Refactor buttons and switches Pt.2

This commit is contained in:
Theo Arends 2023-02-12 17:23:22 +01:00
parent e0584b2157
commit dab80f9d29
2 changed files with 347 additions and 362 deletions

View File

@ -53,7 +53,6 @@ struct BUTTON {
uint8_t press_counter[MAX_KEYS_SET] = { 0 }; // Number of button presses within Button.window_timer uint8_t press_counter[MAX_KEYS_SET] = { 0 }; // Number of button presses within Button.window_timer
uint8_t dual_receive_count = 0; // Sonoff dual input flag uint8_t dual_receive_count = 0; // Sonoff dual input flag
uint8_t first_change = 0; uint8_t first_change = 0;
uint8_t present = 0; // Number of buttons found flag
bool probe_mutex; bool probe_mutex;
} Button; } Button;
@ -92,6 +91,11 @@ void ButtonSetVirtualPinState(uint32_t index, uint32_t state) {
bitWrite(Button.virtual_pin, index, state); bitWrite(Button.virtual_pin, index, state);
} }
uint8_t ButtonGetState(uint32_t index) {
// Get current state
return Button.debounced_state[index];
}
uint8_t ButtonLastState(uint32_t index) { uint8_t ButtonLastState(uint32_t index) {
// Get last state // Get last state
return Button.last_state[index]; return Button.last_state[index];
@ -228,22 +232,16 @@ void ButtonProbe(void) {
void ButtonInit(void) { void ButtonInit(void) {
bool ac_detect = (Settings->button_debounce % 10 == 9); bool ac_detect = (Settings->button_debounce % 10 == 9);
Button.present = 0;
Button.used = 0; Button.used = 0;
#ifdef ESP8266
if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) {
Button.present++;
}
#endif // ESP8266
for (uint32_t i = 0; i < MAX_KEYS_SET; i++) { for (uint32_t i = 0; i < MAX_KEYS_SET; i++) {
Button.last_state[i] = NOT_PRESSED; Button.last_state[i] = NOT_PRESSED;
bool used = false; #ifdef ESP8266
if ((0 == i) && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) {
bitSet(Button.used, i); // This pin is used
} else
#endif // ESP8266
if (PinUsed(GPIO_KEY1, i)) { if (PinUsed(GPIO_KEY1, i)) {
Button.present++; bitSet(Button.used, i); // This pin is used
#ifdef ESP8266 #ifdef ESP8266
pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP)); pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
#endif // ESP8266 #endif // ESP8266
@ -252,11 +250,14 @@ void ButtonInit(void) {
#endif // ESP32 #endif // ESP32
// Set global now so doesn't change the saved power state on first button check // Set global now so doesn't change the saved power state on first button check
Button.last_state[i] = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i)); Button.last_state[i] = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i));
used = true; if (ac_detect) {
Button.state[i] = 0x80 + 2 * BUTTON_AC_PERIOD;
Button.last_state[i] = 0; // Will set later in the debouncing code
}
} }
#ifdef USE_ADC #ifdef USE_ADC
else if (PinUsed(GPIO_ADC_BUTTON, i) || PinUsed(GPIO_ADC_BUTTON_INV, i)) { else if (PinUsed(GPIO_ADC_BUTTON, i) || PinUsed(GPIO_ADC_BUTTON_INV, i)) {
Button.present++; bitSet(Button.used, i); // This pin is used
} }
#endif // USE_ADC #endif // USE_ADC
else { else {
@ -268,7 +269,6 @@ void ButtonInit(void) {
At exit: At exit:
XdrvMailbox.index bit 0 = current state XdrvMailbox.index bit 0 = current state
*/ */
Button.present++;
bitSet(Button.used, i); // This pin is used bitSet(Button.used, i); // This pin is used
bool state = (XdrvMailbox.index &1); bool state = (XdrvMailbox.index &1);
ButtonSetVirtualPinState(i, state); // Virtual hardware pin state ButtonSetVirtualPinState(i, state); // Virtual hardware pin state
@ -276,22 +276,15 @@ void ButtonInit(void) {
// last_state[i] must be 1 to indicate no button pressed // last_state[i] must be 1 to indicate no button pressed
Button.last_state[i] = (bitRead(Button.virtual_pin, i) != bitRead(Button.inverted_mask, i)); Button.last_state[i] = (bitRead(Button.virtual_pin, i) != bitRead(Button.inverted_mask, i));
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Add vButton%d, State %d"), Button.present, Button.last_state[i]); AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Add vButton%d, State %d"), i +1, Button.last_state[i]);
used = true;
} }
} }
if (used && ac_detect) {
Button.state[i] = 0x80 + 2 * BUTTON_AC_PERIOD;
Button.last_state[i] = 0; // Will set later in the debouncing code
}
Button.debounced_state[i] = Button.last_state[i]; Button.debounced_state[i] = Button.last_state[i];
} }
// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: vPinUsed %08X, State %08X, Invert %08X"), Button.used, Button.virtual_pin, Button.inverted_mask); // AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: vPinUsed %08X, State %08X, Invert %08X"), Button.used, Button.virtual_pin, Button.inverted_mask);
if (Button.present) { if (Button.used) { // Any bit set
Button.first_change = true; Button.first_change = true;
TickerButton.attach_ms((ac_detect) ? BUTTON_FAST_PROBE_INTERVAL : BUTTON_PROBE_INTERVAL, ButtonProbe); TickerButton.attach_ms((ac_detect) ? BUTTON_FAST_PROBE_INTERVAL : BUTTON_PROBE_INTERVAL, ButtonProbe);
} }
@ -338,12 +331,12 @@ void ButtonHandler(void) {
char scmnd[20]; char scmnd[20];
for (uint32_t button_index = 0; button_index < MAX_KEYS_SET; button_index++) { for (uint32_t button_index = 0; button_index < MAX_KEYS_SET; button_index++) {
uint8_t button = NOT_PRESSED; if (!bitRead(Button.used, button_index)) { return; }
uint8_t button_present = 0;
uint8_t button = Button.debounced_state[button_index];
#ifdef ESP8266 #ifdef ESP8266
if (!button_index && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) { if (!button_index && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) {
button_present = 1;
if (Button.dual_code) { if (Button.dual_code) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Code %04X"), Button.dual_code); AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Code %04X"), Button.dual_code);
button = PRESSED; button = PRESSED;
@ -352,6 +345,8 @@ void ButtonHandler(void) {
hold_time_extent = 1; hold_time_extent = 1;
} }
Button.dual_code = 0; Button.dual_code = 0;
} else {
button = NOT_PRESSED;
} }
} else } else
#endif // ESP8266 #endif // ESP8266
@ -371,193 +366,183 @@ void ButtonHandler(void) {
} }
AddLog(LOG_LEVEL_INFO, PSTR("PLOT: %u, %u, %u,"), button_index +1, _value, TouchButton.hits[button_index]); // Button number (1..4), value, continuous hits under threshold AddLog(LOG_LEVEL_INFO, PSTR("PLOT: %u, %u, %u,"), button_index +1, _value, TouchButton.hits[button_index]); // Button number (1..4), value, continuous hits under threshold
continue; continue;
} else }
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2 #endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
button_present = 1;
button = Button.debounced_state[button_index];
} }
#ifdef USE_ADC #ifdef USE_ADC
else if (PinUsed(GPIO_ADC_BUTTON, button_index)) { else if (PinUsed(GPIO_ADC_BUTTON, button_index)) {
button_present = 1;
button = AdcGetButton(Pin(GPIO_ADC_BUTTON, button_index)); button = AdcGetButton(Pin(GPIO_ADC_BUTTON, button_index));
} }
else if (PinUsed(GPIO_ADC_BUTTON_INV, button_index)) { else if (PinUsed(GPIO_ADC_BUTTON_INV, button_index)) {
button_present = 1;
button = AdcGetButton(Pin(GPIO_ADC_BUTTON_INV, button_index)); button = AdcGetButton(Pin(GPIO_ADC_BUTTON_INV, button_index));
} }
#endif // USE_ADC #endif // USE_ADC
else if (bitRead(Button.used, button_index)) {
button_present = 1; XdrvMailbox.index = button_index;
button = Button.debounced_state[button_index]; XdrvMailbox.payload = button;
XdrvMailbox.command_code = Button.last_state[button_index];
if (XdrvCall(FUNC_BUTTON_PRESSED)) {
// Serviced
} }
if (button_present) {
XdrvMailbox.index = button_index;
XdrvMailbox.payload = button;
XdrvMailbox.command_code = Button.last_state[button_index];
if (XdrvCall(FUNC_BUTTON_PRESSED)) {
// Serviced
}
#ifdef ESP8266 #ifdef ESP8266
else if (SONOFF_4CHPRO == TasmotaGlobal.module_type) { else if (SONOFF_4CHPRO == TasmotaGlobal.module_type) {
if (Button.hold_timer[button_index]) { Button.hold_timer[button_index]--; } if (Button.hold_timer[button_index]) { Button.hold_timer[button_index]--; }
bool button_pressed = false; bool button_pressed = false;
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) { if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 1-0"), button_index +1); AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 1-0"), button_index +1);
Button.hold_timer[button_index] = loops_per_second; Button.hold_timer[button_index] = loops_per_second;
button_pressed = true; button_pressed = true;
}
if ((NOT_PRESSED == button) && (PRESSED == Button.last_state[button_index])) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 0-1"), button_index +1);
if (!Button.hold_timer[button_index]) { button_pressed = true; } // Do not allow within 1 second
}
if (button_pressed) {
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} else {
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 (0) - Decouple button from relay and send just mqtt topic
} }
if ((NOT_PRESSED == button) && (PRESSED == Button.last_state[button_index])) { }
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 0-1"), button_index +1); }
if (!Button.hold_timer[button_index]) { button_pressed = true; } // Do not allow within 1 second #endif // ESP8266
} else {
if (button_pressed) { if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action,
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d immediate"), button_index +1);
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
} }
} else { } else {
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 (0) - Decouple button from relay and send just mqtt topic MqttButtonTopic(button_index +1, 1, 0); // SetOption73 1 - Decouple button from relay and send just mqtt topic
}
} else {
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d multi-press %d"), button_index +1, Button.press_counter[button_index]);
Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window
}
TasmotaGlobal.blinks = 201;
}
if (NOT_PRESSED == button) {
Button.hold_timer[button_index] = 0;
if (Settings->flag3.mqtt_buttons && (PRESSED == Button.last_state[button_index]) && !Button.press_counter[button_index]) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
MqttButtonTopic(button_index +1, 6, 0);
}
} else {
Button.hold_timer[button_index]++;
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
if (Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button held for factor times longer
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_SETOPTION "13 0")); // Disable single press only
ExecuteCommand(scmnd, SRC_BUTTON);
}
} else {
if (Button.hold_timer[button_index] == loops_per_second * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button hold
Button.press_counter[button_index] = 0;
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
MqttButtonTopic(button_index +1, 3, 1);
} else {
SendKey(KEY_BUTTON, button_index +1, POWER_HOLD); // Execute Hold command via MQTT if ButtonTopic is set
}
} else {
if (Settings->flag.button_restrict) { // SetOption1 (0) - Control button multipress
if (Settings->param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold
if (Button.hold_timer[button_index] > loops_per_second * Settings->param[P_HOLD_IGNORE] / 10) {
Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger
Button.press_counter[button_index] = 0; // Discard button press to disable functionality
}
}
} else {
if ((Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer
Button.press_counter[button_index] = 0;
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
} }
} }
} }
#endif // ESP8266
else {
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action, if (!Settings->flag.button_single) { // SetOption13 (0) - Allow multi-press
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic if (Button.window_timer[button_index]) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d immediate"), button_index +1); Button.window_timer[button_index]--;
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} else {
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 1 - Decouple button from relay and send just mqtt topic
}
} else {
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d multi-press %d"), button_index +1, Button.press_counter[button_index]);
Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window
}
TasmotaGlobal.blinks = 201;
}
if (NOT_PRESSED == button) {
Button.hold_timer[button_index] = 0;
if (Settings->flag3.mqtt_buttons && (PRESSED == Button.last_state[button_index]) && !Button.press_counter[button_index]) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
MqttButtonTopic(button_index +1, 6, 0);
}
} else { } else {
Button.hold_timer[button_index]++; if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0) && (Button.press_counter[button_index] < 7)) {
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
if (Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button held for factor times longer
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_SETOPTION "13 0")); // Disable single press only
ExecuteCommand(scmnd, SRC_BUTTON);
}
} else {
if (Button.hold_timer[button_index] == loops_per_second * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button hold
Button.press_counter[button_index] = 0;
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
MqttButtonTopic(button_index +1, 3, 1);
} else {
SendKey(KEY_BUTTON, button_index +1, POWER_HOLD); // Execute Hold command via MQTT if ButtonTopic is set
}
} else {
if (Settings->flag.button_restrict) { // SetOption1 (0) - Control button multipress
if (Settings->param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold
if (Button.hold_timer[button_index] > loops_per_second * Settings->param[P_HOLD_IGNORE] / 10) {
Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger
Button.press_counter[button_index] = 0; // Discard button press to disable functionality
}
}
} else {
if ((Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer
Button.press_counter[button_index] = 0;
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
}
}
}
if (!Settings->flag.button_single) { // SetOption13 (0) - Allow multi-press bool single_press = false;
if (Button.window_timer[button_index]) { if (Button.press_counter[button_index] < 3) { // Single or Double press
Button.window_timer[button_index]--;
} else {
if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0) && (Button.press_counter[button_index] < 7)) {
bool single_press = false;
if (Button.press_counter[button_index] < 3) { // Single or Double press
#ifdef ESP8266 #ifdef ESP8266
if ((SONOFF_DUAL_R2 == TasmotaGlobal.module_type) || (SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) { if ((SONOFF_DUAL_R2 == TasmotaGlobal.module_type) || (SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) {
single_press = true; single_press = true;
} else } else
#endif // ESP8266 #endif // ESP8266
{ {
single_press = (Settings->flag.button_swap +1 == Button.press_counter[button_index]); // SetOption11 (0) single_press = (Settings->flag.button_swap +1 == Button.press_counter[button_index]); // SetOption11 (0)
if ((1 == Button.present) && (2 == TasmotaGlobal.devices_present)) { // Single Button with two devices only if ((1 == Button.used) && (2 == TasmotaGlobal.devices_present)) { // Single Button with two devices only
if (Settings->flag.button_swap) { // SetOption11 (0) if (Settings->flag.button_swap) { // SetOption11 (0)
Button.press_counter[button_index] = (single_press) ? 1 : 2; Button.press_counter[button_index] = (single_press) ? 1 : 2;
}
} }
} }
} }
}
XdrvMailbox.index = button_index; XdrvMailbox.index = button_index;
XdrvMailbox.payload = Button.press_counter[button_index]; XdrvMailbox.payload = Button.press_counter[button_index];
if (XdrvCall(FUNC_BUTTON_MULTI_PRESSED)) { if (XdrvCall(FUNC_BUTTON_MULTI_PRESSED)) {
// Serviced // Serviced
// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: FUNC_BUTTON_MULTI_PRESSED serviced")); // AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: FUNC_BUTTON_MULTI_PRESSED serviced"));
} else } else
#ifdef ROTARY_V1 #ifdef ROTARY_V1
if (!RotaryButtonPressed(button_index)) { if (!RotaryButtonPressed(button_index)) {
#endif #endif
if (!Settings->flag3.mqtt_buttons && single_press && SendKey(KEY_BUTTON, button_index + Button.press_counter[button_index], POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set if (!Settings->flag3.mqtt_buttons && single_press && SendKey(KEY_BUTTON, button_index + Button.press_counter[button_index], POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
// Success // Success
} else { } else {
if (Button.press_counter[button_index] < 6) { // Single to Penta press if (Button.press_counter[button_index] < 6) { // Single to Penta press
// if (WifiState() > WIFI_RESTART) { // Wifimanager active // if (WifiState() > WIFI_RESTART) { // Wifimanager active
// TasmotaGlobal.restart_flag = 1; // TasmotaGlobal.restart_flag = 1;
// } // }
if (!Settings->flag3.mqtt_buttons) { // SetOption73 - Detach buttons from relays and enable MQTT action state for multipress if (!Settings->flag3.mqtt_buttons) { // SetOption73 - Detach buttons from relays and enable MQTT action state for multipress
if (Button.press_counter[button_index] == 1) { // By default first press always send a TOGGLE (2) if (Button.press_counter[button_index] == 1) { // By default first press always send a TOGGLE (2)
ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON);
} else { } else {
SendKey(KEY_BUTTON, button_index +1, Button.press_counter[button_index] +9); // 2,3,4 and 5 press send just the key value (11,12,13 and 14) for rules SendKey(KEY_BUTTON, button_index +1, Button.press_counter[button_index] +9); // 2,3,4 and 5 press send just the key value (11,12,13 and 14) for rules
if (0 == button_index) { // BUTTON1 can toggle up to 5 relays if present. If a relay is not present will send out the key value (2,11,12,13 and 14) for rules if (0 == button_index) { // BUTTON1 can toggle up to 5 relays if present. If a relay is not present will send out the key value (2,11,12,13 and 14) for rules
uint32_t max_device = (TasmotaGlobal.devices_present < MAX_RELAY_BUTTON1) ? TasmotaGlobal.devices_present : MAX_RELAY_BUTTON1; uint32_t max_device = (TasmotaGlobal.devices_present < MAX_RELAY_BUTTON1) ? TasmotaGlobal.devices_present : MAX_RELAY_BUTTON1;
if ((Button.press_counter[button_index] > 1) && (Button.press_counter[button_index] <= max_device)) { if ((Button.press_counter[button_index] > 1) && (Button.press_counter[button_index] <= max_device)) {
ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} }
} }
} }
} else { // 6 press start wificonfig 2
if (!Settings->flag.button_restrict) { // SetOption1 - Control button multipress
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
} }
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
if (Button.press_counter[button_index] >= 1 && Button.press_counter[button_index] <= 5) { } else { // 6 press start wificonfig 2
MqttButtonTopic(button_index +1, Button.press_counter[button_index], 0); if (!Settings->flag.button_restrict) { // SetOption1 - Control button multipress
} snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
if (Button.press_counter[button_index] >= 1 && Button.press_counter[button_index] <= 5) {
MqttButtonTopic(button_index +1, Button.press_counter[button_index], 0);
} }
} }
#ifdef ROTARY_V1
} }
#endif #ifdef ROTARY_V1
Button.press_counter[button_index] = 0;
} }
#endif
Button.press_counter[button_index] = 0;
} }
} }
} }
} }
Button.last_state[button_index] = button; Button.last_state[button_index] = button;
} }
@ -576,7 +561,7 @@ void MqttButtonTopic(uint32_t button_id, uint32_t action, uint32_t hold) {
} }
void ButtonLoop(void) { void ButtonLoop(void) {
if (Button.present) { if (Button.used) {
if (TimeReached(Button.debounce)) { if (TimeReached(Button.debounce)) {
SetNextTimeInterval(Button.debounce, Settings->button_debounce); // ButtonDebounce (50) SetNextTimeInterval(Button.debounce, Settings->button_debounce); // ButtonDebounce (50)
ButtonHandler(); ButtonHandler();

View File

@ -76,7 +76,10 @@ void SwitchSetVirtualPinState(uint32_t index, uint32_t state) {
void SwitchSetState(uint32_t index, uint32_t state) { void SwitchSetState(uint32_t index, uint32_t state) {
// Set debounced pin state to be used by late detected switches // Set debounced pin state to be used by late detected switches
bitSet(Switch.used, index); // Force use bit as call maybe late if (!bitRead(Switch.used, index)) {
bitSet(Switch.used, index);
AddLog(LOG_LEVEL_DEBUG, PSTR("SWT: Add vSwitch%d, State %d"), index +1, state);
}
Switch.debounced_state[index] = state; Switch.debounced_state[index] = state;
} }
@ -218,16 +221,14 @@ void SwitchProbe(void) {
} }
} }
} }
Switch.probe_mutex = false; Switch.probe_mutex = false;
} }
void SwitchInit(void) { void SwitchInit(void) {
bool ac_detect = (Settings->switch_debounce % 10 == 9); bool ac_detect = (Settings->switch_debounce % 10 == 9);
Switch.used = 0; Switch.used = 0;
for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) { for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) {
Switch.last_state[i] = NOT_PRESSED; // Init global to virtual switch state; Switch.last_state[i] = NOT_PRESSED;
if (PinUsed(GPIO_SWT1, i)) { if (PinUsed(GPIO_SWT1, i)) {
bitSet(Switch.used, i); // This pin is used bitSet(Switch.used, i); // This pin is used
#ifdef ESP8266 #ifdef ESP8266
@ -237,6 +238,10 @@ void SwitchInit(void) {
pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Switch.no_pullup_mask, i) ? INPUT : INPUT_PULLUP); pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Switch.no_pullup_mask, i) ? INPUT : INPUT_PULLUP);
#endif // ESP32 #endif // ESP32
Switch.last_state[i] = digitalRead(Pin(GPIO_SWT1, i)); // Set global now so doesn't change the saved power state on first switch check Switch.last_state[i] = digitalRead(Pin(GPIO_SWT1, i)); // Set global now so doesn't change the saved power state on first switch check
if (ac_detect) {
Switch.state[i] = 0x80 + 2 * SWITCH_AC_PERIOD;
Switch.last_state[i] = 0; // Will set later in the debouncing code
}
} }
else { else {
XdrvMailbox.index = i; XdrvMailbox.index = i;
@ -255,11 +260,6 @@ void SwitchInit(void) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SWT: Add vSwitch%d, State %d"), i +1, Switch.last_state[i]); AddLog(LOG_LEVEL_DEBUG, PSTR("SWT: Add vSwitch%d, State %d"), i +1, Switch.last_state[i]);
} }
} }
if (bitRead(Switch.used, i) && ac_detect) {
Switch.state[i] = 0x80 + 2 * SWITCH_AC_PERIOD;
Switch.last_state[i] = 0; // Will set later in the debouncing code
}
Switch.debounced_state[i] = Switch.last_state[i]; Switch.debounced_state[i] = Switch.last_state[i];
} }
@ -281,212 +281,212 @@ void SwitchHandler(void) {
uint32_t loops_per_second = 1000 / Settings->switch_debounce; uint32_t loops_per_second = 1000 / Settings->switch_debounce;
for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) { for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) {
if (bitRead(Switch.used, i)) { if (!bitRead(Switch.used, i)) { return; }
uint32_t button = Switch.debounced_state[i];
uint32_t switchflag = POWER_TOGGLE +1;
uint32_t mqtt_action = POWER_NONE;
uint32_t switchmode = Settings->switchmode[i];
if (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK)) { uint32_t button = Switch.debounced_state[i];
Switch.hold_timer[i]--; uint32_t switchflag = POWER_TOGGLE +1;
if ((Switch.hold_timer[i] & SM_TIMER_MASK) == loops_per_second * Settings->param[P_HOLD_TIME] / 25) { uint32_t mqtt_action = POWER_NONE;
if ((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)){ uint32_t switchmode = Settings->switchmode[i];
if (((switchmode == PUSHHOLDMULTI) & (NOT_PRESSED == Switch.last_state[i])) | ((switchmode == PUSHHOLDMULTI_INV) & (PRESSED == Switch.last_state[i]))) {
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT if (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK)) {
} Switch.hold_timer[i]--;
else if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) { if ((Switch.hold_timer[i] & SM_TIMER_MASK) == loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
SendKey(KEY_SWITCH, i +1, POWER_DELAYED); // Execute command via MQTT if ((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)){
mqtt_action = POWER_DELAYED; if (((switchmode == PUSHHOLDMULTI) & (NOT_PRESSED == Switch.last_state[i])) | ((switchmode == PUSHHOLDMULTI_INV) & (PRESSED == Switch.last_state[i]))) {
Switch.hold_timer[i] = 0; SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
}
} }
} else if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) {
if (0 == (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK))) { SendKey(KEY_SWITCH, i +1, POWER_DELAYED); // Execute command via MQTT
switch (switchmode) { mqtt_action = POWER_DELAYED;
case TOGGLEMULTI: Switch.hold_timer[i] = 0;
switchflag = POWER_TOGGLE; // Toggle after hold
break;
case FOLLOWMULTI:
switchflag = button &1; // Follow wall switch state after hold
break;
case FOLLOWMULTI_INV:
switchflag = ~button &1; // Follow inverted wall switch state after hold
break;
case PUSHHOLDMULTI:
if (NOT_PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
mqtt_action = POWER_INCREMENT;
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
mqtt_action = POWER_CLEAR;
}
break;
case PUSHHOLDMULTI_INV:
if (PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
mqtt_action = POWER_INCREMENT;
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
mqtt_action = POWER_CLEAR;
}
break;
default:
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
mqtt_action = POWER_HOLD;
break;
} }
} }
} }
if (0 == (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK))) {
if (button != Switch.last_state[i]) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i]))
switch (switchmode) { switch (switchmode) {
case TOGGLE: case TOGGLEMULTI:
case PUSHBUTTON_TOGGLE: switchflag = POWER_TOGGLE; // Toggle after hold
switchflag = POWER_TOGGLE; // Toggle break;
break; case FOLLOWMULTI:
case FOLLOW: switchflag = button &1; // Follow wall switch state after hold
switchflag = button &1; // Follow wall switch state break;
break; case FOLLOWMULTI_INV:
case FOLLOW_INV: switchflag = ~button &1; // Follow inverted wall switch state after hold
switchflag = ~button &1; // Follow inverted wall switch state break;
break; case PUSHHOLDMULTI:
case PUSHBUTTON: if (NOT_PRESSED == button) {
if (PRESSED == button) { Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
} mqtt_action = POWER_INCREMENT;
break;
case PUSHBUTTON_INV:
if (NOT_PRESSED == button) {
switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd
}
break;
case PUSHBUTTONHOLD:
if (PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press
}
if ((NOT_PRESSED == button) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer...
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case PUSHBUTTONHOLD_INV:
if (NOT_PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press...
}
if ((PRESSED == button) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer.
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case TOGGLEMULTI:
case FOLLOWMULTI:
case FOLLOWMULTI_INV:
if (Switch.hold_timer[i]) {
Switch.hold_timer[i] = 0;
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
mqtt_action = POWER_HOLD;
} else {
Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window
}
break;
case PUSHHOLDMULTI:
if (NOT_PRESSED == button) {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
mqtt_action = POWER_INV;
}
} else {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) > loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
Switch.hold_timer[i]= SM_FIRST_PRESS;
switchflag = POWER_TOGGLE; // Toggle with pushbutton
}
else{
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
mqtt_action = POWER_100;
Switch.hold_timer[i]= 0;
}
} else { } else {
Switch.hold_timer[i]= 0; Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
mqtt_action = POWER_RELEASE; mqtt_action = POWER_CLEAR;
} }
} break;
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10; case PUSHHOLDMULTI_INV:
break; if (PRESSED == button) {
case PUSHHOLDMULTI_INV: Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
if (PRESSED == button) { SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) { mqtt_action = POWER_INCREMENT;
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
mqtt_action = POWER_INV;
}
} else {
if ((Switch.hold_timer[i] & SM_TIMER_MASK)> loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
Switch.hold_timer[i]= SM_FIRST_PRESS;
switchflag = POWER_TOGGLE; // Toggle with pushbutton
}
else{
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
mqtt_action = POWER_100;
Switch.hold_timer[i]= 0;
}
} else { } else {
Switch.hold_timer[i]= 0; Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
mqtt_action = POWER_RELEASE; mqtt_action = POWER_CLEAR;
} }
} break;
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10; default:
break; SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
case PUSHON: mqtt_action = POWER_HOLD;
if (PRESSED == button) {
switchflag = POWER_ON; // Power ON with pushbutton to Gnd
}
break;
case PUSHON_INV:
if (NOT_PRESSED == button) {
switchflag = POWER_ON; // Power ON with releasing pushbutton from Gnd
}
break;
case PUSH_IGNORE:
case PUSH_IGNORE_INV:
Switch.last_state[i] = button; // Update switch state before publishing
MqttPublishSensor();
break; break;
} }
Switch.last_state[i] = button;
} }
if (switchflag <= POWER_TOGGLE) { }
if (!Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT if (button != Switch.last_state[i]) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i]))
ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < TasmotaGlobal.devices_present) switch (switchmode) {
case TOGGLE:
case PUSHBUTTON_TOGGLE:
switchflag = POWER_TOGGLE; // Toggle
break;
case FOLLOW:
switchflag = button &1; // Follow wall switch state
break;
case FOLLOW_INV:
switchflag = ~button &1; // Follow inverted wall switch state
break;
case PUSHBUTTON:
if (PRESSED == button) {
switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd
}
break;
case PUSHBUTTON_INV:
if (NOT_PRESSED == button) {
switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd
}
break;
case PUSHBUTTONHOLD:
if (PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press
}
if ((NOT_PRESSED == button) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer...
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case PUSHBUTTONHOLD_INV:
if (NOT_PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press...
}
if ((PRESSED == button) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer.
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case TOGGLEMULTI:
case FOLLOWMULTI:
case FOLLOWMULTI_INV:
if (Switch.hold_timer[i]) {
Switch.hold_timer[i] = 0;
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
mqtt_action = POWER_HOLD;
} else {
Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window
}
break;
case PUSHHOLDMULTI:
if (NOT_PRESSED == button) {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
mqtt_action = POWER_INV;
} }
} else { mqtt_action = switchflag; } } else {
} if ((Switch.hold_timer[i] & SM_TIMER_MASK) > loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((mqtt_action != POWER_NONE) && Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59) Switch.hold_timer[i]= SM_FIRST_PRESS;
char mqtt_state_str[16]; switchflag = POWER_TOGGLE; // Toggle with pushbutton
char *mqtt_state = mqtt_state_str; }
if (mqtt_action <= 3) { else{
if (mqtt_action != 3) { SendKey(KEY_SWITCH, i +1, mqtt_action); } SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
mqtt_state = SettingsText(SET_STATE_TXT1 + mqtt_action); mqtt_action = POWER_100;
Switch.hold_timer[i]= 0;
}
} else { } else {
GetTextIndexed(mqtt_state_str, sizeof(mqtt_state_str), mqtt_action, kSwitchPressStates); Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT
mqtt_action = POWER_RELEASE;
} }
Response_P(S_JSON_SVALUE_ACTION_SVALUE, GetSwitchText(i).c_str(), mqtt_state);
char scommand[10];
snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_SWITCH "%d"), i +1);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand);
} }
mqtt_action = POWER_NONE; Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10;
break;
case PUSHHOLDMULTI_INV:
if (PRESSED == button) {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
mqtt_action = POWER_INV;
}
} else {
if ((Switch.hold_timer[i] & SM_TIMER_MASK)> loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
Switch.hold_timer[i]= SM_FIRST_PRESS;
switchflag = POWER_TOGGLE; // Toggle with pushbutton
}
else{
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
mqtt_action = POWER_100;
Switch.hold_timer[i]= 0;
}
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT
mqtt_action = POWER_RELEASE;
}
}
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10;
break;
case PUSHON:
if (PRESSED == button) {
switchflag = POWER_ON; // Power ON with pushbutton to Gnd
}
break;
case PUSHON_INV:
if (NOT_PRESSED == button) {
switchflag = POWER_ON; // Power ON with releasing pushbutton from Gnd
}
break;
case PUSH_IGNORE:
case PUSH_IGNORE_INV:
Switch.last_state[i] = button; // Update switch state before publishing
MqttPublishSensor();
break;
} }
Switch.last_state[i] = button;
}
if (switchflag <= POWER_TOGGLE) {
if (!Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT
ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < TasmotaGlobal.devices_present)
}
} else { mqtt_action = switchflag; }
}
if ((mqtt_action != POWER_NONE) && Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59)
char mqtt_state_str[16];
char *mqtt_state = mqtt_state_str;
if (mqtt_action <= 3) {
if (mqtt_action != 3) { SendKey(KEY_SWITCH, i +1, mqtt_action); }
mqtt_state = SettingsText(SET_STATE_TXT1 + mqtt_action);
} else {
GetTextIndexed(mqtt_state_str, sizeof(mqtt_state_str), mqtt_action, kSwitchPressStates);
}
Response_P(S_JSON_SVALUE_ACTION_SVALUE, GetSwitchText(i).c_str(), mqtt_state);
char scommand[10];
snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_SWITCH "%d"), i +1);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand);
}
mqtt_action = POWER_NONE;
} }
} }
} }