bus-free time minimum 4.7us + delayMicroseconds(5); // Bus-free time minimum 4.7us } } @@ -344,15 +315,15 @@ void Ade7953Init(void) { Ade7953DumpRegs(); #endif // ADE7953_DUMP_REGS - Ade7953Write(ADE7953_CONFIG, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF - Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 - Ade7953Write(0x120, 0x0030); // Configure optimum setting + Ade7953Write(ADE7953_CONFIG, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF + Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 + Ade7953Write(0x120, 0x0030); // Configure optimum setting for (uint32_t i = 0; i < sizeof(Ade7953CalibRegs)/sizeof(uint16_t); i++) { if (i >= ADE7943_CAL_PHCALA) { int16_t phasecal = Ade7953.calib_data[i]; if (phasecal < 0) { - phasecal = abs(phasecal) + 0x200; // Add sign magnitude + phasecal = abs(phasecal) + 0x200; // Add sign magnitude } Ade7953Write(Ade7953CalibRegs[i], phasecal); } else { @@ -364,8 +335,8 @@ void Ade7953Init(void) { regs[i] = Ade7953Read(Ade7953CalibRegs[i]); if (i >= ADE7943_CAL_PHCALA) { if (regs[i] >= 0x0200) { - regs[i] &= 0x01FF; // Clear sign magnitude - regs[i] *= -1; // Make negative + regs[i] &= 0x01FF; // Clear sign magnitude + regs[i] *= -1; // Make negative } } } @@ -379,16 +350,17 @@ void Ade7953Init(void) { void Ade7953GetData(void) { uint32_t acc_mode; int32_t reg[2][4]; - for (uint32_t i = 0; i < sizeof(Ade7953RegistersAis2Bis1)/sizeof(uint16_t); i++) { - int32_t value = Ade7953Read((ADE7953_SHELLY_25 == Ade7953.model) ? Ade7953RegistersAis2Bis1[i] : Ade7953RegistersAis1Bis2[i]); + for (uint32_t i = 0; i < sizeof(Ade7953Registers)/sizeof(uint16_t); i++) { + int32_t value = Ade7953Read(Ade7953Registers[i]); if (8 == i) { - Ade7953.voltage_rms = value; // RMS voltage (Both relays) + Ade7953.voltage_rms = value; // RMS voltage (both channels) } else if (9 == i) { - Ade7953.period = value; // Period + Ade7953.period = value; // Period } else if (10 == i) { - acc_mode = value; // Accumulation mode + acc_mode = value; // Accumulation mode } else { - reg[i >> 2][i &3] = value; // IRMS, WATT, VA, VAR + uint32_t reg_index = i >> 2; // 0 or 1 + reg[(ADE7953_SHELLY_25 == Ade7953.model) ? !reg_index : reg_index][i &3] = value; // IRMS, WATT, VA, VAR } } AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, Period %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"), @@ -407,13 +379,13 @@ void Ade7953GetData(void) { Ade7953.active_power[channel] = abs(reg[channel][1]); apparent_power[channel] = abs(reg[channel][2]); reactive_power[channel] = abs(reg[channel][3]); - if ((ADE7953_SHELLY_EM == Ade7953.model) && ((acc_mode & VARNLOAD[channel]) != 0)) { + if ((ADE7953_SHELLY_EM == Ade7953.model) && (bitRead(acc_mode, 18 +(channel * 3)))) { // VARNLOAD reactive_power[channel] = 0; } } } - if (Energy.power_on) { // Powered on + if (Energy.power_on) { // Powered on float divider = (Ade7953.calib_data[ADE7953_CAL_AVGAIN] != ADE7953_GAIN_DEFAULT) ? 10000 : Settings->energy_voltage_calibration; Energy.voltage[0] = (float)Ade7953.voltage_rms / divider; Energy.frequency[0] = 223750.0f / ((float)Ade7953.period + 1); @@ -425,10 +397,10 @@ void Ade7953GetData(void) { divider = (Ade7953.calib_data[ADE7953_CAL_AVARGAIN + channel] != ADE7953_GAIN_DEFAULT) ? 44 : (Settings->energy_power_calibration / 10); Energy.reactive_power[channel] = (float)reactive_power[channel] / divider; if (ADE7953_SHELLY_EM == Ade7953.model) { - if ((acc_mode & APSIGN[channel]) != 0) { + if (bitRead(acc_mode, 10 +channel)) { // APSIGN Energy.active_power[channel] *= -1; } - if ((acc_mode & VARSIGN[channel]) != 0) { + if (bitRead(acc_mode, 12 +channel)) { // VARSIGN Energy.reactive_power[channel] *= -1; } } @@ -468,10 +440,10 @@ bool Ade7953SetDefaults(const char* json) { // {"angles":{"angle0":180,"angle1":176}} // {"rms":{"current_a":4194303,"current_b":4194303,"voltage":1613194},"angles":{"angle0":0,"angle1":0},"powers":{"totactive":{"a":2723574,"b":2723574},"apparent":{"a":2723574,"b":2723574},"reactive":{"a":2723574,"b":2723574}}} uint32_t len = strlen(json) +1; - if (len < 7) { return false; } // Too short + if (len < 7) { return false; } // Too short char json_buffer[len]; - memcpy(json_buffer, json, len); // Keep original safe + memcpy(json_buffer, json, len); // Keep original safe JsonParser parser(json_buffer); JsonParserObject root = parser.getRootObject(); if (!root) {