From e7c6f4645f1761bffac6d606e5ce01bcf0f59702 Mon Sep 17 00:00:00 2001 From: Jason2866 <24528715+Jason2866@users.noreply.github.com> Date: Tue, 23 Jun 2020 19:21:48 +0200 Subject: [PATCH] Use PWM files from Arduino PR 7022 --- tasmota/core_esp8266_waveform.cpp | 436 ++++++++++++++++++++++++ tasmota/core_esp8266_wiring_digital.cpp | 264 ++++++++++++++ tasmota/core_esp8266_wiring_pwm.cpp | 79 +++++ 3 files changed, 779 insertions(+) create mode 100644 tasmota/core_esp8266_waveform.cpp create mode 100644 tasmota/core_esp8266_wiring_digital.cpp create mode 100644 tasmota/core_esp8266_wiring_pwm.cpp diff --git a/tasmota/core_esp8266_waveform.cpp b/tasmota/core_esp8266_waveform.cpp new file mode 100644 index 000000000..952e1fd19 --- /dev/null +++ b/tasmota/core_esp8266_waveform.cpp @@ -0,0 +1,436 @@ +/* + esp8266_waveform - General purpose waveform generation and control, + supporting outputs on all pins in parallel. + + Copyright (c) 2018 Earle F. Philhower, III. All rights reserved. + Copyright (c) 2020 Dirk O. Kaar. + + The core idea is to have a programmable waveform generator with a unique + high and low period (defined in microseconds or CPU clock cycles). TIMER1 is + set to 1-shot mode and is always loaded with the time until the next edge + of any live waveforms. + + Up to one waveform generator per pin supported. + + Each waveform generator is synchronized to the ESP clock cycle counter, not the + timer. This allows for removing interrupt jitter and delay as the counter + always increments once per 80MHz clock. Changes to a waveform are + contiguous and only take effect on the next waveform transition, + allowing for smooth transitions. + + This replaces older tone(), analogWrite(), and the Servo classes. + + Everywhere in the code where "ccy" or "ccys" is used, it means ESP.getCycleCount() + clock cycle time, or an interval measured in clock cycles, but not TIMER1 + cycles (which may be 2 CPU clock cycles @ 160MHz). + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#include "core_esp8266_waveform.h" +#include +#include "ets_sys.h" +#include + +// Timer is 80MHz fixed. 160MHz CPU frequency need scaling. +constexpr bool ISCPUFREQ160MHZ = clockCyclesPerMicrosecond() == 160; +// Maximum delay between IRQs, Timer1, <= 2^23 / 80MHz +constexpr int32_t MAXIRQTICKSCCYS = microsecondsToClockCycles(10000); +// Maximum servicing time for any single IRQ +constexpr uint32_t ISRTIMEOUTCCYS = microsecondsToClockCycles(18); +// The latency between in-ISR rearming of the timer and the earliest firing +constexpr int32_t IRQLATENCYCCYS = microsecondsToClockCycles(2); +// The SDK and hardware take some time to actually get to our NMI code +constexpr int32_t DELTAIRQCCYS = ISCPUFREQ160MHZ ? + microsecondsToClockCycles(2) >> 1 : microsecondsToClockCycles(2); + +// for INFINITE, the NMI proceeds on the waveform without expiry deadline. +// for EXPIRES, the NMI expires the waveform automatically on the expiry ccy. +// for UPDATEEXPIRY, the NMI recomputes the exact expiry ccy and transitions to EXPIRES. +// for INIT, the NMI initializes nextPeriodCcy, and if expiryCcy != 0 includes UPDATEEXPIRY. +enum class WaveformMode : uint8_t {INFINITE = 0, EXPIRES = 1, UPDATEEXPIRY = 2, INIT = 3}; + +// Waveform generator can create tones, PWM, and servos +typedef struct { + uint32_t nextPeriodCcy; // ESP clock cycle when a period begins. If WaveformMode::INIT, temporarily holds positive phase offset ccy count + uint32_t endDutyCcy; // ESP clock cycle when going from duty to off + int32_t dutyCcys; // Set next off cycle at low->high to maintain phase + int32_t adjDutyCcys; // Temporary correction for next period + int32_t periodCcys; // Set next phase cycle at low->high to maintain phase + uint32_t expiryCcy; // For time-limited waveform, the CPU clock cycle when this waveform must stop. If WaveformMode::UPDATE, temporarily holds relative ccy count + WaveformMode mode; + int8_t alignPhase; // < 0 no phase alignment, otherwise starts waveform in relative phase offset to given pin + bool autoPwm; // perform PWM duty to idle cycle ratio correction under high load at the expense of precise timings +} Waveform; + +namespace { + + static struct { + Waveform pins[17]; // State of all possible pins + uint32_t states = 0; // Is the pin high or low, updated in NMI so no access outside the NMI code + uint32_t enabled = 0; // Is it actively running, updated in NMI so no access outside the NMI code + + // Enable lock-free by only allowing updates to waveform.states and waveform.enabled from IRQ service routine + int32_t toSetBits = 0; // Message to the NMI handler to start/modify exactly one waveform + int32_t toDisableBits = 0; // Message to the NMI handler to disable exactly one pin from waveform generation + + uint32_t(*timer1CB)() = nullptr; + + bool timer1Running = false; + + uint32_t nextEventCcy; + } waveform; + +} + +// Interrupt on/off control +static ICACHE_RAM_ATTR void timer1Interrupt(); + +// Non-speed critical bits +#pragma GCC optimize ("Os") + +static void initTimer() { + timer1_disable(); + ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL); + ETS_FRC_TIMER1_NMI_INTR_ATTACH(timer1Interrupt); + timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE); + waveform.timer1Running = true; + timer1_write(IRQLATENCYCCYS); // Cause an interrupt post-haste +} + +static void ICACHE_RAM_ATTR deinitTimer() { + ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL); + timer1_disable(); + timer1_isr_init(); + waveform.timer1Running = false; +} + +extern "C" { + +// Set a callback. Pass in NULL to stop it +void setTimer1Callback(uint32_t (*fn)()) { + waveform.timer1CB = fn; + std::atomic_thread_fence(std::memory_order_acq_rel); + if (!waveform.timer1Running && fn) { + initTimer(); + } else if (waveform.timer1Running && !fn && !waveform.enabled) { + deinitTimer(); + } +} + +int startWaveform(uint8_t pin, uint32_t highUS, uint32_t lowUS, + uint32_t runTimeUS, int8_t alignPhase, uint32_t phaseOffsetUS, bool autoPwm) { + return startWaveformClockCycles(pin, + microsecondsToClockCycles(highUS), microsecondsToClockCycles(lowUS), + microsecondsToClockCycles(runTimeUS), alignPhase, microsecondsToClockCycles(phaseOffsetUS), autoPwm); +} + +// Start up a waveform on a pin, or change the current one. Will change to the new +// waveform smoothly on next low->high transition. For immediate change, stopWaveform() +// first, then it will immediately begin. +int startWaveformClockCycles(uint8_t pin, uint32_t highCcys, uint32_t lowCcys, + uint32_t runTimeCcys, int8_t alignPhase, uint32_t phaseOffsetCcys, bool autoPwm) { + uint32_t periodCcys = highCcys + lowCcys; + if (periodCcys < MAXIRQTICKSCCYS) { + if (!highCcys) { + periodCcys = (MAXIRQTICKSCCYS / periodCcys) * periodCcys; + } + else if (!lowCcys) { + highCcys = periodCcys = (MAXIRQTICKSCCYS / periodCcys) * periodCcys; + } + } + // sanity checks, including mixed signed/unsigned arithmetic safety + if ((pin > 16) || isFlashInterfacePin(pin) || (alignPhase > 16) || + static_cast(periodCcys) <= 0 || + static_cast(highCcys) < 0 || static_cast(lowCcys) < 0) { + return false; + } + Waveform& wave = waveform.pins[pin]; + wave.dutyCcys = highCcys; + wave.adjDutyCcys = 0; + wave.periodCcys = periodCcys; + wave.autoPwm = autoPwm; + + std::atomic_thread_fence(std::memory_order_acquire); + const uint32_t pinBit = 1UL << pin; + if (!(waveform.enabled & pinBit)) { + // wave.nextPeriodCcy and wave.endDutyCcy are initialized by the ISR + wave.nextPeriodCcy = phaseOffsetCcys; + wave.expiryCcy = runTimeCcys; // in WaveformMode::INIT, temporarily hold relative cycle count + wave.mode = WaveformMode::INIT; + wave.alignPhase = (alignPhase < 0) ? -1 : alignPhase; + if (!wave.dutyCcys) { + // If initially at zero duty cycle, force GPIO off + if (pin == 16) { + GP16O = 0; + } + else { + GPOC = pinBit; + } + } + std::atomic_thread_fence(std::memory_order_release); + waveform.toSetBits = 1UL << pin; + std::atomic_thread_fence(std::memory_order_release); + if (!waveform.timer1Running) { + initTimer(); + } + else if (T1V > IRQLATENCYCCYS) { + // Must not interfere if Timer is due shortly + timer1_write(IRQLATENCYCCYS); + } + } + else { + wave.mode = WaveformMode::INFINITE; // turn off possible expiry to make update atomic from NMI + std::atomic_thread_fence(std::memory_order_release); + wave.expiryCcy = runTimeCcys; // in WaveformMode::UPDATEEXPIRY, temporarily hold relative cycle count + if (runTimeCcys) { + wave.mode = WaveformMode::UPDATEEXPIRY; + std::atomic_thread_fence(std::memory_order_release); + waveform.toSetBits = 1UL << pin; + } + } + std::atomic_thread_fence(std::memory_order_acq_rel); + while (waveform.toSetBits) { + delay(0); // Wait for waveform to update + std::atomic_thread_fence(std::memory_order_acquire); + } + return true; +} + +// Stops a waveform on a pin +int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) { + // Can't possibly need to stop anything if there is no timer active + if (!waveform.timer1Running) { + return false; + } + // If user sends in a pin >16 but <32, this will always point to a 0 bit + // If they send >=32, then the shift will result in 0 and it will also return false + std::atomic_thread_fence(std::memory_order_acquire); + const uint32_t pinBit = 1UL << pin; + if (waveform.enabled & pinBit) { + waveform.toDisableBits = 1UL << pin; + std::atomic_thread_fence(std::memory_order_release); + // Must not interfere if Timer is due shortly + if (T1V > IRQLATENCYCCYS) { + timer1_write(IRQLATENCYCCYS); + } + while (waveform.toDisableBits) { + /* no-op */ // Can't delay() since stopWaveform may be called from an IRQ + std::atomic_thread_fence(std::memory_order_acquire); + } + } + if (!waveform.enabled && !waveform.timer1CB) { + deinitTimer(); + } + return true; +} + +}; + +// Speed critical bits +#pragma GCC optimize ("O2") + +// For dynamic CPU clock frequency switch in loop the scaling logic would have to be adapted. +// Using constexpr makes sure that the CPU clock frequency is compile-time fixed. +static inline ICACHE_RAM_ATTR int32_t scaleCcys(const int32_t ccys, const bool isCPU2X) { + if (ISCPUFREQ160MHZ) { + return isCPU2X ? ccys : (ccys >> 1); + } + else { + return isCPU2X ? (ccys << 1) : ccys; + } +} + +static ICACHE_RAM_ATTR void timer1Interrupt() { + const uint32_t isrStartCcy = ESP.getCycleCount(); + int32_t clockDrift = isrStartCcy - waveform.nextEventCcy; + const bool isCPU2X = CPU2X & 1; + if ((waveform.toSetBits && !(waveform.enabled & waveform.toSetBits)) || waveform.toDisableBits) { + // Handle enable/disable requests from main app. + waveform.enabled = (waveform.enabled & ~waveform.toDisableBits) | waveform.toSetBits; // Set the requested waveforms on/off + // Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t) + waveform.toDisableBits = 0; + } + + if (waveform.toSetBits) { + const int toSetPin = __builtin_ffs(waveform.toSetBits) - 1; + Waveform& wave = waveform.pins[toSetPin]; + switch (wave.mode) { + case WaveformMode::INIT: + waveform.states &= ~waveform.toSetBits; // Clear the state of any just started + if (wave.alignPhase >= 0 && waveform.enabled & (1UL << wave.alignPhase)) { + wave.nextPeriodCcy = waveform.pins[wave.alignPhase].nextPeriodCcy + wave.nextPeriodCcy; + } + else { + wave.nextPeriodCcy = waveform.nextEventCcy; + } + if (!wave.expiryCcy) { + wave.mode = WaveformMode::INFINITE; + break; + } + // fall through + case WaveformMode::UPDATEEXPIRY: + // in WaveformMode::UPDATEEXPIRY, expiryCcy temporarily holds relative CPU cycle count + wave.expiryCcy = wave.nextPeriodCcy + scaleCcys(wave.expiryCcy, isCPU2X); + wave.mode = WaveformMode::EXPIRES; + break; + default: + break; + } + waveform.toSetBits = 0; + } + + // Exit the loop if the next event, if any, is sufficiently distant. + const uint32_t isrTimeoutCcy = isrStartCcy + ISRTIMEOUTCCYS; + uint32_t busyPins = waveform.enabled; + waveform.nextEventCcy = isrStartCcy + MAXIRQTICKSCCYS; + + uint32_t now = ESP.getCycleCount(); + uint32_t isrNextEventCcy = now; + while (busyPins) { + if (static_cast(isrNextEventCcy - now) > IRQLATENCYCCYS) { + waveform.nextEventCcy = isrNextEventCcy; + break; + } + isrNextEventCcy = waveform.nextEventCcy; + uint32_t loopPins = busyPins; + while (loopPins) { + const int pin = __builtin_ffsl(loopPins) - 1; + const uint32_t pinBit = 1UL << pin; + loopPins ^= pinBit; + + Waveform& wave = waveform.pins[pin]; + + if (clockDrift) { + wave.endDutyCcy += clockDrift; + wave.nextPeriodCcy += clockDrift; + wave.expiryCcy += clockDrift; + } + + uint32_t waveNextEventCcy = (waveform.states & pinBit) ? wave.endDutyCcy : wave.nextPeriodCcy; + if (WaveformMode::EXPIRES == wave.mode && + static_cast(waveNextEventCcy - wave.expiryCcy) >= 0 && + static_cast(now - wave.expiryCcy) >= 0) { + // Disable any waveforms that are done + waveform.enabled ^= pinBit; + busyPins ^= pinBit; + } + else { + const int32_t overshootCcys = now - waveNextEventCcy; + if (overshootCcys >= 0) { + const int32_t periodCcys = scaleCcys(wave.periodCcys, isCPU2X); + if (waveform.states & pinBit) { + // active configuration and forward are 100% duty + if (wave.periodCcys == wave.dutyCcys) { + wave.nextPeriodCcy += periodCcys; + wave.endDutyCcy = wave.nextPeriodCcy; + } + else { + if (wave.autoPwm) { + wave.adjDutyCcys += overshootCcys; + } + waveform.states ^= pinBit; + if (16 == pin) { + GP16O = 0; + } + else { + GPOC = pinBit; + } + } + waveNextEventCcy = wave.nextPeriodCcy; + } + else { + wave.nextPeriodCcy += periodCcys; + if (!wave.dutyCcys) { + wave.endDutyCcy = wave.nextPeriodCcy; + } + else { + int32_t dutyCcys = scaleCcys(wave.dutyCcys, isCPU2X); + if (dutyCcys <= wave.adjDutyCcys) { + dutyCcys >>= 1; + wave.adjDutyCcys -= dutyCcys; + } + else if (wave.adjDutyCcys) { + dutyCcys -= wave.adjDutyCcys; + wave.adjDutyCcys = 0; + } + wave.endDutyCcy = now + dutyCcys; + if (static_cast(wave.endDutyCcy - wave.nextPeriodCcy) > 0) { + wave.endDutyCcy = wave.nextPeriodCcy; + } + waveform.states |= pinBit; + if (16 == pin) { + GP16O = 1; + } + else { + GPOS = pinBit; + } + } + waveNextEventCcy = wave.endDutyCcy; + } + + if (WaveformMode::EXPIRES == wave.mode && static_cast(waveNextEventCcy - wave.expiryCcy) > 0) { + waveNextEventCcy = wave.expiryCcy; + } + } + + if (static_cast(waveNextEventCcy - isrTimeoutCcy) >= 0) { + busyPins ^= pinBit; + if (static_cast(waveform.nextEventCcy - waveNextEventCcy) > 0) { + waveform.nextEventCcy = waveNextEventCcy; + } + } + else if (static_cast(isrNextEventCcy - waveNextEventCcy) > 0) { + isrNextEventCcy = waveNextEventCcy; + } + } + now = ESP.getCycleCount(); + } + clockDrift = 0; + } + + int32_t callbackCcys = 0; + if (waveform.timer1CB) { + callbackCcys = scaleCcys(microsecondsToClockCycles(waveform.timer1CB()), isCPU2X); + } + now = ESP.getCycleCount(); + int32_t nextEventCcys = waveform.nextEventCcy - now; + // Account for unknown duration of timer1CB(). + if (waveform.timer1CB && nextEventCcys > callbackCcys) { + waveform.nextEventCcy = now + callbackCcys; + nextEventCcys = callbackCcys; + } + + // Timer is 80MHz fixed. 160MHz CPU frequency need scaling. + int32_t deltaIrqCcys = DELTAIRQCCYS; + int32_t irqLatencyCcys = IRQLATENCYCCYS; + if (isCPU2X) { + nextEventCcys >>= 1; + deltaIrqCcys >>= 1; + irqLatencyCcys >>= 1; + } + + // Firing timer too soon, the NMI occurs before ISR has returned. + if (nextEventCcys < irqLatencyCcys + deltaIrqCcys) { + waveform.nextEventCcy = now + IRQLATENCYCCYS + DELTAIRQCCYS; + nextEventCcys = irqLatencyCcys; + } + else { + nextEventCcys -= deltaIrqCcys; + } + + // Register access is fast and edge IRQ was configured before. + T1L = nextEventCcys; +} diff --git a/tasmota/core_esp8266_wiring_digital.cpp b/tasmota/core_esp8266_wiring_digital.cpp new file mode 100644 index 000000000..9c15703e0 --- /dev/null +++ b/tasmota/core_esp8266_wiring_digital.cpp @@ -0,0 +1,264 @@ +/* + digital.c - wiring digital implementation for esp8266 + + Copyright (c) 2015 Hristo Gochkov. All rights reserved. + This file is part of the esp8266 core for Arduino environment. + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ +#define ARDUINO_MAIN +#include "wiring_private.h" +#include "pins_arduino.h" +#include "c_types.h" +#include "eagle_soc.h" +#include "ets_sys.h" +#include "user_interface.h" +#include "core_esp8266_waveform.h" +#include "interrupts.h" + +extern "C" { + +volatile uint32_t* const esp8266_gpioToFn[16] PROGMEM = { &GPF0, &GPF1, &GPF2, &GPF3, &GPF4, &GPF5, &GPF6, &GPF7, &GPF8, &GPF9, &GPF10, &GPF11, &GPF12, &GPF13, &GPF14, &GPF15 }; + +extern void __pinMode(uint8_t pin, uint8_t mode) { + if(pin < 16){ + if(mode == SPECIAL){ + GPC(pin) = (GPC(pin) & (0xF << GPCI)); //SOURCE(GPIO) | DRIVER(NORMAL) | INT_TYPE(UNCHANGED) | WAKEUP_ENABLE(DISABLED) + GPEC = (1 << pin); //Disable + GPF(pin) = GPFFS(GPFFS_BUS(pin));//Set mode to BUS (RX0, TX0, TX1, SPI, HSPI or CLK depending in the pin) + if(pin == 3) GPF(pin) |= (1 << GPFPU);//enable pullup on RX + } else if(mode & FUNCTION_0){ + GPC(pin) = (GPC(pin) & (0xF << GPCI)); //SOURCE(GPIO) | DRIVER(NORMAL) | INT_TYPE(UNCHANGED) | WAKEUP_ENABLE(DISABLED) + GPEC = (1 << pin); //Disable + GPF(pin) = GPFFS((mode >> 4) & 0x07); + if(pin == 13 && mode == FUNCTION_4) GPF(pin) |= (1 << GPFPU);//enable pullup on RX + } else if(mode == OUTPUT || mode == OUTPUT_OPEN_DRAIN){ + GPF(pin) = GPFFS(GPFFS_GPIO(pin));//Set mode to GPIO + GPC(pin) = (GPC(pin) & (0xF << GPCI)); //SOURCE(GPIO) | DRIVER(NORMAL) | INT_TYPE(UNCHANGED) | WAKEUP_ENABLE(DISABLED) + if(mode == OUTPUT_OPEN_DRAIN) GPC(pin) |= (1 << GPCD); + GPES = (1 << pin); //Enable + } else if(mode == INPUT || mode == INPUT_PULLUP){ + GPF(pin) = GPFFS(GPFFS_GPIO(pin));//Set mode to GPIO + GPEC = (1 << pin); //Disable + GPC(pin) = (GPC(pin) & (0xF << GPCI)) | (1 << GPCD); //SOURCE(GPIO) | DRIVER(OPEN_DRAIN) | INT_TYPE(UNCHANGED) | WAKEUP_ENABLE(DISABLED) + if(mode == INPUT_PULLUP) { + GPF(pin) |= (1 << GPFPU); // Enable Pullup + } + } else if(mode == WAKEUP_PULLUP || mode == WAKEUP_PULLDOWN){ + GPF(pin) = GPFFS(GPFFS_GPIO(pin));//Set mode to GPIO + GPEC = (1 << pin); //Disable + if(mode == WAKEUP_PULLUP) { + GPF(pin) |= (1 << GPFPU); // Enable Pullup + GPC(pin) = (1 << GPCD) | (4 << GPCI) | (1 << GPCWE); //SOURCE(GPIO) | DRIVER(OPEN_DRAIN) | INT_TYPE(LOW) | WAKEUP_ENABLE(ENABLED) + } else { + GPF(pin) |= (1 << GPFPD); // Enable Pulldown + GPC(pin) = (1 << GPCD) | (5 << GPCI) | (1 << GPCWE); //SOURCE(GPIO) | DRIVER(OPEN_DRAIN) | INT_TYPE(HIGH) | WAKEUP_ENABLE(ENABLED) + } + } + } else if(pin == 16){ + GPF16 = GP16FFS(GPFFS_GPIO(pin));//Set mode to GPIO + GPC16 = 0; + if(mode == INPUT || mode == INPUT_PULLDOWN_16){ + if(mode == INPUT_PULLDOWN_16){ + GPF16 |= (1 << GP16FPD);//Enable Pulldown + } + GP16E &= ~1; + } else if(mode == OUTPUT){ + GP16E |= 1; + } + } +} + +extern void ICACHE_RAM_ATTR __digitalWrite(uint8_t pin, uint8_t val) { + stopWaveform(pin); + if(pin < 16){ + if(val) GPOS = (1 << pin); + else GPOC = (1 << pin); + } else if(pin == 16){ + if(val) GP16O |= 1; + else GP16O &= ~1; + } +} + +extern int ICACHE_RAM_ATTR __digitalRead(uint8_t pin) { + if(pin < 16){ + return GPIP(pin); + } else if(pin == 16){ + return GP16I & 0x01; + } + return 0; +} + +/* + GPIO INTERRUPTS +*/ + +typedef void (*voidFuncPtr)(void); +typedef void (*voidFuncPtrArg)(void*); + +typedef struct { + uint8_t mode; + voidFuncPtr fn; + void * arg; + bool functional; +} interrupt_handler_t; + +//duplicate from functionalInterrupt.h keep in sync +typedef struct InterruptInfo { + uint8_t pin; + uint8_t value; + uint32_t micro; +} InterruptInfo; + +typedef struct { + InterruptInfo* interruptInfo; + void* functionInfo; +} ArgStructure; + +static interrupt_handler_t interrupt_handlers[16] = { {0, 0, 0, 0}, }; +static uint32_t interrupt_reg = 0; + +void ICACHE_RAM_ATTR interrupt_handler(void *arg, void *frame) +{ + (void) arg; + (void) frame; + uint32_t status = GPIE; + GPIEC = status;//clear them interrupts + uint32_t levels = GPI; + if(status == 0 || interrupt_reg == 0) return; + ETS_GPIO_INTR_DISABLE(); + int i = 0; + uint32_t changedbits = status & interrupt_reg; + while(changedbits){ + while(!(changedbits & (1 << i))) i++; + changedbits &= ~(1 << i); + interrupt_handler_t *handler = &interrupt_handlers[i]; + if (handler->fn && + (handler->mode == CHANGE || + (handler->mode & 1) == !!(levels & (1 << i)))) { + // to make ISR compatible to Arduino AVR model where interrupts are disabled + // we disable them before we call the client ISR + esp8266::InterruptLock irqLock; // stop other interrupts + if (handler->functional) + { + ArgStructure* localArg = (ArgStructure*)handler->arg; + if (localArg && localArg->interruptInfo) + { + localArg->interruptInfo->pin = i; + localArg->interruptInfo->value = __digitalRead(i); + localArg->interruptInfo->micro = micros(); + } + } + if (handler->arg) + { + ((voidFuncPtrArg)handler->fn)(handler->arg); + } + else + { + handler->fn(); + } + } + } + ETS_GPIO_INTR_ENABLE(); +} + +extern void cleanupFunctional(void* arg); + +static void set_interrupt_handlers(uint8_t pin, voidFuncPtr userFunc, void* arg, uint8_t mode, bool functional) +{ + interrupt_handler_t* handler = &interrupt_handlers[pin]; + handler->mode = mode; + handler->fn = userFunc; + if (handler->functional && handler->arg) // Clean when new attach without detach + { + cleanupFunctional(handler->arg); + } + handler->arg = arg; + handler->functional = functional; +} + +extern void __attachInterruptFunctionalArg(uint8_t pin, voidFuncPtrArg userFunc, void* arg, int mode, bool functional) +{ + // #5780 + // https://github.com/esp8266/esp8266-wiki/wiki/Memory-Map + if ((uint32_t)userFunc >= 0x40200000) + { + // ISR not in IRAM + ::printf((PGM_P)F("ISR not in IRAM!\r\n")); + abort(); + } + + if(pin < 16) { + ETS_GPIO_INTR_DISABLE(); + set_interrupt_handlers(pin, (voidFuncPtr)userFunc, arg, mode, functional); + interrupt_reg |= (1 << pin); + GPC(pin) &= ~(0xF << GPCI);//INT mode disabled + GPIEC = (1 << pin); //Clear Interrupt for this pin + GPC(pin) |= ((mode & 0xF) << GPCI);//INT mode "mode" + ETS_GPIO_INTR_ATTACH(interrupt_handler, &interrupt_reg); + ETS_GPIO_INTR_ENABLE(); + } +} + +extern void __attachInterruptArg(uint8_t pin, voidFuncPtrArg userFunc, void* arg, int mode) +{ + __attachInterruptFunctionalArg(pin, userFunc, arg, mode, false); +} + +extern void ICACHE_RAM_ATTR __detachInterrupt(uint8_t pin) { + if (pin < 16) + { + ETS_GPIO_INTR_DISABLE(); + GPC(pin) &= ~(0xF << GPCI);//INT mode disabled + GPIEC = (1 << pin); //Clear Interrupt for this pin + interrupt_reg &= ~(1 << pin); + set_interrupt_handlers(pin, nullptr, nullptr, 0, false); + if (interrupt_reg) + { + ETS_GPIO_INTR_ENABLE(); + } + } +} + +extern void __attachInterrupt(uint8_t pin, voidFuncPtr userFunc, int mode) +{ + __attachInterruptFunctionalArg(pin, (voidFuncPtrArg)userFunc, 0, mode, false); +} + +extern void __resetPins() { + for (int i = 0; i <= 16; ++i) { + if (!isFlashInterfacePin(i)) + pinMode(i, INPUT); + } +} + +extern void initPins() { + //Disable UART interrupts + system_set_os_print(0); + U0IE = 0; + U1IE = 0; + + resetPins(); +} + +extern void resetPins() __attribute__ ((weak, alias("__resetPins"))); +extern void pinMode(uint8_t pin, uint8_t mode) __attribute__ ((weak, alias("__pinMode"))); +extern void digitalWrite(uint8_t pin, uint8_t val) __attribute__ ((weak, alias("__digitalWrite"))); +extern int digitalRead(uint8_t pin) __attribute__ ((weak, alias("__digitalRead"), nothrow)); +extern void attachInterrupt(uint8_t pin, voidFuncPtr handler, int mode) __attribute__ ((weak, alias("__attachInterrupt"))); +extern void attachInterruptArg(uint8_t pin, voidFuncPtrArg handler, void* arg, int mode) __attribute__((weak, alias("__attachInterruptArg"))); +extern void detachInterrupt(uint8_t pin) __attribute__ ((weak, alias("__detachInterrupt"))); + +}; diff --git a/tasmota/core_esp8266_wiring_pwm.cpp b/tasmota/core_esp8266_wiring_pwm.cpp new file mode 100644 index 000000000..608e06bda --- /dev/null +++ b/tasmota/core_esp8266_wiring_pwm.cpp @@ -0,0 +1,79 @@ +/* + pwm.c - analogWrite implementation for esp8266 + + Use the shared TIMER1 utilities to generate PWM signals + + Original Copyright (c) 2015 Hristo Gochkov. All rights reserved. + This file is part of the esp8266 core for Arduino environment. + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#include +#include "core_esp8266_waveform.h" + +extern "C" { + +static uint32_t analogMap = 0; +static int32_t analogScale = PWMRANGE; +static uint16_t analogFreq = 1000; + +extern void __analogWriteRange(uint32_t range) { + if (range > 0) { + analogScale = range; + } +} + +extern void __analogWriteFreq(uint32_t freq) { + if (freq < 100) { + analogFreq = 100; + } else if (freq > 60000) { + analogFreq = 60000; + } else { + analogFreq = freq; + } +} + +extern void __analogWrite(uint8_t pin, int val) { + if (pin > 16) { + return; + } + uint32_t analogPeriod = microsecondsToClockCycles(1000000UL) / analogFreq; + if (val < 0) { + val = 0; + } else if (val > analogScale) { + val = analogScale; + } + + if (analogMap & 1UL << pin) { + analogMap &= ~(1 << pin); + } + else { + pinMode(pin, OUTPUT); + } + uint32_t high = (analogPeriod * val) / analogScale; + uint32_t low = analogPeriod - high; + // Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t) + int phaseReference = __builtin_ffs(analogMap) - 1; + if (startWaveformClockCycles(pin, high, low, 0, phaseReference, 0, true)) { + analogMap |= (1 << pin); + } +} + +extern void analogWrite(uint8_t pin, int val) __attribute__((weak, alias("__analogWrite"))); +extern void analogWriteFreq(uint32_t freq) __attribute__((weak, alias("__analogWriteFreq"))); +extern void analogWriteRange(uint32_t range) __attribute__((weak, alias("__analogWriteRange"))); + +};