Merge pull request #8246 from s-hadinger/pwm_7231

Change PWM implementation to Arduino #7231
This commit is contained in:
Theo Arends 2020-04-22 15:13:26 +02:00 committed by GitHub
commit f72be91f98
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 460 additions and 477 deletions

View File

@ -6,6 +6,7 @@
- Add config version tag
- Add command ``SetOption73 1`` for button decoupling and send multi-press and hold MQTT messages by Federico Leoni (#8235)
- Add command ``SO`` as shortcut for command ``SetOption``
- Change PWM implementation to Arduino #7231
### 8.2.0.3 20200329

View File

@ -1,115 +0,0 @@
/*
timer.c - Timer1 library for esp8266
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef ESP8266
// Use PWM from core 2.4.0 as all versions below 2.5.0-beta3 produce LED flickering when settings are saved to flash
#include <core_version.h>
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
#warning **** Tasmota is using v2.4.0 timer.c as planned ****
#include "wiring_private.h"
#include "pins_arduino.h"
#include "c_types.h"
#include "ets_sys.h"
// ------------------------------------------------------------------ -
// timer 1
static volatile timercallback timer1_user_cb = NULL;
void ICACHE_RAM_ATTR timer1_isr_handler(void *para){
(void) para;
if ((T1C & ((1 << TCAR) | (1 << TCIT))) == 0) TEIE &= ~TEIE1;//edge int disable
T1I = 0;
if (timer1_user_cb) {
// to make ISR compatible to Arduino AVR model where interrupts are disabled
// we disable them before we call the client ISR
uint32_t savedPS = xt_rsil(15); // stop other interrupts
timer1_user_cb();
xt_wsr_ps(savedPS);
}
}
void ICACHE_RAM_ATTR timer1_isr_init(void){
ETS_FRC_TIMER1_INTR_ATTACH(timer1_isr_handler, NULL);
}
void timer1_attachInterrupt(timercallback userFunc) {
timer1_user_cb = userFunc;
ETS_FRC1_INTR_ENABLE();
}
void ICACHE_RAM_ATTR timer1_detachInterrupt(void) {
timer1_user_cb = 0;
TEIE &= ~TEIE1;//edge int disable
ETS_FRC1_INTR_DISABLE();
}
void timer1_enable(uint8_t divider, uint8_t int_type, uint8_t reload){
T1C = (1 << TCTE) | ((divider & 3) << TCPD) | ((int_type & 1) << TCIT) | ((reload & 1) << TCAR);
T1I = 0;
}
void ICACHE_RAM_ATTR timer1_write(uint32_t ticks){
T1L = ((ticks)& 0x7FFFFF);
if ((T1C & (1 << TCIT)) == 0) TEIE |= TEIE1;//edge int enable
}
void ICACHE_RAM_ATTR timer1_disable(void){
T1C = 0;
T1I = 0;
}
//-------------------------------------------------------------------
// timer 0
static volatile timercallback timer0_user_cb = NULL;
void ICACHE_RAM_ATTR timer0_isr_handler(void* para){
(void) para;
if (timer0_user_cb) {
// to make ISR compatible to Arduino AVR model where interrupts are disabled
// we disable them before we call the client ISR
uint32_t savedPS = xt_rsil(15); // stop other interrupts
timer0_user_cb();
xt_wsr_ps(savedPS);
}
}
void timer0_isr_init(void){
ETS_CCOMPARE0_INTR_ATTACH(timer0_isr_handler, NULL);
}
void timer0_attachInterrupt(timercallback userFunc) {
timer0_user_cb = userFunc;
ETS_CCOMPARE0_ENABLE();
}
void ICACHE_RAM_ATTR timer0_detachInterrupt(void) {
timer0_user_cb = NULL;
ETS_CCOMPARE0_DISABLE();
}
#endif // ARDUINO_ESP8266_RELEASE
#endif // ESP8266

View File

@ -5,13 +5,13 @@
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds). TIMER1 is set to 1-shot
mode and is always loaded with the time until the next edge of any live
waveforms.
high and low period (defined in microseconds or CPU clock cycles). TIMER1 is
set to 1-shot mode and is always loaded with the time until the next edge
of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP cycle counter, not the
Each waveform generator is synchronized to the ESP clock cycle counter, not the
timer. This allows for removing interrupt jitter and delay as the counter
always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
@ -19,8 +19,9 @@
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleTime()
cycles, not TIMER1 cycles (which may be 2 CPU clocks @ 160MHz).
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not TIMER1
cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@ -39,17 +40,18 @@
#ifdef ESP8266
#include <core_version.h>
#if defined(ARDUINO_ESP8266_RELEASE_2_6_1) || defined(ARDUINO_ESP8266_RELEASE_2_6_2) || defined(ARDUINO_ESP8266_RELEASE_2_6_3) || !defined(ARDUINO_ESP8266_RELEASE)
#warning **** Tasmota is using a patched PWM Arduino version as planned ****
#include <Arduino.h>
#include "ets_sys.h"
#include "core_esp8266_waveform.h"
#include "user_interface.h"
extern "C" {
// Internal-only calls, not for applications
extern void _setPWMPeriodCC(uint32_t cc);
extern bool _stopPWM(int pin);
extern bool _setPWM(int pin, uint32_t cc);
extern int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles);
// Maximum delay between IRQs
#define MAXIRQUS (10000)
@ -61,8 +63,10 @@ extern "C" {
typedef struct {
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
uint32_t expiryCycle; // For time-limited waveform, the cycle when this waveform must stop
uint32_t nextTimeHighCycles; // Copy over low->high to keep smooth waveform
uint32_t nextTimeLowCycles; // Copy over high->low to keep smooth waveform
uint32_t timeHighCycles; // Currently running waveform period
uint32_t timeLowCycles; //
uint32_t gotoTimeHighCycles; // Copied over on the next period to preserve phase
uint32_t gotoTimeLowCycles; //
} Waveform;
static Waveform waveform[17]; // State of all possible pins
@ -73,8 +77,11 @@ static volatile uint32_t waveformEnabled = 0; // Is it actively running, updated
static volatile uint32_t waveformToEnable = 0; // Message to the NMI handler to start a waveform on a inactive pin
static volatile uint32_t waveformToDisable = 0; // Message to the NMI handler to disable a pin from waveform generation
static uint32_t (*timer1CB)() = NULL;
volatile int32_t waveformToChange = -1;
volatile uint32_t waveformNewHigh = 0;
volatile uint32_t waveformNewLow = 0;
static uint32_t (*timer1CB)() = NULL;
// Non-speed critical bits
#pragma GCC optimize ("Os")
@ -115,25 +122,187 @@ void setTimer1Callback(uint32_t (*fn)()) {
}
}
// PWM implementation using special purpose state machine
//
// Keep an ordered list of pins with the delta in cycles between each
// element, with a terminal entry making up the remainder of the PWM
// period. With this method sum(all deltas) == PWM period clock cycles.
//
// At t=0 set all pins high and set the timeout for the 1st edge.
// On interrupt, if we're at the last element reset to t=0 state
// Otherwise, clear that pin down and set delay for next element
// and so forth.
constexpr int maxPWMs = 8;
// PWM edge definition
typedef struct {
unsigned int pin : 8;
unsigned int delta : 24;
} PWMEntry;
// PWM machine state
typedef struct {
uint32_t mask; // Bitmask of active pins
uint8_t cnt; // How many entries
uint8_t idx; // Where the state machine is along the list
PWMEntry edge[maxPWMs + 1]; // Include space for terminal element
uint32_t nextServiceCycle; // Clock cycle for next step
} PWMState;
static PWMState pwmState;
static volatile PWMState *pwmUpdate = nullptr; // Set by main code, cleared by ISR
static uint32_t pwmPeriod = (1000000L * system_get_cpu_freq()) / 1000;
// Called when analogWriteFreq() changed to update the PWM total period
void _setPWMPeriodCC(uint32_t cc) {
if (cc == pwmPeriod) {
return;
}
if (pwmState.cnt) {
// Adjust any running ones to the best of our abilities by scaling them
// Used FP math for speed and code size
uint64_t oldCC64p0 = ((uint64_t)pwmPeriod);
uint64_t newCC64p16 = ((uint64_t)cc) << 16;
uint64_t ratio64p16 = (newCC64p16 / oldCC64p0);
PWMState p; // The working copy since we can't edit the one in use
p = pwmState;
uint32_t ttl = 0;
for (auto i = 0; i < p.cnt; i++) {
uint64_t val64p16 = ((uint64_t)p.edge[i].delta) << 16;
uint64_t newVal64p32 = val64p16 * ratio64p16;
p.edge[i].delta = newVal64p32 >> 32;
ttl += p.edge[i].delta;
}
p.edge[p.cnt].delta = cc - ttl; // Final cleanup exactly cc total cycles
// Update and wait for mailbox to be emptied
pwmUpdate = &p;
while (pwmUpdate) {
delay(0);
}
}
pwmPeriod = cc;
}
// Helper routine to remove an entry from the state machine
static void _removePWMEntry(int pin, PWMState *p) {
if (!((1<<pin) & p->mask)) {
return;
}
int delta = 0;
int i;
for (i=0; i < p->cnt; i++) {
if (p->edge[i].pin == pin) {
delta = p->edge[i].delta;
break;
}
}
// Add the removed previous pin delta to preserve absolute position
p->edge[i+1].delta += delta;
// Move everything back one and clean up
for (i++; i <= p->cnt; i++) {
p->edge[i-1] = p->edge[i];
}
p->mask &= ~(1<<pin);
p->cnt--;
}
// Called by analogWrite(0/100%) to disable PWM on a specific pin
bool _stopPWM(int pin) {
if (!((1<<pin) & pwmState.mask)) {
return false; // Pin not actually active
}
PWMState p; // The working copy since we can't edit the one in use
p = pwmState;
_removePWMEntry(pin, &p);
// Update and wait for mailbox to be emptied
pwmUpdate = &p;
while (pwmUpdate) {
delay(0);
}
// Possibly shut doen the timer completely if we're done
if (!waveformEnabled && !pwmState.cnt && !timer1CB) {
deinitTimer();
}
return true;
}
// Called by analogWrite(1...99%) to set the PWM duty in clock cycles
bool _setPWM(int pin, uint32_t cc) {
PWMState p; // Working copy
p = pwmState;
// Get rid of any entries for this pin
_removePWMEntry(pin, &p);
// And add it to the list, in order
if (p.cnt >= maxPWMs) {
return false; // No space left
} else if (p.cnt == 0) {
// Starting up from scratch, special case 1st element and PWM period
p.edge[0].pin = pin;
p.edge[0].delta = cc;
p.edge[1].pin = 0xff;
p.edge[1].delta = pwmPeriod - cc;
p.cnt = 1;
p.mask = 1<<pin;
} else {
uint32_t ttl=0;
uint32_t i;
// Skip along until we're at the spot to insert
for (i=0; (i <= p.cnt) && (ttl + p.edge[i].delta < cc); i++) {
ttl += p.edge[i].delta;
}
// Shift everything out by one to make space for new edge
memmove(&p.edge[i + 1], &p.edge[i], (1 + p.cnt - i) * sizeof(p.edge[0]));
int off = cc - ttl; // The delta from the last edge to the one we're inserting
p.edge[i].pin = pin;
p.edge[i].delta = off; // Add the delta to this new pin
p.edge[i + 1].delta -= off; // And subtract it from the follower to keep sum(deltas) constant
p.cnt++;
p.mask |= 1<<pin;
}
// Set mailbox and wait for ISR to copy it over
pwmUpdate = &p;
if (!timerRunning) {
initTimer();
timer1_write(microsecondsToClockCycles(10));
}
while (pwmUpdate) { delay(0); }
return true;
}
// Start up a waveform on a pin, or change the current one. Will change to the new
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
// first, then it will immediately begin.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS) {
if ((pin > 16) || isFlashInterfacePin(pin)) {
return startWaveformClockCycles(pin, microsecondsToClockCycles(timeHighUS), microsecondsToClockCycles(timeLowUS), microsecondsToClockCycles(runTimeUS));
}
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles) {
if ((pin > 16) || isFlashInterfacePin(pin)) {
return false;
}
Waveform *wave = &waveform[pin];
// Adjust to shave off some of the IRQ time, approximately
wave->nextTimeHighCycles = microsecondsToClockCycles(timeHighUS);
wave->nextTimeLowCycles = microsecondsToClockCycles(timeLowUS);
wave->expiryCycle = runTimeUS ? GetCycleCount() + microsecondsToClockCycles(runTimeUS) : 0;
if (runTimeUS && !wave->expiryCycle) {
wave->expiryCycle = runTimeCycles ? GetCycleCount() + runTimeCycles : 0;
if (runTimeCycles && !wave->expiryCycle) {
wave->expiryCycle = 1; // expiryCycle==0 means no timeout, so avoid setting it
}
uint32_t mask = 1<<pin;
if (!(waveformEnabled & mask)) {
// Actually set the pin high or low in the IRQ service to guarantee times
if (waveformEnabled & mask) {
waveformNewHigh = timeHighCycles;
waveformNewLow = timeLowCycles;
waveformToChange = pin;
while (waveformToChange >= 0) {
delay(0); // Wait for waveform to update
}
} else { // if (!(waveformEnabled & mask)) {
wave->timeHighCycles = timeHighCycles;
wave->timeLowCycles = timeLowCycles;
wave->gotoTimeHighCycles = wave->timeHighCycles;
wave->gotoTimeLowCycles = wave->timeLowCycles; // Actually set the pin high or low in the IRQ service to guarantee times
wave->nextServiceCycle = GetCycleCount() + microsecondsToClockCycles(1);
waveformToEnable |= mask;
if (!timerRunning) {
@ -172,13 +341,6 @@ static inline ICACHE_RAM_ATTR uint32_t min_u32(uint32_t a, uint32_t b) {
return b;
}
static inline ICACHE_RAM_ATTR int32_t max_32(int32_t a, int32_t b) {
if (a < b) {
return b;
}
return a;
}
// Stops a waveform on a pin
int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) {
// Can't possibly need to stop anything if there is no timer active
@ -199,7 +361,7 @@ int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) {
while (waveformToDisable) {
/* no-op */ // Can't delay() since stopWaveform may be called from an IRQ
}
if (!waveformEnabled && !timer1CB) {
if (!waveformEnabled && !pwmState.cnt && !timer1CB) {
deinitTimer();
}
return true;
@ -226,7 +388,7 @@ static ICACHE_RAM_ATTR void timer1Interrupt() {
uint32_t timeoutCycle = GetCycleCountIRQ() + microsecondsToClockCycles(14);
if (waveformToEnable || waveformToDisable) {
// Handle enable/disable requests from main app.
// Handle enable/disable requests from main app
waveformEnabled = (waveformEnabled & ~waveformToDisable) | waveformToEnable; // Set the requested waveforms on/off
waveformState &= ~waveformToEnable; // And clear the state of any just started
waveformToEnable = 0;
@ -235,12 +397,60 @@ static ICACHE_RAM_ATTR void timer1Interrupt() {
startPin = __builtin_ffs(waveformEnabled) - 1;
// Find the last bit by subtracting off GCC's count-leading-zeros (no offset in this one)
endPin = 32 - __builtin_clz(waveformEnabled);
} else if (!pwmState.cnt && pwmUpdate) {
// Start up the PWM generator by copying from the mailbox
pwmState = *(PWMState*)pwmUpdate;
pwmUpdate = nullptr;
pwmState.nextServiceCycle = GetCycleCountIRQ(); // Do it this loop!
pwmState.idx = pwmState.cnt; // Cause it to start at t=0
} else if (waveformToChange >=0) {
waveform[waveformToChange].gotoTimeHighCycles = waveformNewHigh;
waveform[waveformToChange].gotoTimeLowCycles = waveformNewLow;
waveformToChange = -1;
}
bool done = false;
if (waveformEnabled) {
if (waveformEnabled || pwmState.cnt) {
do {
nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
// PWM state machine implementation
if (pwmState.cnt) {
uint32_t now = GetCycleCountIRQ();
int32_t cyclesToGo = pwmState.nextServiceCycle - now;
if (cyclesToGo <= 10) {
if (pwmState.idx == pwmState.cnt) { // Start of pulses, possibly copy new
if (pwmUpdate) {
// Do the memory copy from temp to global and clear mailbox
pwmState = *(PWMState*)pwmUpdate;
pwmUpdate = nullptr;
}
GPOS = pwmState.mask; // Set all active pins high
// GPIO16 isn't the same as the others
if (pwmState.mask & 0x100) {
GP16O |= 1;
}
pwmState.idx = 0;
} else {
do {
// Drop the pin at this edge
GPOC = 1<<pwmState.edge[pwmState.idx].pin;
// GPIO16 still needs manual work
if (pwmState.edge[pwmState.idx].pin == 16) {
GP16O &= ~1;
}
pwmState.idx++;
// Any other pins at this same PWM value will have delta==0, drop them too.
} while (pwmState.edge[pwmState.idx].delta == 0);
}
// Preserve duty cycle over PWM period by using now+xxx instead of += delta
pwmState.nextServiceCycle = now + pwmState.edge[pwmState.idx].delta;
cyclesToGo = pwmState.nextServiceCycle - now;
if (cyclesToGo<0) cyclesToGo=0;
}
nextEventCycles = min_u32(nextEventCycles, cyclesToGo);
}
for (int i = startPin; i <= endPin; i++) {
uint32_t mask = 1<<i;
@ -270,17 +480,6 @@ static ICACHE_RAM_ATTR void timer1Interrupt() {
// Check for toggles
int32_t cyclesToGo = wave->nextServiceCycle - now;
if (cyclesToGo < 0) {
// See #7057
// The following is a no-op unless we have overshot by an entire waveform cycle.
// As modulus is an expensive operation, this code is removed for now:
// cyclesToGo = -((-cyclesToGo) % (wave->nextTimeHighCycles + wave->nextTimeLowCycles));
//
// Alternative version with lower CPU impact:
// while (-cyclesToGo > wave->nextTimeHighCycles + wave->nextTimeLowCycles) { cyclesToGo += wave->nextTimeHighCycles + wave->nextTimeLowCycles); }
//
// detect interrupt storm, for example during wifi connection.
// if we overshoot the cycle by more than 25%, we forget phase and keep PWM duration
int32_t overshoot = (-cyclesToGo) > ((wave->nextTimeHighCycles + wave->nextTimeLowCycles) >> 2);
waveformState ^= mask;
if (waveformState & mask) {
if (i == 16) {
@ -288,26 +487,19 @@ static ICACHE_RAM_ATTR void timer1Interrupt() {
} else {
SetGPIO(mask);
}
if (overshoot) {
wave->nextServiceCycle = now + wave->nextTimeHighCycles;
nextEventCycles = min_u32(nextEventCycles, wave->nextTimeHighCycles);
} else {
wave->nextServiceCycle += wave->nextTimeHighCycles;
nextEventCycles = min_u32(nextEventCycles, max_32(wave->nextTimeHighCycles + cyclesToGo, microsecondsToClockCycles(1)));
}
wave->nextServiceCycle = now + wave->timeHighCycles;
nextEventCycles = min_u32(nextEventCycles, wave->timeHighCycles);
} else {
if (i == 16) {
GP16O &= ~1; // GPIO16 write slow as it's RMW
} else {
ClearGPIO(mask);
}
if (overshoot) {
wave->nextServiceCycle = now + wave->nextTimeLowCycles;
nextEventCycles = min_u32(nextEventCycles, wave->nextTimeLowCycles);
} else {
wave->nextServiceCycle += wave->nextTimeLowCycles;
nextEventCycles = min_u32(nextEventCycles, max_32(wave->nextTimeLowCycles + cyclesToGo, microsecondsToClockCycles(1)));
}
wave->nextServiceCycle = now + wave->timeLowCycles;
nextEventCycles = min_u32(nextEventCycles, wave->timeLowCycles);
// Copy over next full-cycle timings
wave->timeHighCycles = wave->gotoTimeHighCycles;
wave->timeLowCycles = wave->gotoTimeLowCycles;
}
} else {
uint32_t deltaCycles = wave->nextServiceCycle - now;
@ -327,8 +519,8 @@ static ICACHE_RAM_ATTR void timer1Interrupt() {
nextEventCycles = min_u32(nextEventCycles, timer1CB());
}
if (nextEventCycles < microsecondsToClockCycles(10)) {
nextEventCycles = microsecondsToClockCycles(10);
if (nextEventCycles < microsecondsToClockCycles(5)) {
nextEventCycles = microsecondsToClockCycles(5);
}
nextEventCycles -= DELTAIRQ;
@ -343,6 +535,4 @@ static ICACHE_RAM_ATTR void timer1Interrupt() {
};
#endif // ARDUINO_ESP8266_RELEASE
#endif // ESP8266
#endif // ESP8266

View File

@ -21,24 +21,27 @@
#ifdef ESP8266
// Use PWM from core 2.4.0 as all versions below 2.5.0-beta3 produce LED flickering when settings are saved to flash
#include <core_version.h>
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
#warning **** Tasmota is using v2.4.0 wiring_digital.c as planned ****
#define ARDUINO_MAIN
#include "wiring_private.h"
#include "pins_arduino.h"
#include "c_types.h"
#include "eagle_soc.h"
#include "ets_sys.h"
#include "user_interface.h"
#include "core_esp8266_waveform.h"
#include "interrupts.h"
extern void pwm_stop_pin(uint8_t pin);
extern "C" {
uint8_t esp8266_gpioToFn[16] = {0x34, 0x18, 0x38, 0x14, 0x3C, 0x40, 0x1C, 0x20, 0x24, 0x28, 0x2C, 0x30, 0x04, 0x08, 0x0C, 0x10};
// Internal-only calls, not for applications
extern void _setPWMPeriodCC(uint32_t cc);
extern bool _stopPWM(int pin);
extern bool _setPWM(int pin, uint32_t cc);
extern void resetPins();
volatile uint32_t* const esp8266_gpioToFn[16] PROGMEM = { &GPF0, &GPF1, &GPF2, &GPF3, &GPF4, &GPF5, &GPF6, &GPF7, &GPF8, &GPF9, &GPF10, &GPF11, &GPF12, &GPF13, &GPF14, &GPF15 };
extern void __pinMode(uint8_t pin, uint8_t mode) {
pwm_stop_pin(pin);
if(pin < 16){
if(mode == SPECIAL){
GPC(pin) = (GPC(pin) & (0xF << GPCI)); //SOURCE(GPIO) | DRIVER(NORMAL) | INT_TYPE(UNCHANGED) | WAKEUP_ENABLE(DISABLED)
@ -88,7 +91,8 @@ extern void __pinMode(uint8_t pin, uint8_t mode) {
}
extern void ICACHE_RAM_ATTR __digitalWrite(uint8_t pin, uint8_t val) {
pwm_stop_pin(pin);
stopWaveform(pin); // Disable any tone
_stopPWM(pin); // ...and any analogWrite
if(pin < 16){
if(val) GPOS = (1 << pin);
else GPOC = (1 << pin);
@ -99,7 +103,6 @@ extern void ICACHE_RAM_ATTR __digitalWrite(uint8_t pin, uint8_t val) {
}
extern int ICACHE_RAM_ATTR __digitalRead(uint8_t pin) {
pwm_stop_pin(pin);
if(pin < 16){
return GPIP(pin);
} else if(pin == 16){
@ -117,16 +120,28 @@ typedef void (*voidFuncPtrArg)(void*);
typedef struct {
uint8_t mode;
void (*fn)(void);
voidFuncPtr fn;
void * arg;
bool functional;
} interrupt_handler_t;
//duplicate from functionalInterrupt.h keep in sync
typedef struct InterruptInfo {
uint8_t pin;
uint8_t value;
uint32_t micro;
} InterruptInfo;
static interrupt_handler_t interrupt_handlers[16];
typedef struct {
InterruptInfo* interruptInfo;
void* functionInfo;
} ArgStructure;
static interrupt_handler_t interrupt_handlers[16] = { {0, 0, 0, 0}, };
static uint32_t interrupt_reg = 0;
void ICACHE_RAM_ATTR interrupt_handler(void *arg) {
(void) arg;
void ICACHE_RAM_ATTR interrupt_handler(void*)
{
uint32_t status = GPIE;
GPIEC = status;//clear them interrupts
uint32_t levels = GPI;
@ -138,86 +153,122 @@ void ICACHE_RAM_ATTR interrupt_handler(void *arg) {
while(!(changedbits & (1 << i))) i++;
changedbits &= ~(1 << i);
interrupt_handler_t *handler = &interrupt_handlers[i];
if (handler->fn &&
(handler->mode == CHANGE ||
if (handler->fn &&
(handler->mode == CHANGE ||
(handler->mode & 1) == !!(levels & (1 << i)))) {
// to make ISR compatible to Arduino AVR model where interrupts are disabled
// we disable them before we call the client ISR
uint32_t savedPS = xt_rsil(15); // stop other interrupts
if (handler->arg)
{
((voidFuncPtrArg)handler->fn)(handler->arg);
// to make ISR compatible to Arduino AVR model where interrupts are disabled
// we disable them before we call the client ISR
esp8266::InterruptLock irqLock; // stop other interrupts
if (handler->functional)
{
ArgStructure* localArg = (ArgStructure*)handler->arg;
if (localArg && localArg->interruptInfo)
{
localArg->interruptInfo->pin = i;
localArg->interruptInfo->value = __digitalRead(i);
localArg->interruptInfo->micro = micros();
}
}
if (handler->arg)
{
((voidFuncPtrArg)handler->fn)(handler->arg);
}
else
{
handler->fn();
}
}
else
{
handler->fn();
}
xt_wsr_ps(savedPS);
}
}
ETS_GPIO_INTR_ENABLE();
}
extern void ICACHE_RAM_ATTR __attachInterruptArg(uint8_t pin, voidFuncPtr userFunc, void *arg, int mode) {
extern void cleanupFunctional(void* arg);
static void set_interrupt_handlers(uint8_t pin, voidFuncPtr userFunc, void* arg, uint8_t mode, bool functional)
{
interrupt_handler_t* handler = &interrupt_handlers[pin];
handler->mode = mode;
handler->fn = userFunc;
if (handler->functional && handler->arg) // Clean when new attach without detach
{
cleanupFunctional(handler->arg);
}
handler->arg = arg;
handler->functional = functional;
}
extern void __attachInterruptFunctionalArg(uint8_t pin, voidFuncPtrArg userFunc, void* arg, int mode, bool functional)
{
// #5780
// https://github.com/esp8266/esp8266-wiki/wiki/Memory-Map
if ((uint32_t)userFunc >= 0x40200000)
{
// ISR not in IRAM
::printf((PGM_P)F("ISR not in IRAM!\r\n"));
abort();
}
if(pin < 16) {
ETS_GPIO_INTR_DISABLE();
interrupt_handler_t *handler = &interrupt_handlers[pin];
handler->mode = mode;
handler->fn = userFunc;
handler->arg = arg;
set_interrupt_handlers(pin, (voidFuncPtr)userFunc, arg, mode, functional);
interrupt_reg |= (1 << pin);
GPC(pin) &= ~(0xF << GPCI);//INT mode disabled
GPIEC = (1 << pin); //Clear Interrupt for this pin
GPC(pin) |= ((mode & 0xF) << GPCI);//INT mode "mode"
ETS_GPIO_INTR_ATTACH(interrupt_handler, &interrupt_reg);
ETS_GPIO_INTR_ENABLE();
}
}
extern void ICACHE_RAM_ATTR __attachInterrupt(uint8_t pin, voidFuncPtr userFunc, int mode )
extern void __attachInterruptArg(uint8_t pin, voidFuncPtrArg userFunc, void* arg, int mode)
{
__attachInterruptArg (pin, userFunc, 0, mode);
__attachInterruptFunctionalArg(pin, userFunc, arg, mode, false);
}
extern void ICACHE_RAM_ATTR __detachInterrupt(uint8_t pin) {
if(pin < 16) {
ETS_GPIO_INTR_DISABLE();
GPC(pin) &= ~(0xF << GPCI);//INT mode disabled
GPIEC = (1 << pin); //Clear Interrupt for this pin
interrupt_reg &= ~(1 << pin);
interrupt_handler_t *handler = &interrupt_handlers[pin];
handler->mode = 0;
handler->fn = 0;
handler->arg = 0;
ETS_GPIO_INTR_ENABLE();
if (pin < 16)
{
ETS_GPIO_INTR_DISABLE();
GPC(pin) &= ~(0xF << GPCI);//INT mode disabled
GPIEC = (1 << pin); //Clear Interrupt for this pin
interrupt_reg &= ~(1 << pin);
set_interrupt_handlers(pin, nullptr, nullptr, 0, false);
if (interrupt_reg)
{
ETS_GPIO_INTR_ENABLE();
}
}
}
extern void __attachInterrupt(uint8_t pin, voidFuncPtr userFunc, int mode)
{
__attachInterruptFunctionalArg(pin, (voidFuncPtrArg)userFunc, 0, mode, false);
}
extern void __resetPins() {
for (int i = 0; i <= 16; ++i) {
if (!isFlashInterfacePin(i))
pinMode(i, INPUT);
}
}
void initPins(void) {
extern void initPins() {
//Disable UART interrupts
system_set_os_print(0);
U0IE = 0;
U1IE = 0;
/*
for (int i = 0; i <= 5; ++i) {
pinMode(i, INPUT);
}
// pins 6-11 are used for the SPI flash interface
for (int i = 12; i <= 16; ++i) {
pinMode(i, INPUT);
}
*/
ETS_GPIO_INTR_ATTACH(interrupt_handler, &interrupt_reg);
ETS_GPIO_INTR_ENABLE();
resetPins();
}
extern void resetPins() __attribute__ ((weak, alias("__resetPins")));
extern void pinMode(uint8_t pin, uint8_t mode) __attribute__ ((weak, alias("__pinMode")));
extern void digitalWrite(uint8_t pin, uint8_t val) __attribute__ ((weak, alias("__digitalWrite")));
extern int digitalRead(uint8_t pin) __attribute__ ((weak, alias("__digitalRead")));
extern int digitalRead(uint8_t pin) __attribute__ ((weak, alias("__digitalRead"), nothrow));
extern void attachInterrupt(uint8_t pin, voidFuncPtr handler, int mode) __attribute__ ((weak, alias("__attachInterrupt")));
extern void attachInterruptArg(uint8_t pin, voidFuncPtrArg handler, void* arg, int mode) __attribute__((weak, alias("__attachInterruptArg")));
extern void detachInterrupt(uint8_t pin) __attribute__ ((weak, alias("__detachInterrupt")));
#endif // ARDUINO_ESP8266_RELEASE
};
#endif // ESP8266
#endif // ESP8266

View File

@ -1,238 +0,0 @@
/*
pwm.c - analogWrite implementation for esp8266
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef ESP8266
// Use PWM from core 2.4.0 as all versions below 2.5.0-beta3 produce LED flickering when settings are saved to flash
#include <core_version.h>
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
#warning **** Tasmota is using v2.4.0 wiring_pwm.c as planned ****
#include "wiring_private.h"
#include "pins_arduino.h"
#include "c_types.h"
#include "eagle_soc.h"
#include "ets_sys.h"
#ifndef F_CPU
#define F_CPU 800000000L
#endif
struct pwm_isr_table {
uint8_t len;
uint16_t steps[17];
uint32_t masks[17];
};
struct pwm_isr_data {
struct pwm_isr_table tables[2];
uint8_t active;//0 or 1, which table is active in ISR
};
static struct pwm_isr_data _pwm_isr_data;
uint32_t pwm_mask = 0;
uint16_t pwm_values[17] = {0,};
uint32_t pwm_freq = 1000;
uint32_t pwm_range = PWMRANGE;
uint8_t pwm_steps_changed = 0;
uint32_t pwm_multiplier = 0;
int pwm_sort_array(uint16_t a[], uint16_t al)
{
uint16_t i, j;
for (i = 1; i < al; i++) {
uint16_t tmp = a[i];
for (j = i; j >= 1 && tmp < a[j-1]; j--) {
a[j] = a[j-1];
}
a[j] = tmp;
}
int bl = 1;
for(i = 1; i < al; i++) {
if(a[i] != a[i-1]) {
a[bl++] = a[i];
}
}
return bl;
}
uint32_t pwm_get_mask(uint16_t value)
{
uint32_t mask = 0;
int i;
for(i=0; i<17; i++) {
if((pwm_mask & (1 << i)) != 0 && pwm_values[i] == value) {
mask |= (1 << i);
}
}
return mask;
}
void prep_pwm_steps(void)
{
if(pwm_mask == 0) {
return;
}
int pwm_temp_steps_len = 0;
uint16_t pwm_temp_steps[17];
uint32_t pwm_temp_masks[17];
uint32_t range = pwm_range;
if((F_CPU / ESP8266_CLOCK) == 1) {
range /= 2;
}
int i;
for(i=0; i<17; i++) {
if((pwm_mask & (1 << i)) != 0 && pwm_values[i] != 0) {
pwm_temp_steps[pwm_temp_steps_len++] = pwm_values[i];
}
}
pwm_temp_steps[pwm_temp_steps_len++] = range;
pwm_temp_steps_len = pwm_sort_array(pwm_temp_steps, pwm_temp_steps_len) - 1;
for(i=0; i<pwm_temp_steps_len; i++) {
pwm_temp_masks[i] = pwm_get_mask(pwm_temp_steps[i]);
}
for(i=pwm_temp_steps_len; i>0; i--) {
pwm_temp_steps[i] = pwm_temp_steps[i] - pwm_temp_steps[i-1];
}
pwm_steps_changed = 0;
struct pwm_isr_table *table = &(_pwm_isr_data.tables[!_pwm_isr_data.active]);
table->len = pwm_temp_steps_len;
ets_memcpy(table->steps, pwm_temp_steps, (pwm_temp_steps_len + 1) * 2);
ets_memcpy(table->masks, pwm_temp_masks, pwm_temp_steps_len * 4);
pwm_multiplier = ESP8266_CLOCK/(range * pwm_freq);
pwm_steps_changed = 1;
}
void ICACHE_RAM_ATTR pwm_timer_isr(void) //103-138
{
struct pwm_isr_table *table = &(_pwm_isr_data.tables[_pwm_isr_data.active]);
static uint8_t current_step = 0;
TEIE &= ~TEIE1;//14
T1I = 0;//9
if(current_step < table->len) { //20/21
uint32_t mask = table->masks[current_step] & pwm_mask;
if(mask & 0xFFFF) {
GPOC = mask & 0xFFFF; //15/21
}
if(mask & 0x10000) {
GP16O = 0; //6/13
}
current_step++;//1
} else {
current_step = 0;//1
if(pwm_mask == 0) { //12
table->len = 0;
return;
}
if(pwm_mask & 0xFFFF) {
GPOS = pwm_mask & 0xFFFF; //11
}
if(pwm_mask & 0x10000) {
GP16O = 1; //5/13
}
if(pwm_steps_changed) { //12/21
_pwm_isr_data.active = !_pwm_isr_data.active;
table = &(_pwm_isr_data.tables[_pwm_isr_data.active]);
pwm_steps_changed = 0;
}
}
T1L = (table->steps[current_step] * pwm_multiplier);//23
TEIE |= TEIE1;//13
}
void pwm_start_timer(void)
{
timer1_disable();
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
ETS_FRC_TIMER1_NMI_INTR_ATTACH(pwm_timer_isr);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
timer1_write(1);
}
void ICACHE_RAM_ATTR pwm_stop_pin(uint8_t pin)
{
if(pwm_mask){
pwm_mask &= ~(1 << pin);
if(pwm_mask == 0) {
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
timer1_disable();
timer1_isr_init();
}
}
}
extern void __analogWrite(uint8_t pin, int value)
{
bool start_timer = false;
if(value == 0) {
digitalWrite(pin, LOW);
prep_pwm_steps();
return;
}
if(value == pwm_range) {
digitalWrite(pin, HIGH);
prep_pwm_steps();
return;
}
if((pwm_mask & (1 << pin)) == 0) {
if(pwm_mask == 0) {
memset(&_pwm_isr_data, 0, sizeof(_pwm_isr_data));
start_timer = true;
}
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
pwm_mask |= (1 << pin);
}
if((F_CPU / ESP8266_CLOCK) == 1) {
value = (value+1) / 2;
}
pwm_values[pin] = value % (pwm_range + 1);
prep_pwm_steps();
if(start_timer) {
pwm_start_timer();
}
}
extern void __analogWriteFreq(uint32_t freq)
{
pwm_freq = freq;
prep_pwm_steps();
}
extern void __analogWriteRange(uint32_t range)
{
pwm_range = range;
prep_pwm_steps();
}
extern void analogWrite(uint8_t pin, int val) __attribute__ ((weak, alias("__analogWrite")));
extern void analogWriteFreq(uint32_t freq) __attribute__ ((weak, alias("__analogWriteFreq")));
extern void analogWriteRange(uint32_t range) __attribute__ ((weak, alias("__analogWriteRange")));
#endif // ARDUINO_ESP8266_RELEASE
#endif // ESP8266

View File

@ -0,0 +1,94 @@
/*
pwm.c - analogWrite implementation for esp8266
Use the shared TIMER1 utilities to generate PWM signals
Original Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef ESP8266
#include <Arduino.h>
#include "core_esp8266_waveform.h"
extern "C" {
// Internal-only calls, not for applications
extern void _setPWMPeriodCC(uint32_t cc);
extern bool _stopPWM(int pin);
extern bool _setPWM(int pin, uint32_t cc);
static uint32_t analogMap = 0;
static int32_t analogScale = PWMRANGE;
static uint16_t analogFreq = 1000;
extern void __analogWriteRange(uint32_t range) {
if (range > 0) {
analogScale = range;
}
}
extern void __analogWriteFreq(uint32_t freq) {
if (freq < 100) {
analogFreq = 100;
} else if (freq > 40000) {
analogFreq = 40000;
} else {
analogFreq = freq;
}
uint32_t analogPeriod = microsecondsToClockCycles(1000000UL) / analogFreq;
_setPWMPeriodCC(analogPeriod);
}
extern void __analogWrite(uint8_t pin, int val) {
if (pin > 16) {
return;
}
uint32_t analogPeriod = microsecondsToClockCycles(1000000UL) / analogFreq;
_setPWMPeriodCC(analogPeriod);
if (val < 0) {
val = 0;
} else if (val > analogScale) {
val = analogScale;
}
analogMap &= ~(1 << pin);
uint32_t high = (analogPeriod * val) / analogScale;
uint32_t low = analogPeriod - high;
pinMode(pin, OUTPUT);
if (low == 0) {
_stopPWM(pin);
digitalWrite(pin, HIGH);
} else if (high == 0) {
_stopPWM(pin);
digitalWrite(pin, LOW);
} else {
_setPWM(pin, high);
analogMap |= (1 << pin);
}
}
extern void analogWrite(uint8_t pin, int val) __attribute__((weak, alias("__analogWrite")));
extern void analogWriteFreq(uint32_t freq) __attribute__((weak, alias("__analogWriteFreq")));
extern void analogWriteRange(uint32_t range) __attribute__((weak, alias("__analogWriteRange")));
};
#endif // ESP8266