Compare commits

..

No commits in common. "development" and "v15.0.0" have entirely different histories.

617 changed files with 14993 additions and 101263 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,704 +0,0 @@
# Berry for Tasmota
This document covers Tasmota-specific Berry features and extensions, complementing the general Berry language reference.
## Introduction
Berry is the next generation scripting language for Tasmota, embedded by default in all ESP32 based firmwares (NOT supported on ESP8266). It is used for advanced scripting, superseding Rules, and enables building drivers, automations, and UI extensions.
## Tasmota-Specific Modules
Beyond standard Berry modules, Tasmota provides additional modules:
| Module | Description | Import |
|--------|-------------|--------|
| `tasmota` | Core integration module | Automatically imported |
| `light` | Light control | Automatically imported |
| `mqtt` | MQTT operations | `import mqtt` |
| `webserver` | Web server extensions | `import webserver` |
| `gpio` | GPIO control | `import gpio` |
| `persist` | Data persistence | `import persist` |
| `path` | File system operations | `import path` |
| `energy` | Energy monitoring | Automatically imported |
| `display` | Display driver integration | `import display` |
| `crypto` | Cryptographic functions | `import crypto` |
| `re` | Regular expressions | `import re` |
| `mdns` | mDNS/Bonjour support | `import mdns` |
| `ULP` | Ultra Low Power coprocessor | `import ULP` |
| `uuid` | UUID generation | `import uuid` |
| `crc` | CRC calculations | `import crc` |
## Additional Resources
For Tasmota-specific Berry features and extensions, please refer to the companion document `BERRY_TASMOTA.md`.
### Tasmota Constants and Enums
```berry
# GPIO constants (gpio module)
gpio.INPUT, gpio.OUTPUT, gpio.PULLUP, gpio.PULLDOWN
gpio.HIGH, gpio.LOW
gpio.REL1, gpio.KEY1, gpio.LED1, gpio.I2C_SCL, gpio.I2C_SDA
# ... many more GPIO function constants
# Serial constants
serial.SERIAL_8N1, serial.SERIAL_7E1, etc.
# Webserver constants
webserver.HTTP_GET, webserver.HTTP_POST, webserver.HTTP_OPTIONS, webserver.HTTP_ANY
webserver.HTTP_OFF, webserver.HTTP_USER, webserver.HTTP_ADMIN, webserver.HTTP_MANAGER
webserver.HTTP_MANAGER_RESET_ONLY
webserver.BUTTON_MAIN, webserver.BUTTON_CONFIGURATION, webserver.BUTTON_INFORMATION
webserver.BUTTON_MANAGEMENT, webserver.BUTTON_MODULE
```
### Console and REPL
Access Berry console via *Configuration**Berry Scripting Console*. The console supports:
- Multi-line input (press Enter twice or click "Run")
- Command history (arrow keys)
- Colorful syntax highlighting
- Berry VM restart with `BrRestart` command
### File System and Loading
Berry files can be source (`.be`) or pre-compiled bytecode (`.bec`):
```berry
load("filename") # Loads .be or .bec file
tasmota.compile("file.be") # Compiles .be to .bec
```
**Autostart**: Place `autoexec.be` in filesystem to run Berry code at boot.
### Tasmota Integration Functions
#### Core Tasmota Functions
```berry
# System information
tasmota.get_free_heap() # Free heap bytes
tasmota.memory() # Memory stats map
tasmota.arch() # Architecture: "esp32", "esp32s2", etc.
tasmota.millis() # Milliseconds since boot
tasmota.yield() # Give time to low-level functions
tasmota.delay(ms) # Block execution for ms milliseconds
# Commands and responses
tasmota.cmd("command") # Execute Tasmota command
tasmota.resp_cmnd_done() # Respond "Done"
tasmota.resp_cmnd_error() # Respond "Error"
tasmota.resp_cmnd_str(msg) # Custom response string
tasmota.resp_cmnd(json) # Custom JSON response
# Configuration
tasmota.get_option(index) # Get SetOption value
tasmota.read_sensors() # Get sensor JSON string
tasmota.wifi() # WiFi connection info
tasmota.eth() # Ethernet connection info
```
#### Rules and Events
```berry
# Add rules (similar to Tasmota Rules but more powerful)
tasmota.add_rule("trigger", function)
tasmota.add_rule(["trigger1", "trigger2"], function) # AND logic
tasmota.remove_rule("trigger")
# Rule function signature
def rule_function(value, trigger, msg)
# value: trigger value (%value% equivalent)
# trigger: full trigger string
# msg: parsed JSON map or original string
end
# Examples
tasmota.add_rule("Dimmer>50", def() print("Bright!") end)
tasmota.add_rule("ANALOG#A1>300", def(val) print("ADC:", val) end)
```
#### Timers and Scheduling
```berry
# Timers (50ms resolution)
tasmota.set_timer(delay_ms, function)
tasmota.remove_timer(id)
tasmota.defer(function) # Run in next millisecond
# Cron scheduling
tasmota.add_cron("*/15 * * * * *", function, "id")
tasmota.remove_cron("id")
tasmota.next_cron("id") # Next execution timestamp
# Time functions
tasmota.rtc() # Current time info
tasmota.time_dump(timestamp) # Decompose timestamp
tasmota.time_str(timestamp) # ISO 8601 string
tasmota.strftime(format, timestamp)
tasmota.strptime(time_str, format)
```
#### Device Control
```berry
# Relays and Power
tasmota.get_power() # Array of relay states
tasmota.set_power(idx, state) # Set relay state
# Lights (use light module)
light.get() # Current light status
light.set({"power": true, "bri": 128, "hue": 120})
# Light attributes: power, bri (0-255), hue (0-360), sat (0-255),
# ct (153-500), rgb (hex string), channels (array)
```
#### Custom Commands
```berry
# Add custom Tasmota commands
def my_command(cmd, idx, payload, payload_json)
# cmd: command name, idx: command index
# payload: raw string, payload_json: parsed JSON
tasmota.resp_cmnd_done()
end
tasmota.add_cmd("MyCmd", my_command)
tasmota.remove_cmd("MyCmd")
```
### Tasmota Drivers
Create complete Tasmota drivers by implementing event methods:
```berry
class MyDriver
def every_second() # Called every second
end
def every_50ms() # Called every 50ms
end
def web_sensor() # Add to web UI
tasmota.web_send("{s}Sensor{m}Value{e}")
end
def json_append() # Add to JSON teleperiod
tasmota.response_append(',"MySensor":{"Value":123}')
end
def web_add_main_button() # Add button to main page
import webserver
webserver.content_send("<button onclick='la(\"&myaction=1\");'>My Button</button>")
end
def button_pressed() # Handle button press
end
def mqtt_data(topic, idx, data, databytes) # Handle MQTT
end
def save_before_restart() # Before restart
end
end
# Register driver
driver = MyDriver()
tasmota.add_driver(driver)
```
### Fast Loop
For near real-time events (200Hz, 5ms intervals):
```berry
def fast_function()
# High-frequency processing
end
tasmota.add_fast_loop(fast_function)
tasmota.remove_fast_loop(fast_function)
```
### GPIO Control
```berry
import gpio
# GPIO detection and control
gpio.pin_used(gpio.REL1) # Check if GPIO is used
gpio.pin(gpio.REL1) # Get physical GPIO number
gpio.digital_write(pin, gpio.HIGH) # Set GPIO state
gpio.digital_read(pin) # Read GPIO state
gpio.pin_mode(pin, gpio.OUTPUT) # Set GPIO mode
# PWM control
gpio.set_pwm(pin, duty, phase) # Set PWM value
gpio.set_pwm_freq(pin, freq) # Set PWM frequency
# DAC (ESP32 GPIO 25-26, ESP32-S2 GPIO 17-18)
gpio.dac_voltage(pin, voltage_mv) # Set DAC voltage
# Counters
gpio.counter_read(counter) # Read counter value
gpio.counter_set(counter, value) # Set counter value
```
### I²C Communication
```berry
# Use wire1 or wire2 for I²C buses
wire1.scan() # Scan for devices
wire1.detect(addr) # Check if device present
wire1.read(addr, reg, size) # Read from device
wire1.write(addr, reg, val, size) # Write to device
wire1.read_bytes(addr, reg, size) # Read as bytes
wire1.write_bytes(addr, reg, bytes) # Write bytes
# Find device on any bus
wire = tasmota.wire_scan(addr, i2c_index)
```
### MQTT Integration
```berry
import mqtt
# MQTT operations
mqtt.publish(topic, payload, retain)
mqtt.subscribe(topic, function) # Subscribe with callback
mqtt.unsubscribe(topic)
mqtt.connected() # Check connection status
# Callback function signature
def mqtt_callback(topic, idx, payload_s, payload_b)
# topic: full topic, payload_s: string, payload_b: bytes
return true # Return true if handled
end
```
### Web Server Extensions
```berry
import webserver
# In driver's web_add_handler() method
webserver.on("/my_page", def()
webserver.content_send("<html>My Page</html>")
end)
# Request handling
webserver.has_arg("param") # Check parameter exists
webserver.arg("param") # Get parameter value
webserver.arg_size() # Number of parameters
# Response functions
webserver.content_send(html) # Send HTML content
webserver.content_button() # Standard button
webserver.html_escape(str) # Escape HTML
```
### Persistence
```berry
import persist
# Automatic persistence to _persist.json
persist.my_value = 123
persist.save() # Force save to flash
persist.has("key") # Check if key exists
persist.remove("key") # Remove key
persist.find("key", default) # Get with default
```
### Network Clients
#### HTTP/HTTPS Client
```berry
cl = webclient()
cl.begin("https://example.com/api")
cl.set_auth("user", "pass")
cl.add_header("Content-Type", "application/json")
result = cl.GET() # or POST(payload)
if result == 200
response = cl.get_string()
# or cl.write_file("filename") for binary
end
cl.close()
```
#### TCP Client
```berry
tcp = tcpclient()
tcp.connect("192.168.1.100", 80)
tcp.write("GET / HTTP/1.0\r\n\r\n")
response = tcp.read()
tcp.close()
```
#### UDP Communication
```berry
u = udp()
u.begin("", 2000) # Listen on port 2000
u.send("192.168.1.10", 2000, bytes("Hello"))
# Receive (polling)
packet = u.read() # Returns bytes or nil
if packet
print("From:", u.remote_ip, u.remote_port)
end
```
### Serial Communication
```berry
ser = serial(rx_gpio, tx_gpio, baud, serial.SERIAL_8N1)
ser.write(bytes("Hello")) # Send data
data = ser.read() # Read available data
ser.available() # Check bytes available
ser.flush() # Flush buffers
ser.close() # Close port
```
### Cryptography
```berry
import crypto
# AES encryption
aes = crypto.AES_GCM(key_32_bytes, iv_12_bytes)
encrypted = aes.encrypt(plaintext)
tag = aes.tag()
# Hashing
crypto.SHA256().update(data).finish() # SHA256 hash
crypto.MD5().update(data).finish() # MD5 hash
# HMAC
crypto.HMAC_SHA256(key).update(data).finish()
```
### File System Operations
```berry
import path
path.exists("filename") # Check file exists
path.listdir("/") # List directory
path.remove("filename") # Delete file
path.mkdir("dirname") # Create directory
path.last_modified("file") # File timestamp
```
### Regular Expressions
```berry
import re
# Pattern matching
matches = re.search("a.*?b(z+)", "aaaabbbzzz") # Returns matches array
all_matches = re.searchall('<([a-zA-Z]+)>', html) # All matches
parts = re.split('/', "path/to/file") # Split string
# Compiled patterns (faster for reuse)
pattern = re.compilebytes("\\d+")
matches = re.search(pattern, "abc123def")
```
### Energy Monitoring
```berry
# Read energy values
energy.voltage # Main phase voltage
energy.current # Main phase current
energy.active_power # Active power (W)
energy.total # Total energy (kWh)
# Multi-phase access
energy.voltage_phases[0] # Phase 0 voltage
energy.current_phases[1] # Phase 1 current
# Berry energy driver (with OPTION_A 9 GPIO)
if energy.driver_enabled()
energy.voltage = 240
energy.current = 1.5
energy.active_power = 360 # This drives energy calculation
end
```
### Display Integration
```berry
import display
# Initialize display driver
display.start(display_ini_string)
display.started() # Check if initialized
display.dimmer(50) # Set brightness 0-100
display.driver_name() # Get driver name
# Touch screen updates
display.touch_update(touches, x, y, gesture)
```
### Advanced Features
#### ULP (Ultra Low Power) Coprocessor
```berry
import ULP
ULP.wake_period(0, 500000) # Configure wake timer
ULP.load(bytecode) # Load ULP program
ULP.run() # Execute ULP program
ULP.set_mem(addr, value) # Set RTC memory
ULP.get_mem(addr) # Get RTC memory
```
#### mDNS Support
```berry
import mdns
mdns.start("hostname") # Start mDNS
mdns.add_service("_http", "_tcp", 80, {"path": "/"})
mdns.stop() # Stop mDNS
```
### Error Handling Patterns
Many Tasmota functions return `nil` for errors rather than raising exceptions:
```berry
# Check return values
data = json.load(json_string)
if data == nil
print("Invalid JSON")
end
# Wire operations
result = wire1.read(addr, reg, 1)
if result == nil
print("I2C read failed")
end
```
### Best Practices for Tasmota
1. **Memory Management**: Use `tasmota.gc()` to monitor memory usage
2. **Non-blocking**: Use timers instead of `delay()` for long waits
3. **Error Handling**: Always check return values for `nil`
4. **Persistence**: Use `persist` module for settings that survive reboots
5. **Performance**: Use fast_loop sparingly, prefer regular driver events
6. **Debugging**: Enable `#define USE_BERRY_DEBUG` for development
## Common Tasmota Berry Patterns
### Simple Sensor Driver
```berry
class MySensor
var wire, addr
def init()
self.addr = 0x48
self.wire = tasmota.wire_scan(self.addr, 99) # I2C index 99
if self.wire
print("MySensor found on bus", self.wire.bus)
end
end
def every_second()
if !self.wire return end
var temp = self.wire.read(self.addr, 0x00, 2) # Read temperature
self.temperature = temp / 256.0 # Convert to Celsius
end
def web_sensor()
if !self.wire return end
import string
var msg = string.format("{s}MySensor Temp{m}%.1f °C{e}", self.temperature)
tasmota.web_send_decimal(msg)
end
def json_append()
if !self.wire return end
import string
var msg = string.format(',"MySensor":{"Temperature":%.1f}', self.temperature)
tasmota.response_append(msg)
end
end
sensor = MySensor()
tasmota.add_driver(sensor)
```
### Custom Command with JSON Response
```berry
def my_status_cmd(cmd, idx, payload, payload_json)
import string
var response = {
"Uptime": tasmota.millis(),
"FreeHeap": tasmota.get_free_heap(),
"WiFi": tasmota.wifi("rssi")
}
tasmota.resp_cmnd(json.dump(response))
end
tasmota.add_cmd("MyStatus", my_status_cmd)
```
### MQTT Automation
```berry
import mqtt
def handle_sensor_data(topic, idx, payload_s, payload_b)
var data = json.load(payload_s)
if data && data.find("temperature")
var temp = data["temperature"]
if temp > 25
tasmota.cmd("Power1 ON") # Turn on fan
elif temp < 20
tasmota.cmd("Power1 OFF") # Turn off fan
end
end
return true
end
mqtt.subscribe("sensors/+/temperature", handle_sensor_data)
```
### Web UI Button with Action
```berry
class WebButton
def web_add_main_button()
import webserver
webserver.content_send("<p><button onclick='la(\"&toggle_led=1\");'>Toggle LED</button></p>")
end
def web_sensor()
import webserver
if webserver.has_arg("toggle_led")
# Toggle GPIO2 (built-in LED on many ESP32 boards)
var pin = 2
var current = gpio.digital_read(pin)
gpio.digital_write(pin, !current)
print("LED toggled to", !current)
end
end
end
button = WebButton()
tasmota.add_driver(button)
```
### Scheduled Task with Persistence
```berry
import persist
class ScheduledTask
def init()
if !persist.has("task_count")
persist.task_count = 0
end
# Run every 5 minutes
tasmota.add_cron("0 */5 * * * *", /-> self.run_task(), "my_task")
end
def run_task()
persist.task_count += 1
print("Task executed", persist.task_count, "times")
# Do something useful
var sensors = tasmota.read_sensors()
print("Current sensors:", sensors)
persist.save() # Save counter to flash
end
end
task = ScheduledTask()
```
### HTTP API Client
```berry
class WeatherAPI
var api_key, city
def init(key, city_name)
self.api_key = key
self.city = city_name
tasmota.add_cron("0 0 * * * *", /-> self.fetch_weather(), "weather")
end
def fetch_weather()
var cl = webclient()
var url = f"http://api.openweathermap.org/data/2.5/weather?q={self.city}&appid={self.api_key}"
cl.begin(url)
var result = cl.GET()
if result == 200
var response = cl.get_string()
var data = json.load(response)
if data
var temp = data["main"]["temp"] - 273.15 # Kelvin to Celsius
print(f"Weather in {self.city}: {temp:.1f}°C")
# Store in global for other scripts to use
import global
global.weather_temp = temp
end
end
cl.close()
end
end
# weather = WeatherAPI("your_api_key", "London")
```
### Rule-based Automation
```berry
# Advanced rule that combines multiple conditions
tasmota.add_rule(["ANALOG#A0>500", "Switch1#State=1"],
def(values, triggers)
print("Both conditions met:")
print("ADC value:", values[0])
print("Switch state:", values[1])
tasmota.cmd("Power2 ON") # Activate something
end
)
# Time-based rule
tasmota.add_rule("Time#Minute=30",
def()
if tasmota.rtc()["hour"] == 18 # 6:30 PM
tasmota.cmd("Dimmer 20") # Dim lights for evening
end
end
)
```
## Best Practices and Tips
1. **Always check for nil returns** from Tasmota functions
2. **Use timers instead of delay()** to avoid blocking Tasmota
3. **Implement proper error handling** in I²C and network operations
4. **Use persist module** for settings that should survive reboots
5. **Test memory usage** with `tasmota.gc()` during development
6. **Use fast_loop sparingly** - it runs 200 times per second
7. **Prefer driver events** over polling when possible
8. **Use f-strings** for readable string formatting
9. **Import modules only when needed** to save memory
10. **Use `tasmota.wire_scan()`** instead of manual I²C bus detection

View File

@ -1,175 +0,0 @@
# Deep Analysis of Tasmota Documentation Repository
This file is a summary of the Tasmota Documentation for the "docs" repository. It is provided here for convenience for GenAI to read it easily.
## Overview
Tasmota is a comprehensive open-source firmware for ESP8266/ESP8285 and ESP32-based IoT devices that provides local control, MQTT integration, and extensive customization capabilities. The documentation repository contains over 250 markdown files covering every aspect of the firmware, from basic installation to advanced development topics.
## Repository Structure
The documentation is organized into several key categories:
### Core Documentation
- **Getting Started**: Complete setup guide from hardware preparation to initial configuration
- **Commands**: Comprehensive reference of 200+ commands for device control
- **MQTT**: Central communication protocol documentation
- **Rules**: Flexible automation system documentation
- **Templates**: Device configuration system
- **Components**: GPIO mapping and peripheral management
### Hardware Support
- **ESP Platforms**: ESP8266, ESP8285, ESP32 (all variants including S2, S3, C3)
- **Supported Devices**: 125+ device-specific configuration files
- **Peripherals**: 85+ sensor and peripheral drivers documented
- **Pinouts**: Detailed GPIO mappings for common modules
### Advanced Features
- **Berry Scripting**: Modern scripting language for ESP32 (163KB documentation)
- **Scripting Language**: Legacy scripting for ESP8266 (93KB documentation)
- **Matter Protocol**: Thread/Matter support for modern IoT ecosystems
- **Zigbee**: Zigbee2Tasmota gateway functionality (100KB documentation)
- **Bluetooth**: BLE sensor integration and device control
### Integration Ecosystem
- **Home Assistant**: Native integration with autodiscovery
- **OpenHAB**: Configuration examples and best practices
- **Domoticz**: Integration guide
- **KNX**: Building automation protocol support
- **AWS IoT**: Cloud integration with certificates
- **Azure IoT**: Microsoft cloud platform integration
## Key Technical Insights
### Architecture Philosophy
Tasmota follows a modular architecture where:
- Core firmware provides basic functionality (WiFi, MQTT, web interface)
- Features are conditionally compiled based on `#define` directives
- GPIO mapping is completely flexible through templates
- All functionality is controllable via commands (MQTT, HTTP, serial, web console)
### Memory Management
- ESP8266: 80KB RAM total, ~25-30KB available for applications
- ESP32: Much more generous memory, supports advanced features
- Code size optimization is critical for ESP8266 OTA updates
- Flash memory partitioned for dual-boot OTA capability
### Communication Protocols
1. **MQTT** (Primary): All device control and telemetry
2. **HTTP**: Web interface and REST API
3. **Serial**: Direct console access
4. **WebSocket**: Real-time web interface updates
### Extensibility Mechanisms
1. **Rules**: Event-driven automation (up to 1536 characters)
2. **Berry Scripts**: Full programming language (ESP32 only)
3. **Scripting**: Legacy scripting system (ESP8266)
4. **Templates**: Device configuration sharing
5. **Custom Drivers**: C++ sensor/peripheral drivers
## Development Ecosystem
### Build System
- PlatformIO-based compilation
- Multiple build environments for different ESP variants
- Conditional compilation for feature selection
- OTA update system with safety mechanisms
### Driver Development
- Standardized sensor API with callback system
- I2C/SPI/UART peripheral support
- Memory-conscious development practices
- Extensive debugging and profiling tools
### Scripting Capabilities
- **Berry**: Modern language with object-oriented features, garbage collection
- **Rules**: Simple trigger-action automation
- **Legacy Scripting**: Procedural language for complex automation
### Integration APIs
- **JSON Status Responses**: Standardized telemetry format
- **Command Interface**: Unified control mechanism
- **Sensor API**: Standardized peripheral integration
- **Web Interface Extensions**: Custom UI components
## Notable Features
### Advanced Networking
- IPv6 support
- Wireguard VPN client
- Range extender functionality (NAPT)
- Multiple WiFi network support
- Ethernet support (ESP32)
### Security Features
- TLS/SSL support (ESP32)
- Certificate-based authentication
- Secure boot options
- Network isolation capabilities
### Display and UI
- Universal Display Driver supporting 50+ display types
- LVGL graphics library integration
- HASPmota: Advanced touch interface system
- Web interface customization
### Industrial Features
- Modbus bridge functionality
- KNX building automation
- Smart meter interfaces (P1, Teleinfo)
- Industrial sensor support (4-20mA, etc.)
## Documentation Quality Assessment
### Strengths
- **Comprehensive Coverage**: Every feature documented with examples
- **Practical Focus**: Heavy emphasis on real-world usage scenarios
- **Community-Driven**: Active contribution from users and developers
- **Multi-Level**: From beginner tutorials to advanced development guides
- **Well-Structured**: Logical organization with cross-references
### Areas for Improvement
- **Fragmentation**: Some information scattered across multiple files
- **Version Consistency**: Some docs may lag behind rapid development
- **Advanced Topics**: Some complex features could use more examples
## Community and Ecosystem
### Support Channels
- Discord server for real-time help
- GitHub discussions for feature requests
- Telegram and Matrix communities
- Reddit community
### Device Database
- Templates repository with 1000+ device configurations
- Community-contributed device support
- Standardized template sharing format
### Integration Ecosystem
- Native Home Assistant integration
- Multiple home automation platform support
- Cloud service integrations (AWS, Azure)
- Third-party tool ecosystem
## Development Trends
### Modern Features
- Matter protocol support for interoperability
- Berry scripting for advanced automation
- LVGL for rich user interfaces
- Machine learning integration (TensorFlow Lite)
### Hardware Evolution
- ESP32 as primary platform for new features
- ESP8266 maintained for compatibility
- Support for latest ESP32 variants (S2, S3, C3)
- Increasing focus on low-power applications
## Conclusion
The Tasmota documentation represents one of the most comprehensive firmware documentation projects in the IoT space. It successfully bridges the gap between simple device control and advanced IoT development, providing pathways for users to grow from basic usage to sophisticated automation and custom development.
The documentation's strength lies in its practical approach, extensive hardware support coverage, and community-driven nature. It serves as both a user manual and a development reference, making Tasmota accessible to a wide range of users while providing the depth needed for serious IoT development.
The modular architecture, extensive command system, and multiple scripting options make Tasmota a powerful platform for IoT development, with documentation that adequately supports this complexity while remaining approachable for newcomers.

View File

@ -1,977 +0,0 @@
# Tasmota Developer Guide
This file is a summary of the Tasmota Documentation for the "docs" repository. It is provided here for convenience for GenAI to read it easily.
## How Tasmota Works
### Core Architecture
Tasmota is a modular firmware that transforms ESP8266/ESP8285 and ESP32 microcontrollers into intelligent IoT devices. The architecture follows these key principles:
#### 1. Event-Driven System
- Main loop processes events and callbacks
- Non-blocking operations to maintain responsiveness
- Callback system for sensors, drivers, and features
- Timer-based scheduling for periodic tasks
#### 2. Modular Design
- Core functionality always present (WiFi, MQTT, web interface)
- Optional features compiled conditionally using `#define` directives
- Plugin architecture for sensors and peripherals
- Template system for device configuration
#### 3. Communication Hub
- **MQTT**: Primary communication protocol for automation systems
- **HTTP**: Web interface and REST API
- **Serial**: Direct console access for debugging and configuration
- **WebSocket**: Real-time web interface updates
### Firmware Structure
```
tasmota/
├── tasmota.ino # Main firmware file
├── tasmota_xdrv_driver/ # Driver files directory (187 files)
│ ├── xdrv_01_9_webserver.ino # Web server driver
│ ├── xdrv_02_9_mqtt.ino # MQTT driver
│ ├── xdrv_04_light.ino # Light driver
│ └── xdrv_##_name.ino # Other drivers
├── tasmota_xsns_sensor/ # Sensor files directory (143 files)
│ ├── xsns_01_counter.ino # Counter sensor
│ ├── xsns_02_analog.ino # Analog sensor
│ └── xsns_##_name.ino # Other sensors
├── tasmota_xlgt_light/ # Light driver files directory
├── tasmota_xnrg_energy/ # Energy monitoring files directory
├── tasmota_support/ # Support functions directory (29 files)
│ ├── support.ino # Core support functions
│ ├── settings.ino # Settings management
│ └── support_*.ino # Other support modules
├── include/ # Header files directory (18 files)
│ ├── tasmota.h # Main header
│ ├── tasmota_types.h # Type definitions
│ ├── tasmota_globals.h # Global variables
│ └── *.h # Other headers
└── my_user_config.h # User configuration overrides
```
### Command System
All Tasmota functionality is accessible through a unified command system:
- Commands can be sent via MQTT, HTTP, serial, or web console
- Format: `Command [parameter]`
- Response format: JSON for structured data
- Backlog support for multiple commands: `Backlog cmd1; cmd2; cmd3`
### GPIO Management
Tasmota uses a flexible GPIO assignment system:
1. **Templates**: Pre-defined GPIO configurations for specific devices
2. **Components**: Logical functions assigned to physical pins
3. **Modules**: Base hardware configurations
4. **Runtime Configuration**: GPIO can be reassigned without recompilation
## Development Environment Setup
### Prerequisites
1. **PlatformIO**: Primary build system
2. **Git**: Version control
3. **Python**: For build scripts and tools
4. **Serial Programmer**: For initial flashing
### Build Configuration
Create `platformio_tasmota_cenv.ini` for custom environments:
```ini
[env:tasmota32-custom]
extends = env:tasmota32
build_flags = ${env:tasmota32.build_flags}
-DUSE_MY_CUSTOM_FEATURE
```
### User Configuration
Create `tasmota/user_config_override.h`:
```c
#ifndef _USER_CONFIG_OVERRIDE_H_
#define _USER_CONFIG_OVERRIDE_H_
// Enable custom features
#define USE_CUSTOM_SENSOR
#define USE_BERRY_DEBUG
// Disable unused features to save space
#undef USE_DOMOTICZ
#undef USE_KNX
#endif
```
## Driver Development
### Sensor Driver Structure
All sensor drivers follow a standardized pattern:
```c
#ifdef USE_MY_SENSOR
#define XSNS_XX XX // Unique sensor ID
bool MySensorDetected = false;
void MySensorInit(void) {
// Initialize sensor
if (sensor_detected) {
MySensorDetected = true;
}
}
void MySensorEverySecond(void) {
// Read sensor data
}
void MySensorShow(bool json) {
if (json) {
ResponseAppend_P(PSTR(",\"MySensor\":{\"Temperature\":%d}"), temperature);
}
#ifdef USE_WEBSERVER
else {
WSContentSend_PD(HTTP_SNS_TEMP, "MySensor", temperature);
}
#endif
}
bool Xsns_XX(byte function) {
bool result = false;
if (i2c_flg) { // Only for I2C sensors
switch (function) {
case FUNC_INIT:
MySensorInit();
break;
case FUNC_EVERY_SECOND:
MySensorEverySecond();
break;
case FUNC_JSON_APPEND:
MySensorShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
MySensorShow(0);
break;
#endif
}
}
return result;
}
#endif // USE_MY_SENSOR
```
### Complete Driver Callback Functions Reference
**VERIFIED FROM SOURCE CODE**: `tasmota/include/tasmota.h` lines 433-454
#### Core System Callbacks (Functions WITHOUT return results)
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_SETTINGS_OVERRIDE` | Override default settings | Before settings load | None |
| `FUNC_SETUP_RING1` | Early setup phase 1 | System initialization | None |
| `FUNC_SETUP_RING2` | Early setup phase 2 | System initialization | None |
| `FUNC_PRE_INIT` | Pre-initialization | Before main init | None |
| `FUNC_INIT` | Initialize driver/sensor | Once at startup | None |
| `FUNC_ACTIVE` | Check if driver is active | Status queries | None |
| `FUNC_ABOUT_TO_RESTART` | Prepare for restart | Before system restart | None |
#### Loop and Timing Callbacks
| Function | Purpose | Frequency | Parameters |
|----------|---------|-----------|-----------|
| `FUNC_LOOP` | Main loop processing | Every loop cycle (~1ms) | None |
| `FUNC_SLEEP_LOOP` | Sleep mode processing | During sleep cycles | None |
| `FUNC_EVERY_50_MSECOND` | Fast polling operations | Every 50ms | None |
| `FUNC_EVERY_100_MSECOND` | Medium polling | Every 100ms | None |
| `FUNC_EVERY_200_MSECOND` | Slower polling | Every 200ms | None |
| `FUNC_EVERY_250_MSECOND` | Quarter second tasks | Every 250ms | None |
| `FUNC_EVERY_SECOND` | Regular updates | Every second | None |
#### Settings and Configuration Callbacks
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_RESET_SETTINGS` | Reset to defaults | Settings reset | None |
| `FUNC_RESTORE_SETTINGS` | Restore from backup | Settings restore | None |
| `FUNC_SAVE_SETTINGS` | Save current settings | Settings save | None |
| `FUNC_SAVE_AT_MIDNIGHT` | Midnight save operations | Daily at 00:00 | None |
| `FUNC_SAVE_BEFORE_RESTART` | Save critical data | Before restart | None |
#### Interrupt and System Control
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_INTERRUPT_STOP` | Stop interrupts | Before critical section | None |
| `FUNC_INTERRUPT_START` | Resume interrupts | After critical section | None |
| `FUNC_FREE_MEM` | Memory cleanup | Low memory conditions | None |
#### Telemetry and JSON Callbacks
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_AFTER_TELEPERIOD` | Post-telemetry cleanup | After TelePeriod | None |
| `FUNC_JSON_APPEND` | Add JSON telemetry | Every TelePeriod | None |
| `FUNC_TELEPERIOD_RULES_PROCESS` | Rules after telemetry | Post-TelePeriod | None |
#### Web Interface Callbacks
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_WEB_SENSOR` | Show sensor on web | Sensor page load | None |
| `FUNC_WEB_COL_SENSOR` | Column sensor display | Web page layout | None |
| `FUNC_WEB_ADD_BUTTON` | Add web buttons | Main page load | None |
| `FUNC_WEB_ADD_CONSOLE_BUTTON` | Add console button | Console page | None |
| `FUNC_WEB_ADD_MANAGEMENT_BUTTON` | Add config button | Config page | None |
| `FUNC_WEB_ADD_MAIN_BUTTON` | Add main menu button | Main page | None |
| `FUNC_WEB_GET_ARG` | Process web arguments | Form submission | None |
| `FUNC_WEB_ADD_HANDLER` | Add URL handlers | Web server init | None |
| `FUNC_WEB_STATUS_LEFT` | Left status column | Status page | None |
| `FUNC_WEB_STATUS_RIGHT` | Right status column | Status page | None |
#### MQTT and Communication Callbacks
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_MQTT_SUBSCRIBE` | Subscribe to MQTT topics | MQTT connect | None |
| `FUNC_MQTT_INIT` | Initialize MQTT | MQTT setup | None |
#### Power and Hardware Control
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_SET_POWER` | Handle power changes | Power state change | None |
| `FUNC_SHOW_SENSOR` | Display sensor data | Status request | None |
| `FUNC_ANY_KEY` | Handle any key press | Key event | None |
| `FUNC_LED_LINK` | Control link LED | Network state change | None |
| `FUNC_ENERGY_EVERY_SECOND` | Energy monitoring | Every second | None |
| `FUNC_ENERGY_RESET` | Reset energy counters | Reset command | None |
#### Advanced System Callbacks
| Function | Purpose | When Called | Parameters |
|----------|---------|-------------|-----------|
| `FUNC_SET_SCHEME` | Set color scheme | Theme change | None |
| `FUNC_HOTPLUG_SCAN` | Scan for hotplug devices | Device detection | None |
| `FUNC_TIME_SYNCED` | Time synchronization | NTP sync complete | None |
| `FUNC_DEVICE_GROUP_ITEM` | Device group processing | Group operations | None |
| `FUNC_NETWORK_UP` | Network connected | WiFi/Ethernet up | None |
| `FUNC_NETWORK_DOWN` | Network disconnected | WiFi/Ethernet down | None |
#### Callback Functions WITH Return Results (ID >= 200)
These functions are expected to return boolean results:
| Function | Purpose | When Called | Return Value |
|----------|---------|-------------|--------------|
| `FUNC_PIN_STATE` | GPIO state query | Pin state check | true if handled |
| `FUNC_MODULE_INIT` | Module initialization | Module setup | true if success |
| `FUNC_ADD_BUTTON` | Add button handler | Button config | true if added |
| `FUNC_ADD_SWITCH` | Add switch handler | Switch config | true if added |
| `FUNC_BUTTON_PRESSED` | Handle button press | Button event | true if handled |
| `FUNC_BUTTON_MULTI_PRESSED` | Multi-button press | Button combo | true if handled |
| `FUNC_SET_DEVICE_POWER` | Device power control | Power command | true if handled |
| `FUNC_MQTT_DATA` | Process MQTT data | MQTT message | true if handled |
| `FUNC_SERIAL` | Serial data processing | Serial input | true if handled |
| `FUNC_COMMAND` | Process commands | Command received | true if handled |
| `FUNC_COMMAND_SENSOR` | Sensor commands | Sensor command | true if handled |
| `FUNC_COMMAND_DRIVER` | Driver commands | Driver command | true if handled |
| `FUNC_RULES_PROCESS` | Process rules | Rule evaluation | true if handled |
| `FUNC_SET_CHANNELS` | Set PWM channels | Channel update | true if handled |
#### Callback Implementation Pattern
```c
bool Xdrv_XX(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_INIT:
MyDriverInit();
break;
case FUNC_EVERY_SECOND:
MyDriverEverySecond();
break;
case FUNC_COMMAND:
result = MyDriverCommand();
break;
case FUNC_JSON_APPEND:
MyDriverJsonAppend();
break;
case FUNC_WEB_SENSOR:
MyDriverWebSensor();
break;
case FUNC_SAVE_BEFORE_RESTART:
MyDriverSaveSettings();
break;
}
return result;
}
### I2C Development
```c
// I2C Helper Functions
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg);
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg);
uint8_t I2cRead8(uint8_t addr, uint8_t reg);
uint16_t I2cRead16(uint8_t addr, uint8_t reg);
bool I2cWrite8(uint8_t addr, uint8_t reg, uint8_t val);
// Device Detection Pattern
void MySensorDetect(void) {
if (MySensorDetected) return;
for (uint8_t i = 0; i < SENSOR_MAX_ADDR; i++) {
uint8_t addr = SENSOR_BASE_ADDR + i;
if (I2cValidRead8(&sensor_id, addr, SENSOR_ID_REG)) {
if (sensor_id == EXPECTED_ID) {
MySensorDetected = true;
AddLog(LOG_LEVEL_INFO, PSTR("MySensor found at 0x%02X"), addr);
break;
}
}
}
}
```
## Scripting and Automation
### Rules System
Rules provide event-driven automation:
```
Rule1 ON Switch1#State DO Power1 %value% ENDON
ON Time#Minute=30 DO Publish stat/topic/alert {"time":"30min"} ENDON
```
### Berry Scripting (ESP32)
Berry is a modern scripting language for advanced automation:
```berry
# Simple sensor reading
import json
def read_sensor()
var temp = tasmota.read_sensors()
if temp.contains("Temperature")
print("Current temperature:", temp["Temperature"])
end
end
# Set up timer
tasmota.set_timer(5000, read_sensor)
# Web interface extension
def web_add_button()
webserver.content_send("<button onclick='la(\"&m_toggle=1\");'>Toggle</button>")
end
tasmota.add_driver(web_add_button)
```
### Command Extensions
Add custom commands through Berry or C++:
```berry
def my_command(cmd, idx, payload)
if cmd == "MYCMD"
print("Custom command received:", payload)
tasmota.resp_cmnd_done()
end
end
tasmota.add_cmd('MYCMD', my_command)
```
## Complete Settings Structure Reference
### Settings Memory Layout
Tasmota uses a structured settings system stored in flash memory. The main settings structure is defined in `settings.h`:
```c
typedef struct {
unsigned long cfg_holder; // 000 v6.0.0a
unsigned long save_flag; // 004
unsigned long version; // 008
unsigned short flag; // 00C
unsigned short save_data; // 00E
int8_t timezone; // 010
char ota_url[101]; // 011
char mqtt_prefix[3][11]; // 076
char serial_delimiter; // 09D
uint8_t seriallog_level; // 09E
uint8_t sta_config; // 09F
char sta_ssid[2][33]; // 0A0
char sta_pwd[2][65]; // 102
char hostname[33]; // 183
char syslog_host[33]; // 1A4
uint16_t syslog_port; // 1C5
uint8_t syslog_level; // 1C7
uint8_t webserver; // 1C8
uint8_t weblog_level; // 1C9
char mqtt_fingerprint[2][60]; // 1CA
char mqtt_host[33]; // 236
uint16_t mqtt_port; // 257
char mqtt_client[33]; // 259
char mqtt_user[33]; // 27A
char mqtt_pwd[33]; // 29B
char mqtt_topic[33]; // 2BC
char button_topic[33]; // 2DD
char mqtt_grptopic[33]; // 2FE
uint8_t display_model; // 31F
uint8_t display_mode; // 320
uint8_t display_refresh; // 321
uint8_t display_rows; // 322
uint8_t display_cols[2]; // 323
uint8_t display_address[8]; // 325
uint8_t display_dimmer; // 32D
uint8_t display_size; // 32E
uint16_t pwm_frequency; // 32F
power_t power; // 331
uint16_t pwm_value[MAX_PWMS]; // 335
int16_t altitude; // 345
uint16_t tele_period; // 347
uint8_t ledstate; // 349
uint8_t param[PARAM_MAX]; // 34A
int16_t toffset[2]; // 35A
uint8_t display_font; // 35E
} Settings;
### ESP8266 Constraints
- **Flash**: 1MB total, ~500KB available for firmware
- **RAM**: 80KB total, ~25-30KB available for application
- **Stack**: 4KB maximum
### Optimization Techniques
1. **Use PROGMEM for constants**:
```c
const char MyString[] PROGMEM = "Constant string";
```
2. **Minimize dynamic allocation**:
```c
// Avoid
String result = String(value1) + "," + String(value2);
// Prefer
char result[32];
snprintf(result, sizeof(result), "%d,%d", value1, value2);
```
3. **Use flash-efficient data types**:
```c
// Use uint32_t instead of uint8_t for local variables
// Use uint8_t only in structs to save memory
```
## Communication Protocols
### Command Context Structure
All command handlers receive context through the global XdrvMailbox structure:
```c
struct XDRVMAILBOX {
bool grpflg; // Group flag
bool usridx; // User index flag
uint16_t command_code; // Command code
uint32_t index; // Command index
uint32_t data_len; // Parameter length
int32_t payload; // Numeric parameter
char *topic; // MQTT topic
char *data; // Command parameters
char *command; // Command name
} XdrvMailbox;
```
**Key Fields:**
- `command`: The command name (e.g., "Power", "Status")
- `data`: Raw parameter string
- `payload`: Numeric value of first parameter
- `data_len`: Length of parameter string
- `index`: Command index for numbered commands (Power1, Power2, etc.)
### MQTT Integration
```c
// Publish sensor data
void PublishSensorData(void) {
Response_P(PSTR("{\"MySensor\":{\"Value\":%d}}"), sensor_value);
MqttPublishTeleSensor();
}
// Subscribe to commands
bool MyCommand(void) {
if (XdrvMailbox.data_len > 0) {
// Process command
ResponseCmndDone();
return true;
}
ResponseCmndNumber(current_value);
return true;
}
```
### Web Interface Extensions
```c
#ifdef USE_WEBSERVER
void MySensorWebShow(void) {
WSContentSend_PD(PSTR(
"{s}MySensor Temperature{m}%d°C{e}"
"{s}MySensor Humidity{m}%d%%{e}"),
temperature, humidity);
}
#endif
```
## Advanced Features
### Template System
Templates define device GPIO configurations:
```json
{
"NAME":"Custom Device",
"GPIO":[416,0,418,0,417,2720,0,0,2624,32,2656,224,0,0],
"FLAG":0,
"BASE":45
}
```
### Matter Protocol Support
For ESP32 devices, Matter provides standardized IoT communication:
```c
// Matter endpoint configuration
matter.add_endpoint(1, 0x0100); // On/Off Light
matter.add_endpoint(2, 0x0106); // Light with dimming
```
### Display Integration
Universal Display Driver supports 50+ display types:
```
DisplayModel 1 # Select display type
DisplayMode 1 # Text mode
DisplayText [s1l1]Hello World
```
## Testing and Debugging
### Debug Options
Enable debugging in `user_config_override.h`:
```c
#define DEBUG_TASMOTA_CORE
#define DEBUG_TASMOTA_DRIVER
#define USE_DEBUG_DRIVER
```
### Serial Debugging
```c
AddLog(LOG_LEVEL_INFO, PSTR("Debug: value=%d"), value);
AddLog(LOG_LEVEL_DEBUG, PSTR("Detailed info: %s"), info_string);
```
### Memory Monitoring
```c
// Check free heap
uint32_t free_heap = ESP.getFreeHeap();
AddLog(LOG_LEVEL_DEBUG, PSTR("Free heap: %d"), free_heap);
```
## Best Practices
### Code Organization
1. **Use consistent naming**: `MySensor` prefix for all functions
2. **Follow callback patterns**: Implement standard driver callbacks
3. **Handle errors gracefully**: Check return values and sensor presence
4. **Document thoroughly**: Include usage examples and pin assignments
### Performance Considerations
1. **Minimize blocking operations**: Use state machines for long operations
2. **Cache sensor readings**: Don't read sensors more often than necessary
3. **Use appropriate data types**: Consider memory usage vs. precision
4. **Optimize for common cases**: Fast path for normal operations
### Security Guidelines
1. **Validate all inputs**: Check command parameters and sensor data
2. **Use secure defaults**: Enable security features by default
3. **Minimize attack surface**: Disable unused network services
4. **Regular updates**: Keep firmware and dependencies current
## Integration Examples
### Home Assistant Discovery
```c
void PublishDiscovery(void) {
Response_P(PSTR("{"
"\"name\":\"%s MySensor\","
"\"stat_t\":\"%s\","
"\"unit_of_meas\":\"°C\","
"\"dev_cla\":\"temperature\""
"}"), SettingsText(SET_DEVICENAME), GetStateTopic());
MqttPublish(GetDiscoveryTopic("sensor", "temperature"), true);
}
```
### Custom Web Interface
```c
const char HTTP_MYSENSOR[] PROGMEM =
"{s}MySensor{m}"
"<input type='range' min='0' max='100' value='%d' "
"onchange='la(\"&mysensor_val=\"+this.value);'>"
"{e}";
void MySensorWebShow(void) {
WSContentSend_PD(HTTP_MYSENSOR, current_value);
}
```
This guide provides the foundation for understanding and extending Tasmota. The modular architecture, standardized APIs, and extensive documentation make it an excellent platform for IoT development, whether you're adding simple sensor support or implementing complex automation systems.
## Complete Command Reference
### Core System Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Status` | 0-11 | System status information | `Status 0` |
| `Reset` | 1-6 | Reset device with options | `Reset 1` |
| `Restart` | 1 | Restart device | `Restart 1` |
| `Upgrade` | 1 | Start OTA upgrade | `Upgrade 1` |
| `Upload` | 1 | Start file upload | `Upload 1` |
| `Otaurl` | url | Set OTA URL | `Otaurl http://ota.server/firmware.bin` |
| `Seriallog` | 0-4 | Set serial log level | `Seriallog 2` |
| `Syslog` | 0-4 | Set syslog level | `Syslog 2` |
| `Loghost` | hostname | Set syslog host | `Loghost 192.168.1.100` |
| `Logport` | port | Set syslog port | `Logport 514` |
| `Ipaddress` | x.x.x.x | Set IP address | `Ipaddress 192.168.1.100` |
| `Gateway` | x.x.x.x | Set gateway | `Gateway 192.168.1.1` |
| `Subnetmask` | x.x.x.x | Set subnet mask | `Subnetmask 255.255.255.0` |
| `Dnsserver` | x.x.x.x | Set DNS server | `Dnsserver 8.8.8.8` |
| `Mac` | - | Show MAC address | `Mac` |
| `Hostname` | name | Set hostname | `Hostname tasmota-device` |
### WiFi Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Ssid1` | ssid | Set WiFi SSID 1 | `Ssid1 MyNetwork` |
| `Ssid2` | ssid | Set WiFi SSID 2 | `Ssid2 BackupNetwork` |
| `Password1` | password | Set WiFi password 1 | `Password1 MyPassword` |
| `Password2` | password | Set WiFi password 2 | `Password2 BackupPassword` |
| `Ap` | 0-2 | Set AP mode | `Ap 1` |
| `WebServer` | 0-2 | Enable web server | `WebServer 1` |
| `WebPassword` | password | Set web password | `WebPassword admin` |
| `WifiConfig` | 0-7 | WiFi configuration mode | `WifiConfig 4` |
### MQTT Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `MqttHost` | hostname | Set MQTT broker | `MqttHost 192.168.1.100` |
| `MqttPort` | port | Set MQTT port | `MqttPort 1883` |
| `MqttUser` | username | Set MQTT username | `MqttUser myuser` |
| `MqttPassword` | password | Set MQTT password | `MqttPassword mypass` |
| `MqttClient` | clientid | Set MQTT client ID | `MqttClient tasmota-device` |
| `Topic` | topic | Set MQTT topic | `Topic tasmota` |
| `GroupTopic` | topic | Set group topic | `GroupTopic tasmotas` |
| `FullTopic` | template | Set full topic template | `FullTopic %prefix%/%topic%/` |
| `Prefix1` | prefix | Set command prefix | `Prefix1 cmnd` |
| `Prefix2` | prefix | Set status prefix | `Prefix2 stat` |
| `Prefix3` | prefix | Set telemetry prefix | `Prefix3 tele` |
| `Publish` | topic payload | Publish MQTT message | `Publish stat/topic/test Hello` |
| `MqttRetry` | seconds | Set MQTT retry time | `MqttRetry 10` |
| `StateText1` | text | Set OFF state text | `StateText1 OFF` |
| `StateText2` | text | Set ON state text | `StateText2 ON` |
| `StateText3` | text | Set TOGGLE state text | `StateText3 TOGGLE` |
| `StateText4` | text | Set HOLD state text | `StateText4 HOLD` |
### Power and Relay Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Power` | 0/1/2 | Control main power | `Power 1` |
| `Power1` | 0/1/2 | Control power 1 | `Power1 ON` |
| `Power2` | 0/1/2 | Control power 2 | `Power2 OFF` |
| `Power3` | 0/1/2 | Control power 3 | `Power3 TOGGLE` |
| `Power4` | 0/1/2 | Control power 4 | `Power4 1` |
| `PowerOnState` | 0-4 | Set power on state | `PowerOnState 1` |
| `PulseTime` | 1-111 | Set pulse time | `PulseTime1 10` |
| `BlinkTime` | 2-3600 | Set blink time | `BlinkTime 10` |
| `BlinkCount` | 0-32000 | Set blink count | `BlinkCount 5` |
| `Interlock` | 0/1 | Enable interlock | `Interlock 1` |
| `Ledstate` | 0-8 | Set LED state | `Ledstate 1` |
| `LedPower` | 0-2 | Control LED power | `LedPower 1` |
| `LedMask` | hex | Set LED mask | `LedMask 0xFF00` |
### Sensor Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `TelePeriod` | 10-3600 | Set telemetry period | `TelePeriod 300` |
| `Resolution` | 0-3 | Set sensor resolution | `Resolution 2` |
| `HumRes` | 0-3 | Set humidity resolution | `HumRes 1` |
| `TempRes` | 0-3 | Set temperature resolution | `TempRes 2` |
| `PressRes` | 0-3 | Set pressure resolution | `PressRes 1` |
| `EnergyRes` | 0-5 | Set energy resolution | `EnergyRes 3` |
| `SpeedUnit` | 1-4 | Set speed unit | `SpeedUnit 1` |
| `WeightRes` | 0-3 | Set weight resolution | `WeightRes 2` |
| `FreqRes` | 0-3 | Set frequency resolution | `FreqRes 2` |
### Timer Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Timer1` | parameters | Configure timer 1 | `Timer1 {"Enable":1,"Time":"06:00","Days":"1111100","Repeat":1,"Action":1}` |
| `Timer2` | parameters | Configure timer 2 | `Timer2 {"Enable":1,"Time":"22:00","Action":0}` |
| `Timers` | 0/1 | Enable/disable timers | `Timers 1` |
| `Latitude` | degrees | Set latitude | `Latitude 52.520008` |
| `Longitude` | degrees | Set longitude | `Longitude 13.404954` |
| `Sunrise` | - | Show sunrise time | `Sunrise` |
| `Sunset` | - | Show sunset time | `Sunset` |
### GPIO and Template Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Gpio` | pin,function | Set GPIO function | `Gpio 14,21` |
| `Gpios` | - | Show GPIO configuration | `Gpios` |
| `Template` | json | Set device template | `Template {"NAME":"Generic","GPIO":[255,255,255,255,255,255,255,255,255,255,255,255,255],"FLAG":1,"BASE":18}` |
| `Module` | 0-255 | Set device module | `Module 1` |
| `Modules` | - | Show available modules | `Modules` |
| `I2CScan` | - | Scan I2C bus | `I2CScan` |
| `I2CDriver` | driver | Enable I2C driver | `I2CDriver10 1` |
### Display Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Display` | - | Show display info | `Display` |
| `DisplayModel` | 1-16 | Set display model | `DisplayModel 2` |
| `DisplayMode` | 0-5 | Set display mode | `DisplayMode 1` |
| `DisplayDimmer` | 0-100 | Set display brightness | `DisplayDimmer 50` |
| `DisplaySize` | 1-4 | Set display size | `DisplaySize 2` |
| `DisplayRotate` | 0-3 | Set display rotation | `DisplayRotate 2` |
| `DisplayText` | text | Display text | `DisplayText [s1l1]Hello World` |
| `DisplayClear` | - | Clear display | `DisplayClear` |
### Rule Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Rule1` | rule | Set rule 1 | `Rule1 ON Switch1#State DO Power1 %value% ENDON` |
| `Rule2` | rule | Set rule 2 | `Rule2 ON Time#Minute=30 DO Publish stat/alert 30min ENDON` |
| `Rule3` | rule | Set rule 3 | `Rule3 ON Button1#State DO Backlog Power1 TOGGLE; Delay 10; Power2 TOGGLE ENDON` |
| `RuleTimer1` | 0-3600 | Set rule timer 1 | `RuleTimer1 60` |
| `RuleTimer2` | 0-3600 | Set rule timer 2 | `RuleTimer2 120` |
| `Mem1` | value | Set memory 1 | `Mem1 Hello` |
| `Mem2` | value | Set memory 2 | `Mem2 World` |
| `Var1` | value | Set variable 1 | `Var1 42` |
| `Var2` | value | Set variable 2 | `Var2 3.14` |
| `CalcRes` | 0-7 | Set calculation resolution | `CalcRes 2` |
### Berry Script Commands (ESP32)
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `Br` | code | Execute Berry code | `Br print("Hello")` |
| `BrLoad` | filename | Load Berry file | `BrLoad autoexec.be` |
| `BrRun` | filename | Run Berry file | `BrRun script.be` |
| `BrRestart` | - | Restart Berry VM | `BrRestart` |
### Energy Monitoring Commands
| Command | Parameters | Description | Example |
|---------|------------|-------------|---------|
| `PowerCal` | value | Calibrate power | `PowerCal 12530` |
| `VoltageCal` | value | Calibrate voltage | `VoltageCal 1950` |
| `CurrentCal` | value | Calibrate current | `CurrentCal 3500` |
| `PowerSet` | watts | Set power reading | `PowerSet 100` |
| `VoltageSet` | volts | Set voltage reading | `VoltageSet 230` |
| `CurrentSet` | amps | Set current reading | `CurrentSet 0.43` |
| `FrequencySet` | hz | Set frequency reading | `FrequencySet 50` |
| `EnergyReset1` | kWh | Reset energy total | `EnergyReset1 0` |
| `EnergyReset2` | kWh | Reset energy yesterday | `EnergyReset2 0` |
| `EnergyReset3` | kWh | Reset energy today | `EnergyReset3 0` |
| `MaxPower` | watts | Set max power | `MaxPower 3500` |
| `MaxPowerHold` | seconds | Set max power hold | `MaxPowerHold 10` |
| `MaxPowerWindow` | seconds | Set max power window | `MaxPowerWindow 30` |
| `SafePower` | watts | Set safe power | `SafePower 3000` |
| `SafePowerHold` | seconds | Set safe power hold | `SafePowerHold 10` |
| `SafePowerWindow` | seconds | Set safe power window | `SafePowerWindow 30` |
## Complete Logging and Debug Reference
### Log Levels
```c
#define LOG_LEVEL_NONE 0 // No logging
#define LOG_LEVEL_ERROR 1 // Critical errors only
#define LOG_LEVEL_INFO 2 // Errors and info
#define LOG_LEVEL_DEBUG 3 // Errors, info and debug
#define LOG_LEVEL_DEBUG_MORE 4 // All logging
```
### Logging Functions
```c
// Main logging function
void AddLog(uint32_t loglevel, const char* formatP, ...);
// Convenience macros
#define AddLog_P(loglevel, formatP, ...) AddLog(loglevel, PSTR(formatP), ##__VA_ARGS__)
#define AddLog_P2(loglevel, formatP, ...) AddLog(loglevel, formatP, ##__VA_ARGS__)
// Debug logging (only in debug builds)
#ifdef DEBUG_TASMOTA_CORE
#define DEBUG_CORE_LOG(...) AddLog(__VA_ARGS__)
#else
#define DEBUG_CORE_LOG(...)
#endif
#ifdef DEBUG_TASMOTA_DRIVER
#define DEBUG_DRIVER_LOG(...) AddLog(__VA_ARGS__)
#else
#define DEBUG_DRIVER_LOG(...)
#endif
#ifdef DEBUG_TASMOTA_SENSOR
#define DEBUG_SENSOR_LOG(...) AddLog(__VA_ARGS__)
#else
#define DEBUG_SENSOR_LOG(...)
#endif
```
### Debug Build Options
```c
// Enable in user_config_override.h for debugging
#define DEBUG_TASMOTA_CORE // Core system debugging
#define DEBUG_TASMOTA_DRIVER // Driver debugging
#define DEBUG_TASMOTA_SENSOR // Sensor debugging
#define USE_DEBUG_DRIVER // Enable debug driver
#define DEBUG_TASMOTA_PORT Serial // Debug output port
```
### Memory Debugging
```c
// Memory monitoring functions
uint32_t ESP_getFreeHeap(void);
uint32_t ESP_getMaxAllocHeap(void);
uint8_t ESP_getHeapFragmentation(void);
uint32_t ESP_getFreeContStack(void);
// Memory debugging macros
#define SHOW_FREE_MEM(x) AddLog(LOG_LEVEL_DEBUG, PSTR(x " free mem: %d"), ESP_getFreeHeap())
#define CHECK_OOM() if (ESP_getFreeHeap() < 1000) AddLog(LOG_LEVEL_ERROR, PSTR("Low memory: %d"), ESP_getFreeHeap())
```
## Complete I2C Reference
### I2C Configuration
```c
// I2C pins (can be changed via GPIO configuration)
#define I2C_SDA_PIN 4 // Default SDA pin
#define I2C_SCL_PIN 5 // Default SCL pin
// I2C speeds
#define I2C_SPEED_SLOW 50000 // 50kHz
#define I2C_SPEED_STANDARD 100000 // 100kHz
#define I2C_SPEED_FAST 400000 // 400kHz
#define I2C_SPEED_FAST_PLUS 1000000 // 1MHz
```
### I2C Helper Functions
```c
// Basic I2C operations
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size);
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg);
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg);
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg);
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg);
bool I2cValidReadS32(int32_t *data, uint8_t addr, uint8_t reg);
bool I2cValidReadS32_LE(int32_t *data, uint8_t addr, uint8_t reg);
uint8_t I2cRead8(uint8_t addr, uint8_t reg);
uint16_t I2cRead16(uint8_t addr, uint8_t reg);
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg);
int32_t I2cRead24(uint8_t addr, uint8_t reg);
int32_t I2cReadS32(uint8_t addr, uint8_t reg);
int32_t I2cReadS32_LE(uint8_t addr, uint8_t reg);
bool I2cWrite8(uint8_t addr, uint8_t reg, uint8_t val);
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val);
bool I2cWrite16LE(uint8_t addr, uint8_t reg, uint16_t val);
// Buffer operations
uint8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *data, uint16_t len);
uint8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *data, uint16_t len);
// Device detection
bool I2cActive(uint8_t addr);
void I2cScan(char *devs, unsigned int devs_len);
void I2cResetActive(uint8_t addr, uint8_t count = 1);
void I2cSetActive(uint8_t addr, uint8_t count = 1);
void I2cSetActiveFound(uint8_t addr, const char *types);
```
### I2C Device Detection Pattern
```c
void MySensorDetect(void) {
if (MySensorDetected) return;
for (uint32_t i = 0; i < SENSOR_MAX_ADDR; i++) {
uint8_t addr = SENSOR_BASE_ADDR + i;
if (I2cActive(addr)) continue; // Address already in use
if (I2cValidRead8(&sensor_id, addr, SENSOR_ID_REG)) {
if (sensor_id == EXPECTED_SENSOR_ID) {
I2cSetActiveFound(addr, "MySensor");
MySensorDetected = true;
MySensorAddress = addr;
AddLog(LOG_LEVEL_INFO, PSTR("MySensor found at address 0x%02X"), addr);
break;
}
}
}
}
```
This comprehensive developer reference provides all the essential information needed to understand, extend, and debug Tasmota firmware. The detailed callback system, complete command reference, GPIO configuration options, and debugging tools give developers everything needed to create robust IoT solutions.

File diff suppressed because it is too large Load Diff

View File

@ -7,7 +7,7 @@
- [ ] Only relevant files were touched
- [ ] Only one feature/fix was added per PR and the code change compiles without warnings
- [ ] The code change is tested and works with Tasmota core ESP8266 V.2.7.8
- [ ] The code change is tested and works with Tasmota core ESP32 V.3.1.3.250712
- [ ] The code change is tested and works with Tasmota core ESP32 V.3.1.3.250504
- [ ] I accept the [CLA](https://github.com/arendst/Tasmota/blob/development/CONTRIBUTING.md#contributor-license-agreement-cla).
_NOTE: The code change must pass CI tests. **Your PR cannot be merged unless tests pass**_

View File

@ -98,8 +98,6 @@ jobs:
- tasmota32s3ser-safeboot
- tasmota32c6-safeboot
- tasmota32c6ser-safeboot
- tasmota32p4-safeboot
- tasmota32p4ser-safeboot
steps:
- uses: actions/checkout@v4
with:
@ -110,8 +108,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Add SHA to footer
run: |
@ -160,8 +158,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
- name: Add SHA to footer
run: |
COMMIT_SHA_LONG=$(git rev-parse --short HEAD || echo "")
@ -197,7 +195,6 @@ jobs:
- tasmota32c2
- tasmota32c3
- tasmota32c6
- tasmota32p4
- tasmota32s2
- tasmota32s2cdc
- tasmota32s3
@ -212,8 +209,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Download safeboot firmwares
uses: actions/download-artifact@v4
@ -259,8 +256,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Download safeboot firmwares
uses: actions/download-artifact@v4

View File

@ -32,8 +32,6 @@ jobs:
- tasmota32s3ser-safeboot
- tasmota32c6-safeboot
- tasmota32c6ser-safeboot
- tasmota32p4-safeboot
- tasmota32p4ser-safeboot
steps:
- uses: actions/checkout@v4
with:
@ -44,8 +42,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Add "release" to footer
run: |
@ -88,8 +86,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Add "release" to footer
run: |
@ -124,7 +122,6 @@ jobs:
- tasmota32c2
- tasmota32c3
- tasmota32c6
- tasmota32p4
- tasmota32s2
- tasmota32s2cdc
- tasmota32s3
@ -139,8 +136,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Download safeboot firmwares
uses: actions/download-artifact@v4
@ -184,8 +181,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Download safeboot firmwares
uses: actions/download-artifact@v4

View File

@ -19,7 +19,7 @@ on:
jobs:
os-check-win:
runs-on: windows-latest
runs-on: windows-2019
if: github.repository == 'arendst/Tasmota'
strategy:
fail-fast: true
@ -34,8 +34,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
- name: Run PlatformIO
env:
PYTHONIOENCODING: utf-8
@ -62,8 +62,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
- name: Run PlatformIO
env:
PYTHONIOENCODING: utf-8
@ -95,7 +95,6 @@ jobs:
- tasmota32c2
- tasmota32c3
- tasmota32c6
- tasmota32p4
- tasmota32s2
- tasmota32s2cdc
- tasmota32s3
@ -113,7 +112,6 @@ jobs:
- tasmota32c2-safeboot
- tasmota32c3-safeboot
- tasmota32c6-safeboot
- tasmota32p4-safeboot
steps:
- uses: actions/checkout@v4
- name: Set up Python
@ -122,8 +120,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
cp ./platformio_override_sample.ini ./platformio_override.ini
- name: Run PlatformIO
env:
@ -151,8 +149,8 @@ jobs:
python-version: '3.13'
- name: Install dependencies
run: |
pip install uv
uv pip install --system platformio
pip install wheel
pip install -U platformio
- name: Run PlatformIO
env:
PYTHONIOENCODING: utf-8

4
.gitpod.Dockerfile vendored
View File

@ -1,5 +1,3 @@
FROM gitpod/workspace-python-3.13
RUN python -m pip install --break-system-packages uv
FROM gitpod/workspace-python-3.11
USER gitpod

View File

@ -3,70 +3,7 @@ All notable changes to this project will be documented in this file.
## [Unreleased] - Development
## [15.0.1.2]
### Added
- Command `I2sPause` (#23646)
- Basic support for ESP32-P4 (#23663)
- ESP32-P4 command `HostedOta` (#23675)
- Support for RV3028 RTC (#23672)
- Berry preview of animation framework (#23740)
- Berry `call()` now works for classes
### Breaking Changed
### Changed
- ESP32 Platform from 2025.05.30 to 2025.07.30, Framework (Arduino Core) from v3.1.3.250504 to v3.1.3.250707 and IDF from v5.3.3.250501 to v5.3.3.250707 (#23642)
- Domoticz supports persistent settings for all relays, keys and switches when filesystem `#define USE_UFILESYS` is enabled
- ESP32 Platform from 2025.07.30 to 2025.07.31, Framework (Arduino Core) from v3.1.3.250707 to v3.1.3.250712 and IDF from v5.3.3.250707 to v5.3.3.250707 (#23685)
- ESP8266 platform update from 2025.05.00 to 2025.07.00 (#23700)
- OpenTherm library from v0.9.0 to v1.1.5 (#23704)
### Fixed
- NeoPool reset to default settings (#23734)
### Removed
## [15.0.1.1] 20250708
### Added
- I2S additions (#23543)
- NeoPool add Redox tank alarm (#19811)
- Berry f-strings now support ':' in expression (#23618)
- Universal display driver for ZJY169S0800TG01 ST7789 280x240 (#23638)
- Commands `LoRaWanDecoder "` and `LoRaWanName "` to clear name (#23394)
- Internal function 'WSContentSendRaw_P' (#23641)
### Changed
- BLE updates for esp-nimble-cpp v2.x (#23553)
- Library names (#23560)
- ESP32 LoRaWan decoding won't duplicate non-decoded message if `SO147 0`
- VEML6070 and AHT2x device detection (#23581)
- CSS uses named colors variables (#23597)
### Fixed
- LVGL restore `lv_chart.set_range` removed in LVGL 9.3.0 in favor of `lv_chart.set_axis_range` (#23567)
- Berry vulnerability in JSON parsing for unicode (#23603)
- Berry security issues in `int64` and improve documentation (#23605)
- Berry security issues in `berry_mapping` and improve documentation (#23606)
- Berry Hue regression from #23429 (#23623)
- AHT30 sensor start with null values after deep sleep (#23624)
## [Released]
## [15.0.1] 20250614
- Release Sharon
## [15.0.0.1] 20250614
### Fixed
- LVGL regression missing `lv.ANIM_OFF` and `lv.ANIM_ON` (#23544)
- Berry fix `realline` (#23546)
- LVGL HASPmota fix regression introduced with LVGL 9.3.0 (#23547)
## [15.0.0] 20250613
- Release Sharon
## [14.6.0.2] 20250613
## [14.6.0.2]
### Added
- Allow temporary change of DisplayDimmer (#23406)
- Support for LoRaWan Rx1 and Rx2 profiles (#23394)
@ -80,6 +17,8 @@ All notable changes to this project will be documented in this file.
- Berry mqtt publish rule processing
- Berry `tasmota.is_network_up()` (#23532)
### Breaking Changed
### Changed
- ESP32 Platform from 2025.04.30 to 2025.05.40, Framework (Arduino Core) from v3.1.3.250411 to v3.2.0.250504 and IDF from v5.3.2.250403 to v5.4.1.250501 (#23397)
- ESP32 Platform from 2025.05.40 to 2025.05.30, Framework (Arduino Core) from v3.2.0.250504 to v3.1.3.250504 and IDF from v5.4.1.250501 to v5.3.3.250501 (#23404)
@ -101,6 +40,8 @@ All notable changes to this project will be documented in this file.
- Autoconf failing when last line has no trailing LF (#23537)
- LVGL Tasmota logo splash screen (#23538)
### Removed
## [14.6.0.1] 20250510
### Added
- Command `JsonPP 0..7` to enable (>0) JSON Pretty Print on user interfaces and set number of indents
@ -113,6 +54,8 @@ All notable changes to this project will be documented in this file.
- Support for multi channel AU915-928 LoRaWanBridge by Rob Clark (#23372)
- HASPmota `antiburn()` (#23400)
### Breaking Changed
### Changed
- Allow command `WebRefresh` minimum from 1000 to 400 mSec
- GPIOViewer from v1.6.2 to v1.6.3 (No functional change)
@ -125,6 +68,8 @@ All notable changes to this project will be documented in this file.
- Matter and mDNS can be enabled at the same time (#23373)
- Berry `introspect.module()` failed to load modules in files (#23376)
## [Released]
## [14.6.0] 20250416
- Release Ryan

View File

@ -18,7 +18,7 @@ See [CHANGELOG.md](https://github.com/arendst/Tasmota/blob/development/CHANGELOG
## Development
[![Dev Version](https://img.shields.io/badge/development%20version-v15.0.x.x-blue.svg)](https://github.com/arendst/Tasmota)
[![Dev Version](https://img.shields.io/badge/development%20version-v14.6.x.x-blue.svg)](https://github.com/arendst/Tasmota)
[![Download Dev](https://img.shields.io/badge/download-development-yellow.svg)](http://ota.tasmota.com/tasmota/)
[![Tasmota CI](https://github.com/arendst/Tasmota/workflows/Tasmota%20CI/badge.svg)](https://github.com/arendst/Tasmota/actions?query=workflow%3A%22Tasmota+CI%22)
[![Tasmota ESP32 CI](https://github.com/arendst/Tasmota/workflows/Tasmota%20ESP32%20CI/badge.svg)](https://github.com/arendst/Tasmota/actions?query=workflow%3A%22Tasmota+ESP32+CI%22)

View File

@ -131,6 +131,5 @@ Index | Define | Driver | Device | Address(es) | Bus2 | Descrip
91 | USE_MS5837 | xsns_116 | MS5837 | 0x76 | | Pressure and temperature sensor
92 | USE_PCF85063 | xdrv_56 | PCF85063 | 0x51 | | PCF85063 Real time clock
93 | USE_AS33772S | xdrv_119 | AS33772S | 0x52 | Yes | AS33772S USB PD Sink Controller
94 | USE_RV3028 | xdrv_56 | RV3028 | 0x52 | Yes | RV-3028-C7 RTC Controller
NOTE: Bus2 supported on ESP32 only.

View File

@ -31,7 +31,7 @@ Firmware binaries can be downloaded from http://ota.tasmota.com/tasmota/release/
## Development
[![Dev Version](https://img.shields.io/badge/development%20version-v15.0.x.x-blue.svg)](https://github.com/arendst/Tasmota)
[![Dev Version](https://img.shields.io/badge/development%20version-v14.6.x.x-blue.svg)](https://github.com/arendst/Tasmota)
[![Download Dev](https://img.shields.io/badge/download-development-yellow.svg)](http://ota.tasmota.com/tasmota/)
[![Tasmota CI](https://github.com/arendst/Tasmota/actions/workflows/build_all_the_things.yml/badge.svg)](https://github.com/arendst/Tasmota/actions/workflows/build_all_the_things.yml)
[![Build_development](https://github.com/arendst/Tasmota/actions/workflows/Tasmota_build_devel.yml/badge.svg)](https://github.com/arendst/Tasmota/actions/workflows/Tasmota_build_devel.yml)

View File

@ -36,9 +36,9 @@ While fallback or downgrading is common practice it was never supported due to S
This release will be supported from ESP8266/Arduino library Core version **2.7.8** due to reported security and stability issues on previous Core version. This will also support gzipped binaries.
This release will be supported from ESP32/Arduino library Core version **v3.1.3.250504**.
This release will be supported from ESP32/Arduino library Core version **v3.1.3.250411**.
Support of ESP8266 Core versions before 2.7.8 and ESP32 Core versions before v3.1.3.250504 have been removed.
Support of ESP8266 Core versions before 2.7.8 and ESP32 Core versions before v3.1.3.250411 have been removed.
## Support of TLS
@ -75,12 +75,12 @@ Latest released binaries can be downloaded from
- http://ota.tasmota.com/tasmota/release
Historical binaries can be downloaded from
- http://ota.tasmota.com/tasmota/release-15.0.1
- http://ota.tasmota.com/tasmota/release-14.6.0
The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmota.com/tasmota/release/tasmota.bin.gz``
### ESP32, ESP32-C2, ESP32-C3, ESP32-C6, ESP32-S2 and ESP32-S3 based
The following binary downloads have been compiled with ESP32/Arduino library core version **v3.1.3.250504**.
The following binary downloads have been compiled with ESP32/Arduino library core version **v3.1.3.250411**.
- **tasmota32.bin** = The Tasmota version with most drivers including additional sensors and KNX for 4M+ flash. **RECOMMENDED RELEASE BINARY**
- **tasmota32solo1.bin** = The Tasmota version with most drivers including additional sensors and KNX for single core ESP32 and 4M+ flash.
@ -104,7 +104,7 @@ Latest released binaries can be downloaded from
- https://ota.tasmota.com/tasmota32/release
Historical binaries can be downloaded from
- https://ota.tasmota.com/tasmota32/release-15.0.1
- https://ota.tasmota.com/tasmota32/release-14.6.0
The latter links can be used for OTA upgrades too like ``OtaUrl https://ota.tasmota.com/tasmota32/release/tasmota32.bin``
@ -114,40 +114,55 @@ The latter links can be used for OTA upgrades too like ``OtaUrl https://ota.tasm
[Complete list](BUILDS.md) of available feature and sensors.
## Changelog v15.0.1.2
## Changelog v14.6.0.2
### Added
- Commands `LoRaWanDecoder "` and `LoRaWanName "` to clear name [#23394](https://github.com/arendst/Tasmota/issues/23394)
- Command `I2sPause` [#23646](https://github.com/arendst/Tasmota/issues/23646)
- Support for RV3028 RTC [#23672](https://github.com/arendst/Tasmota/issues/23672)
- Internal function 'WSContentSendRaw_P' [#23641](https://github.com/arendst/Tasmota/issues/23641)
- Universal display driver for ZJY169S0800TG01 ST7789 280x240 [#23638](https://github.com/arendst/Tasmota/issues/23638)
- NeoPool add Redox tank alarm [#19811](https://github.com/arendst/Tasmota/issues/19811)
- I2S additions [#23543](https://github.com/arendst/Tasmota/issues/23543)
- Basic support for ESP32-P4 [#23663](https://github.com/arendst/Tasmota/issues/23663)
- ESP32-P4 command `HostedOta` [#23675](https://github.com/arendst/Tasmota/issues/23675)
- Berry f-strings now support ':' in expression [#23618](https://github.com/arendst/Tasmota/issues/23618)
- Berry preview of animation framework [#23740](https://github.com/arendst/Tasmota/issues/23740)
- Provide serial upload port from VSC to PIO [#23436](https://github.com/arendst/Tasmota/issues/23436)
- Command `JsonPP 0..7` to enable (>0) JSON Pretty Print on user interfaces and set number of indents
- Command `JsonPP <command>|backlog <command>;...` to enable JSON PP only once
- Support for multi channel AU915-928 LoRaWanBridge by Rob Clark [#23372](https://github.com/arendst/Tasmota/issues/23372)
- Support for LoRaWan Rx1 and Rx2 profiles [#23394](https://github.com/arendst/Tasmota/issues/23394)
- Support for AP33772S USB PD Sink Controller as used in CentyLab RotoPD
- Allow temporary change of DisplayDimmer [#23406](https://github.com/arendst/Tasmota/issues/23406)
- WebUI status line for MQTT and TLS, added `FUNC_WEB_STATUS_LEFT` and `FUNC_WEB_STATUS_RIGHT` event [#23354](https://github.com/arendst/Tasmota/issues/23354)
- WebUI heap status [#23356](https://github.com/arendst/Tasmota/issues/23356)
- Optional Wifi strength indicator in WebUI status line [#23352](https://github.com/arendst/Tasmota/issues/23352)
- Wireguard VPN [#23347](https://github.com/arendst/Tasmota/issues/23347)
- Berry mqtt publish rule processing
- Berry support for `sortedmap` [#23441](https://github.com/arendst/Tasmota/issues/23441)
- Berry `introspect.module` option to not cache module entry [#23451](https://github.com/arendst/Tasmota/issues/23451)
- Berry `webserver.remove_route` to revert `webserver.on` [#23452](https://github.com/arendst/Tasmota/issues/23452)
- Berry `compile` and `tasmota.compile` option to compile in local context [#23457](https://github.com/arendst/Tasmota/issues/23457)
- Berry `tasmota.is_network_up()` [#23532](https://github.com/arendst/Tasmota/issues/23532)
- HASPmota `antiburn()` [#23400](https://github.com/arendst/Tasmota/issues/23400)
- HASPmota auto-dimming when no touch [#23425](https://github.com/arendst/Tasmota/issues/23425)
### Breaking Changed
### Changed
- ESP32 Platform from 2025.05.30 to 2025.07.31, Framework (Arduino Core) from v3.1.3.250504 to v3.1.3.250712 and IDF from v5.3.3.250501 to v5.3.3.250707 [#23685](https://github.com/arendst/Tasmota/issues/23685)
- ESP8266 platform update from 2025.05.00 to 2025.07.00 [#23700](https://github.com/arendst/Tasmota/issues/23700)
- OpenTherm library from v0.9.0 to v1.1.5 [#23704](https://github.com/arendst/Tasmota/issues/23704)
- Library names [#23560](https://github.com/arendst/Tasmota/issues/23560)
- CSS uses named colors variables [#23597](https://github.com/arendst/Tasmota/issues/23597)
- VEML6070 and AHT2x device detection [#23581](https://github.com/arendst/Tasmota/issues/23581)
- Domoticz supports persistent settings for all relays, keys and switches when filesystem `#define USE_UFILESYS` is enabled
- ESP32 LoRaWan decoding won't duplicate non-decoded message if `SO147 0`
- BLE updates for esp-nimble-cpp v2.x [#23553](https://github.com/arendst/Tasmota/issues/23553)
- ESP8266 platform update from 2024.09.00 to 2025.05.00 [#23448](https://github.com/arendst/Tasmota/issues/23448)
- ESP32 Platform from 2025.04.30 to 2025.05.30, Framework (Arduino Core) from v3.1.3.250411 to v3.1.3.250504 and IDF from v5.3.2.250403 to v5.3.3.250501 [#23404](https://github.com/arendst/Tasmota/issues/23404)
- ESP32 LVGL library from v9.2.2 to v9.3.0 [#23518](https://github.com/arendst/Tasmota/issues/23518)
- GPIOViewer from v1.6.2 to v1.6.3 (No functional change)
- Allow command `WebRefresh` minimum from 1000 to 400 mSec
- Increase number of supported LoRaWan nodes from 4 to 16
- Format syslog messages according to RFC5424 adding local log time [#23509](https://github.com/arendst/Tasmota/issues/23509)
- Zigbee improved message when coordinator failed to start [#23525](https://github.com/arendst/Tasmota/issues/23525)
- Berry change number parser for json to reuse same parser as lexer [#23505](https://github.com/arendst/Tasmota/issues/23505)
- Berry increase web hooks from 16 to 32 [#23507](https://github.com/arendst/Tasmota/issues/23507)
### Fixed
- AHT30 sensor start with null values after deep sleep [#23624](https://github.com/arendst/Tasmota/issues/23624)
- NeoPool reset to default settings [#23734](https://github.com/arendst/Tasmota/issues/23734)
- Berry vulnerability in JSON parsing for unicode [#23603](https://github.com/arendst/Tasmota/issues/23603)
- Berry security issues in `int64` and improve documentation [#23605](https://github.com/arendst/Tasmota/issues/23605)
- Berry security issues in `berry_mapping` and improve documentation [#23606](https://github.com/arendst/Tasmota/issues/23606)
- Berry Hue regression from #23429 [#23623](https://github.com/arendst/Tasmota/issues/23623)
- LVGL restore `lv_chart.set_range` removed in LVGL 9.3.0 in favor of `lv_chart.set_axis_range` [#23567](https://github.com/arendst/Tasmota/issues/23567)
- DNS setting with `IPAddress4/5` not persisted [#23426](https://github.com/arendst/Tasmota/issues/23426)
- Autoconf failing when last line has no trailing LF [#23537](https://github.com/arendst/Tasmota/issues/23537)
- NimBLE log_level definition conflict [#23366](https://github.com/arendst/Tasmota/issues/23366)
- Berry `bytes().asstring()` now truncates a string if buffer contains NULL [#23311](https://github.com/arendst/Tasmota/issues/23311)
- Berry string literals containing NULL are truncated [#23312](https://github.com/arendst/Tasmota/issues/23312)
- Berry `display.touch_update` wrongly applies resistive calibration [#23363](https://github.com/arendst/Tasmota/issues/23363)
- Berry `introspect.module()` failed to load modules in files [#23376](https://github.com/arendst/Tasmota/issues/23376)
- Berry avoid json parsing for unmatched commands [#23494](https://github.com/arendst/Tasmota/issues/23494)
- Berry integer and real parser to handle overflows [#23495](https://github.com/arendst/Tasmota/issues/23495)
- Berry potential pointer underflow with `string.endswith` [#23496](https://github.com/arendst/Tasmota/issues/23496)
- LVGL Tasmota logo splash screen [#23538](https://github.com/arendst/Tasmota/issues/23538)
- Matter and mDNS can be enabled at the same time [#23373](https://github.com/arendst/Tasmota/issues/23373)
- Haspmota `haspmota.parse()` page parsing [#23403](https://github.com/arendst/Tasmota/issues/23403)
### Removed

View File

@ -1,45 +0,0 @@
{
"build": {
"core": "esp32",
"extra_flags": [
"-DARDUINO_TASMOTA -DESP32P4 -DBOARD_HAS_PSRAM -DARDUINO_USB_MODE=1 -DUSE_USB_CDC_CONSOLE"
],
"f_cpu": "360000000L",
"f_flash": "80000000L",
"flash_mode": "qio",
"mcu": "esp32p4",
"variant": "esp32p4",
"partitions": "partitions/esp32_partition_app2880k_fs320k.csv"
},
"connectivity": [
"wifi",
"bluetooth",
"openthread",
"ethernet"
],
"debug": {
"openocd_target": "esp32p4.cfg"
},
"frameworks": [
"arduino",
"espidf"
],
"name": "Espressif Generic ESP32-P4 >= 4M Flash, Tasmota 2880k Code/OTA, >= 320k FS",
"upload": {
"arduino": {
"flash_extra_images": [
[
"0x10000",
"tasmota32p4-safeboot.bin"
]
]
},
"flash_size": "4MB",
"maximum_ram_size": 768000,
"maximum_size": 4194304,
"require_upload_port": true,
"speed": 1500000
},
"url": "https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32p4/esp32-p4-function-ev-board/index.html",
"vendor": "Espressif"
}

View File

@ -1,46 +0,0 @@
{
"build": {
"core": "esp32",
"extra_flags": [
"-DARDUINO_TASMOTA -DESP32P4 -DBOARD_HAS_PSRAM -DARDUINO_USB_MODE=1 -DUSE_USB_CDC_CONSOLE"
],
"f_cpu": "360000000L",
"f_flash": "80000000L",
"flash_mode": "qio",
"mcu": "esp32p4",
"variant": "esp32p4",
"partitions": "partitions/esp32_partition_app3904k_fs3392k.csv"
},
"connectivity": [
"wifi",
"bluetooth",
"openthread",
"ethernet"
],
"debug": {
"openocd_target": "esp32p4.cfg"
},
"frameworks": [
"arduino",
"espidf"
],
"name": "Espressif ESP32-P4 Function EV Board",
"upload": {
"arduino": {
"flash_extra_images": [
[
"0x10000",
"tasmota32p4-safeboot.bin"
]
]
},
"flash_size": "16MB",
"maximum_ram_size": 768000,
"maximum_size": 16777216,
"require_upload_port": true,
"speed": 1500000
},
"url": "https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32p4/esp32-p4-function-ev-board/index.html",
"vendor": "Espressif"
}

View File

@ -1,45 +0,0 @@
{
"build": {
"core": "esp32",
"extra_flags": [
"-DARDUINO_TASMOTA -DESP32P4 -DBOARD_HAS_PSRAM"
],
"f_cpu": "360000000L",
"f_flash": "80000000L",
"flash_mode": "qio",
"mcu": "esp32p4",
"variant": "esp32p4",
"partitions": "partitions/esp32_partition_app2880k_fs320k.csv"
},
"connectivity": [
"wifi",
"bluetooth",
"openthread",
"ethernet"
],
"debug": {
"openocd_target": "esp32p4.cfg"
},
"frameworks": [
"arduino",
"espidf"
],
"name": "Espressif Generic ESP32-P4 >= 4M Flash, Tasmota 2880k Code/OTA, >= 320k FS",
"upload": {
"arduino": {
"flash_extra_images": [
[
"0x10000",
"tasmota32p4-safeboot.bin"
]
]
},
"flash_size": "4MB",
"maximum_ram_size": 768000,
"maximum_size": 4194304,
"require_upload_port": true,
"speed": 1500000
},
"url": "https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32p4/esp32-p4-function-ev-board/index.html",
"vendor": "Espressif"
}

View File

@ -61,7 +61,7 @@
// SPI_MOSI_DLEN_REG is not defined anymore in esp32s3
#define SPI_MOSI_DLEN_REG(x) SPI_MS_DLEN_REG(x)
#elif CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32P4
#elif CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C6
#define SPI_HOST SPI1_HOST
#define HSPI_HOST SPI2_HOST
#define VSPI_HOST SPI2_HOST /* No SPI3_host on C2/C6 */

View File

@ -1,8 +1,8 @@
name=Unishox (De)Compressor
name=Unishox Compressor Decompressor highly customized and optimized for ESP8266 and Tasmota
version=1.0
author=Arundale Ramanathan, Stephan Hadinger
maintainer=Arun <arun@siara.cc>, Stephan <stephan.hadinger@gmail.com>
sentence=Unishox compression for Tasmota Rules
paragraph=It is based on Unishox hybrid encoding technique. This Tasmota version has specific Unicode code removed for size.
paragraph=It is based on Unishox hybrid encoding technique. This version has specific Unicode code removed for size.
url=https://github.com/siara-cc/Unishox
architectures=esp8266,esp32

View File

@ -166,10 +166,6 @@ int WiFiHelper::getPhyMode() {
WIFI_PHY_MODE_HE20, // PHY mode for Bandwidth HE20 (11ax)
} wifi_phy_mode_t;
*/
#ifndef SOC_WIFI_SUPPORTED
// ESP32-P4 does not support PHY modes, return 0
return 0;
#else
int phy_mode = 0; // "low rate|11b|11g|HT20|HT40|HE20"
wifi_phy_mode_t WiFiMode;
if (esp_wifi_sta_get_negotiated_phymode(&WiFiMode) == ESP_OK) {
@ -179,13 +175,9 @@ int WiFiHelper::getPhyMode() {
}
}
return phy_mode;
# endif
}
bool WiFiHelper::setPhyMode(WiFiPhyMode_t mode) {
# ifndef SOC_WIFI_SUPPORTED
return false; // ESP32-P4 does not support PHY modes
# else
uint8_t protocol_bitmap = WIFI_PROTOCOL_11B; // 1
switch (mode) {
#if ESP_IDF_VERSION_MAJOR >= 5
@ -195,7 +187,6 @@ bool WiFiHelper::setPhyMode(WiFiPhyMode_t mode) {
case 2: protocol_bitmap |= WIFI_PROTOCOL_11G; // 2
}
return (ESP_OK == esp_wifi_set_protocol(WIFI_IF_STA, protocol_bitmap));
#endif // CONFIG_IDF_TARGET_ESP32P4
}
void WiFiHelper::setOutputPower(int n) {
@ -379,11 +370,8 @@ String WiFiHelper::macAddress(void) {
#else
uint8_t mac[6] = {0,0,0,0,0,0};
char macStr[18] = { 0 };
#ifdef CONFIG_SOC_HAS_WIFI
esp_read_mac(mac, ESP_MAC_WIFI_STA);
#else
esp_read_mac(mac, ESP_MAC_BASE);
#endif // CONFIG_SOC_HAS_WIFI
snprintf(macStr, sizeof(macStr), "%02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return String(macStr);
#endif

View File

@ -235,7 +235,7 @@ bool directRead(IO_REG_TYPE mask)
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(IO_REG_TYPE pin)
{
#if SOC_GPIO_PIN_COUNT <= 32 || CONFIG_IDF_TARGET_ESP32P4
#if SOC_GPIO_PIN_COUNT <= 32
return (GPIO.in.val >> pin) & 0x1;
#else // ESP32 with over 32 gpios
if ( pin < 32 )
@ -250,7 +250,7 @@ IO_REG_TYPE directRead(IO_REG_TYPE pin)
static inline __attribute__((always_inline))
void directWriteLow(IO_REG_TYPE pin)
{
#if SOC_GPIO_PIN_COUNT <= 32 || CONFIG_IDF_TARGET_ESP32P4
#if SOC_GPIO_PIN_COUNT <= 32
GPIO.out_w1tc.val = ((uint32_t)1 << pin);
#else // ESP32 with over 32 gpios
if ( pin < 32 )
@ -263,7 +263,7 @@ void directWriteLow(IO_REG_TYPE pin)
static inline __attribute__((always_inline))
void directWriteHigh(IO_REG_TYPE pin)
{
#if SOC_GPIO_PIN_COUNT <= 32 || CONFIG_IDF_TARGET_ESP32P4
#if SOC_GPIO_PIN_COUNT <= 32
GPIO.out_w1ts.val = ((uint32_t)1 << pin);
#else // ESP32 with over 32 gpios
if ( pin < 32 )
@ -280,7 +280,7 @@ void directModeInput(IO_REG_TYPE pin)
if ( digitalPinIsValid(pin) )
{
// Input
#if SOC_GPIO_PIN_COUNT <= 32 || CONFIG_IDF_TARGET_ESP32P4
#if SOC_GPIO_PIN_COUNT <= 32
GPIO.enable_w1tc.val = ((uint32_t)1 << (pin));
#else // ESP32 with over 32 gpios
if ( pin < 32 )
@ -298,7 +298,7 @@ void directModeOutput(IO_REG_TYPE pin)
if ( digitalPinCanOutput(pin) )
{
// Output
#if SOC_GPIO_PIN_COUNT <= 32 || CONFIG_IDF_TARGET_ESP32P4
#if SOC_GPIO_PIN_COUNT <= 32
GPIO.enable_w1ts.val = ((uint32_t)1 << (pin));
#else // ESP32 with over 32 gpios
if ( pin < 32 )

View File

@ -112,7 +112,7 @@ enum uColorType { uCOLOR_BW, uCOLOR_COLOR };
#undef GPIO_SET_SLOW
#undef GPIO_CLR_SLOW
#if CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32P4
#if CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C6
#define GPIO_CLR(A) GPIO.out_w1tc.val = (1 << A)
#define GPIO_SET(A) GPIO.out_w1ts.val = (1 << A)
#else // plain ESP32

View File

@ -1,8 +1,8 @@
# OpenTherm Arduino/ESP8266/ESP32 Library
# OpenTherm Arduino/ESP8266 Library
This library provides implementation of OpenTherm protocol.
OpenTherm Library is based on OpenTherm protocol specification v2.2 and works with all OpenTherm compatible boilers. Library can be easily installed into Arduino IDE and compiled for Arduino, ESP8266/ESP32 and other similar controllers.
OpenTherm Library is based on OpenTherm protocol specification v2.2 and works with all OpenTherm compatible boilers. Library can be easily installed into Arduino IDE and compiled for Arduino, ESP8266 and other similar controllers.
OpenTherm protocol requires simple low voltage twowire connection to boiler, but voltage levels (7..15V) still much higher than Arduino/ESP8266 levels, which requires [OpenTherm Adapter](http://ihormelnyk.com/opentherm_adapter).

View File

@ -30,8 +30,6 @@ doSomething KEYWORD2
setBoilerStatus KEYWORD2
setBoilerTemperature KEYWORD2
getBoilerTemperature KEYWORD2
setDHWSetpoint KEYWORD2
getDHWTemperature KEYWORD2
#######################################
# Instances (KEYWORD2)

View File

@ -1,8 +1,8 @@
name=OpenTherm Library
version=1.1.5
version=0.9.0
author=Ihor Melnyk <ihor.melnyk@gmail.com>
maintainer=Ihor Melnyk <ihor.melnyk@gmail.com>
sentence=OpenTherm Library for HVAC system control communication using Arduino and ESP8266/ESP32 hardware.
sentence=OpenTherm Library for HVAC system control communication using Arduino and ESP8266 hardware.
paragraph=OpenTherm Library is based on OpenTherm protocol specification v2.2 and works with all OpenTherm compatible boilers.
category=Communication
url=https://github.com/ihormelnyk/opentherm_library

View File

@ -0,0 +1,410 @@
/*
OpenTherm.cpp - OpenTherm Communication Library For Arduino, ESP8266
Copyright 2018, Ihor Melnyk
*/
#include "OpenTherm.h"
OpenTherm::OpenTherm(int inPin, int outPin, bool isSlave):
status(OpenThermStatus::OPTH_NOT_INITIALIZED),
inPin(inPin),
outPin(outPin),
isSlave(isSlave),
response(0),
responseStatus(OpenThermResponseStatus::OPTH_NONE),
responseTimestamp(0),
handleInterruptCallback(NULL),
processResponseCallback(NULL)
{
}
void OpenTherm::begin(void(*handleInterruptCallback)(void), void(*processResponseCallback)(unsigned long, int))
{
pinMode(inPin, INPUT);
pinMode(outPin, OUTPUT);
if (handleInterruptCallback != NULL) {
this->handleInterruptCallback = handleInterruptCallback;
attachInterrupt(digitalPinToInterrupt(inPin), handleInterruptCallback, CHANGE);
}
activateBoiler();
status = OpenThermStatus::OPTH_READY;
this->processResponseCallback = processResponseCallback;
}
void OpenTherm::begin(void(*handleInterruptCallback)(void))
{
begin(handleInterruptCallback, NULL);
}
bool ICACHE_RAM_ATTR OpenTherm::isReady()
{
return status == OpenThermStatus::OPTH_READY;
}
int ICACHE_RAM_ATTR OpenTherm::readState() {
return digitalRead(inPin);
}
void OpenTherm::setActiveState() {
digitalWrite(outPin, LOW);
}
void OpenTherm::setIdleState() {
digitalWrite(outPin, HIGH);
}
void OpenTherm::activateBoiler() {
setIdleState();
delay(1000);
}
void OpenTherm::sendBit(bool high) {
if (high) setActiveState(); else setIdleState();
delayMicroseconds(500);
if (high) setIdleState(); else setActiveState();
delayMicroseconds(500);
}
bool OpenTherm::sendRequestAync(unsigned long request)
{
//Serial.println("Request: " + String(request, HEX));
noInterrupts();
const bool ready = isReady();
interrupts();
if (!ready)
return false;
status = OpenThermStatus::OPTH_REQUEST_SENDING;
response = 0;
responseStatus = OpenThermResponseStatus::OPTH_NONE;
sendBit(HIGH); //start bit
for (int i = 31; i >= 0; i--) {
sendBit(bitRead(request, i));
}
sendBit(HIGH); //stop bit
setIdleState();
status = OpenThermStatus::OPTH_RESPONSE_WAITING;
responseTimestamp = micros();
return true;
}
unsigned long OpenTherm::sendRequest(unsigned long request)
{
if (!sendRequestAync(request)) return 0;
while (!isReady()) {
process();
yield();
}
return response;
}
bool OpenTherm::sendResponse(unsigned long request)
{
status = OpenThermStatus::OPTH_REQUEST_SENDING;
response = 0;
responseStatus = OpenThermResponseStatus::OPTH_NONE;
sendBit(HIGH); //start bit
for (int i = 31; i >= 0; i--) {
sendBit(bitRead(request, i));
}
sendBit(HIGH); //stop bit
setIdleState();
status = OpenThermStatus::OPTH_READY;
return true;
}
OpenThermResponseStatus OpenTherm::getLastResponseStatus()
{
return responseStatus;
}
void ICACHE_RAM_ATTR OpenTherm::handleInterrupt()
{
if (isReady())
{
if (isSlave && readState() == HIGH) {
status = OpenThermStatus::OPTH_RESPONSE_WAITING;
}
else {
return;
}
}
unsigned long newTs = micros();
if (status == OpenThermStatus::OPTH_RESPONSE_WAITING) {
if (readState() == HIGH) {
status = OpenThermStatus::OPTH_RESPONSE_START_BIT;
responseTimestamp = newTs;
}
else {
status = OpenThermStatus::OPTH_RESPONSE_INVALID;
responseTimestamp = newTs;
}
}
else if (status == OpenThermStatus::OPTH_RESPONSE_START_BIT) {
if ((newTs - responseTimestamp < 750) && readState() == LOW) {
status = OpenThermStatus::OPTH_RESPONSE_RECEIVING;
responseTimestamp = newTs;
responseBitIndex = 0;
}
else {
status = OpenThermStatus::OPTH_RESPONSE_INVALID;
responseTimestamp = newTs;
}
}
else if (status == OpenThermStatus::OPTH_RESPONSE_RECEIVING) {
if ((newTs - responseTimestamp) > 750) {
if (responseBitIndex < 32) {
response = (response << 1) | !readState();
responseTimestamp = newTs;
responseBitIndex++;
}
else { //stop bit
status = OpenThermStatus::OPTH_RESPONSE_READY;
responseTimestamp = newTs;
}
}
}
}
void OpenTherm::process()
{
noInterrupts();
OpenThermStatus st = status;
unsigned long ts = responseTimestamp;
interrupts();
if (st == OpenThermStatus::OPTH_READY) return;
unsigned long newTs = micros();
if (st != OpenThermStatus::OPTH_NOT_INITIALIZED && (newTs - ts) > 1000000) {
status = OpenThermStatus::OPTH_READY;
responseStatus = OpenThermResponseStatus::OPTH_TIMEOUT;
if (processResponseCallback != NULL) {
processResponseCallback(response, responseStatus);
}
}
else if (st == OpenThermStatus::OPTH_RESPONSE_INVALID) {
status = OpenThermStatus::OPTH_DELAY;
responseStatus = OpenThermResponseStatus::OPTH_INVALID;
if (processResponseCallback != NULL) {
processResponseCallback(response, responseStatus);
}
}
else if (st == OpenThermStatus::OPTH_RESPONSE_READY) {
status = OpenThermStatus::OPTH_DELAY;
responseStatus = (isSlave ? isValidRequest(response) : isValidResponse(response)) ? OpenThermResponseStatus::OPTH_SUCCESS : OpenThermResponseStatus::OPTH_INVALID;
if (processResponseCallback != NULL) {
processResponseCallback(response, responseStatus);
}
}
else if (st == OpenThermStatus::OPTH_DELAY) {
if ((newTs - ts) > 100000) {
status = OpenThermStatus::OPTH_READY;
}
}
}
bool OpenTherm::parity(unsigned long frame) //odd parity
{
byte p = 0;
while (frame > 0)
{
if (frame & 1) p++;
frame = frame >> 1;
}
return (p & 1);
}
OpenThermMessageType OpenTherm::getMessageType(unsigned long message)
{
OpenThermMessageType msg_type = static_cast<OpenThermMessageType>((message >> 28) & 7);
return msg_type;
}
OpenThermMessageID OpenTherm::getDataID(unsigned long frame)
{
return (OpenThermMessageID)((frame >> 16) & 0xFF);
}
unsigned long OpenTherm::buildRequest(OpenThermMessageType type, OpenThermMessageID id, unsigned int data)
{
unsigned long request = data;
if (type == OpenThermMessageType::OPTH_WRITE_DATA) {
request |= 1ul << 28;
}
request |= ((unsigned long)id) << 16;
if (OpenTherm::parity(request)) request |= (1ul << 31);
return request;
}
unsigned long OpenTherm::buildResponse(OpenThermMessageType type, OpenThermMessageID id, unsigned int data)
{
unsigned long response = data;
response |= type << 28;
response |= ((unsigned long)id) << 16;
if (OpenTherm::parity(response)) response |= (1ul << 31);
return response;
}
bool OpenTherm::isValidResponse(unsigned long response)
{
if (OpenTherm::parity(response)) return false;
byte msgType = (response << 1) >> 29;
return msgType == OPTH_READ_ACK || msgType == OPTH_WRITE_ACK;
}
bool OpenTherm::isValidRequest(unsigned long request)
{
if (OpenTherm::parity(request)) return false;
byte msgType = (request << 1) >> 29;
return msgType == OPTH_READ_DATA || msgType == OPTH_WRITE_DATA;
}
void OpenTherm::end() {
if (this->handleInterruptCallback != NULL) {
detachInterrupt(digitalPinToInterrupt(inPin));
}
}
const char *OpenTherm::statusToString(OpenThermResponseStatus status)
{
switch (status) {
case OPTH_NONE: return "NONE";
case OPTH_SUCCESS: return "SUCCESS";
case OPTH_INVALID: return "INVALID";
case OPTH_TIMEOUT: return "TIMEOUT";
default: return "UNKNOWN";
}
}
const char *OpenTherm::messageTypeToString(OpenThermMessageType message_type)
{
switch (message_type) {
case OPTH_READ_DATA: return "READ_DATA";
case OPTH_WRITE_DATA: return "WRITE_DATA";
case OPTH_INVALID_DATA: return "INVALID_DATA";
case OPTH_RESERVED: return "RESERVED";
case OPTH_READ_ACK: return "READ_ACK";
case OPTH_WRITE_ACK: return "WRITE_ACK";
case OPTH_DATA_INVALID: return "DATA_INVALID";
case OPTH_UNKNOWN_DATA_ID: return "UNKNOWN_DATA_ID";
default: return "UNKNOWN";
}
}
//building requests
unsigned long OpenTherm::buildSetBoilerStatusRequest(bool enableCentralHeating, bool enableHotWater, bool enableCooling, bool enableOutsideTemperatureCompensation, bool enableCentralHeating2) {
unsigned int data = enableCentralHeating | (enableHotWater << 1) | (enableCooling << 2) | (enableOutsideTemperatureCompensation << 3) | (enableCentralHeating2 << 4);
data <<= 8;
return buildRequest(OpenThermMessageType::OPTH_READ_DATA, OpenThermMessageID::Status, data);
}
unsigned long OpenTherm::buildSetBoilerTemperatureRequest(float temperature) {
unsigned int data = temperatureToData(temperature);
return buildRequest(OpenThermMessageType::OPTH_WRITE_DATA, OpenThermMessageID::TSet, data);
}
unsigned long OpenTherm::buildSetHotWaterTemperatureRequest(float temperature) {
unsigned int data = temperatureToData(temperature);
return buildRequest(OpenThermMessageType::OPTH_WRITE_DATA, OpenThermMessageID::TdhwSet, data);
}
unsigned long OpenTherm::buildGetBoilerTemperatureRequest() {
return buildRequest(OpenThermMessageType::OPTH_READ_DATA, OpenThermMessageID::Tboiler, 0);
}
unsigned long OpenTherm::buildSlaveConfigurationRequest() {
return buildRequest(OpenThermMessageType::OPTH_READ_DATA, OpenThermMessageID::SConfigSMemberIDcode, 0);
}
//parsing responses
bool OpenTherm::isFault(unsigned long response) {
return response & 0x1;
}
bool OpenTherm::isCentralHeatingActive(unsigned long response) {
return response & 0x2;
}
bool OpenTherm::isHotWaterActive(unsigned long response) {
return response & 0x4;
}
bool OpenTherm::isFlameOn(unsigned long response) {
return response & 0x8;
}
bool OpenTherm::isCoolingActive(unsigned long response) {
return response & 0x10;
}
bool OpenTherm::isDiagnostic(unsigned long response) {
return response & 0x40;
}
uint16_t OpenTherm::getUInt(const unsigned long response) {
const uint16_t u88 = response & 0xffff;
return u88;
}
float OpenTherm::getFloat(const unsigned long response) {
const uint16_t u88 = getUInt(response);
const float f = (u88 & 0x8000) ? -(0x10000L - u88) / 256.0f : u88 / 256.0f;
return f;
}
unsigned int OpenTherm::temperatureToData(float temperature) {
if (temperature < 0) temperature = 0;
if (temperature > 100) temperature = 100;
unsigned int data = (unsigned int)(temperature * 256);
return data;
}
//basic requests
unsigned long OpenTherm::setBoilerStatus(bool enableCentralHeating, bool enableHotWater, bool enableCooling, bool enableOutsideTemperatureCompensation, bool enableCentralHeating2) {
return sendRequest(buildSetBoilerStatusRequest(enableCentralHeating, enableHotWater, enableCooling, enableOutsideTemperatureCompensation, enableCentralHeating2));
}
bool OpenTherm::setBoilerTemperature(float temperature) {
unsigned long response = sendRequest(buildSetBoilerTemperatureRequest(temperature));
return isValidResponse(response);
}
bool OpenTherm::setHotWaterTemperature(float temperature) {
unsigned long response = sendRequest(buildSetHotWaterTemperatureRequest(temperature));
return isValidResponse(response);
}
float OpenTherm::getBoilerTemperature() {
unsigned long response = sendRequest(buildGetBoilerTemperatureRequest());
return isValidResponse(response) ? getFloat(response) : 0;
}
float OpenTherm::getReturnTemperature() {
unsigned long response = sendRequest(buildRequest(OpenThermRequestType::OPTH_READ, OpenThermMessageID::Tret, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
float OpenTherm::getModulation() {
unsigned long response = sendRequest(buildRequest(OpenThermRequestType::OPTH_READ, OpenThermMessageID::RelModLevel, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
float OpenTherm::getPressure() {
unsigned long response = sendRequest(buildRequest(OpenThermRequestType::OPTH_READ, OpenThermMessageID::CHPressure, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
unsigned char OpenTherm::getFault() {
return ((sendRequest(buildRequest(OpenThermRequestType::OPTH_READ, OpenThermMessageID::ASFflags, 0)) >> 8) & 0xff);
}
unsigned long OpenTherm::getSlaveConfiguration() {
return sendRequest(buildSlaveConfigurationRequest());
}

View File

@ -0,0 +1,193 @@
/*
OpenTherm.h - OpenTherm Library for the ESP8266/Arduino platform
https://github.com/ihormelnyk/OpenTherm
http://ihormelnyk.com/pages/OpenTherm
Licensed under MIT license
Copyright 2018, Ihor Melnyk
Frame Structure:
P MGS-TYPE SPARE DATA-ID DATA-VALUE
0 000 0000 00000000 00000000 00000000
*/
#ifndef OpenTherm_h
#define OpenTherm_h
#include <stdint.h>
#include <Arduino.h>
enum OpenThermResponseStatus {
OPTH_NONE,
OPTH_SUCCESS,
OPTH_INVALID,
OPTH_TIMEOUT
};
enum OpenThermMessageType {
/* Master to Slave */
OPTH_READ_DATA = B000,
OPTH_READ = OPTH_READ_DATA, // for backwared compatibility
OPTH_WRITE_DATA = B001,
OPTH_WRITE = OPTH_WRITE_DATA, // for backwared compatibility
OPTH_INVALID_DATA = B010,
OPTH_RESERVED = B011,
/* Slave to Master */
OPTH_READ_ACK = B100,
OPTH_WRITE_ACK = B101,
OPTH_DATA_INVALID = B110,
OPTH_UNKNOWN_DATA_ID = B111
};
typedef OpenThermMessageType OpenThermRequestType; // for backwared compatibility
enum OpenThermMessageID {
Status, // flag8 / flag8 Master and Slave Status flags.
TSet, // f8.8 Control setpoint ie CH water temperature setpoint (°C)
MConfigMMemberIDcode, // flag8 / u8 Master Configuration Flags / Master MemberID Code
SConfigSMemberIDcode, // flag8 / u8 Slave Configuration Flags / Slave MemberID Code
Command, // u8 / u8 Remote Command
ASFflags, // / OEM-fault-code flag8 / u8 Application-specific fault flags and OEM fault code
RBPflags, // flag8 / flag8 Remote boiler parameter transfer-enable & read/write flags
CoolingControl, // f8.8 Cooling control signal (%)
TsetCH2, // f8.8 Control setpoint for 2e CH circuit (°C)
TrOverride, // f8.8 Remote override room setpoint
TSP, // u8 / u8 Number of Transparent-Slave-Parameters supported by slave
TSPindexTSPvalue, // u8 / u8 Index number / Value of referred-to transparent slave parameter.
FHBsize, // u8 / u8 Size of Fault-History-Buffer supported by slave
FHBindexFHBvalue, // u8 / u8 Index number / Value of referred-to fault-history buffer entry.
MaxRelModLevelSetting, // f8.8 Maximum relative modulation level setting (%)
MaxCapacityMinModLevel, // u8 / u8 Maximum boiler capacity (kW) / Minimum boiler modulation level(%)
TrSet, // f8.8 Room Setpoint (°C)
RelModLevel, // f8.8 Relative Modulation Level (%)
CHPressure, // f8.8 Water pressure in CH circuit (bar)
DHWFlowRate, // f8.8 Water flow rate in DHW circuit. (litres/minute)
DayTime, // special / u8 Day of Week and Time of Day
Date, // u8 / u8 Calendar date
Year, // u16 Calendar year
TrSetCH2, // f8.8 Room Setpoint for 2nd CH circuit (°C)
Tr, // f8.8 Room temperature (°C)
Tboiler, // f8.8 Boiler flow water temperature (°C)
Tdhw, // f8.8 DHW temperature (°C)
Toutside, // f8.8 Outside temperature (°C)
Tret, // f8.8 Return water temperature (°C)
Tstorage, // f8.8 Solar storage temperature (°C)
Tcollector, // f8.8 Solar collector temperature (°C)
TflowCH2, // f8.8 Flow water temperature CH2 circuit (°C)
Tdhw2, // f8.8 Domestic hot water temperature 2 (°C)
Texhaust, // s16 Boiler exhaust temperature (°C)
TdhwSetUBTdhwSetLB = 48, // s8 / s8 DHW setpoint upper & lower bounds for adjustment (°C)
MaxTSetUBMaxTSetLB, // s8 / s8 Max CH water setpoint upper & lower bounds for adjustment (°C)
HcratioUBHcratioLB, // s8 / s8 OTC heat curve ratio upper & lower bounds for adjustment
TdhwSet = 56, // f8.8 DHW setpoint (°C) (Remote parameter 1)
MaxTSet, // f8.8 Max CH water setpoint (°C) (Remote parameters 2)
Hcratio, // f8.8 OTC heat curve ratio (°C) (Remote parameter 3)
RemoteOverrideFunction = 100, // flag8 / - Function of manual and program changes in master and remote room setpoint.
OEMDiagnosticCode = 115, // u16 OEM-specific diagnostic/service code
BurnerStarts, // u16 Number of starts burner
CHPumpStarts, // u16 Number of starts CH pump
DHWPumpValveStarts, // u16 Number of starts DHW pump/valve
DHWBurnerStarts, // u16 Number of starts burner during DHW mode
BurnerOperationHours, // u16 Number of hours that burner is in operation (i.e. flame on)
CHPumpOperationHours, // u16 Number of hours that CH pump has been running
DHWPumpValveOperationHours, // u16 Number of hours that DHW pump has been running or DHW valve has been opened
DHWBurnerOperationHours, // u16 Number of hours that burner is in operation during DHW mode
OpenThermVersionMaster, // f8.8 The implemented version of the OpenTherm Protocol Specification in the master.
OpenThermVersionSlave, // f8.8 The implemented version of the OpenTherm Protocol Specification in the slave.
MasterVersion, // u8 / u8 Master product version number and type
SlaveVersion, // u8 / u8 Slave product version number and type
};
enum OpenThermStatus {
OPTH_NOT_INITIALIZED,
OPTH_READY,
OPTH_DELAY,
OPTH_REQUEST_SENDING,
OPTH_RESPONSE_WAITING,
OPTH_RESPONSE_START_BIT,
OPTH_RESPONSE_RECEIVING,
OPTH_RESPONSE_READY,
OPTH_RESPONSE_INVALID
};
class OpenTherm
{
public:
OpenTherm(int inPin = 4, int outPin = 5, bool isSlave = false);
volatile OpenThermStatus status;
void begin(void(*handleInterruptCallback)(void));
void begin(void(*handleInterruptCallback)(void), void(*processResponseCallback)(unsigned long, int));
bool isReady();
unsigned long sendRequest(unsigned long request);
bool sendResponse(unsigned long request);
bool sendRequestAync(unsigned long request);
static unsigned long buildRequest(OpenThermMessageType type, OpenThermMessageID id, unsigned int data);
static unsigned long buildResponse(OpenThermMessageType type, OpenThermMessageID id, unsigned int data);
OpenThermResponseStatus getLastResponseStatus();
const char *statusToString(OpenThermResponseStatus status);
void handleInterrupt();
void process();
void end();
static bool parity(unsigned long frame);
OpenThermMessageType getMessageType(unsigned long message);
OpenThermMessageID getDataID(unsigned long frame);
const char *messageTypeToString(OpenThermMessageType message_type);
bool isValidRequest(unsigned long request);
bool isValidResponse(unsigned long response);
//requests
unsigned long buildSetBoilerStatusRequest(bool enableCentralHeating, bool enableHotWater = false, bool enableCooling = false, bool enableOutsideTemperatureCompensation = false, bool enableCentralHeating2 = false);
unsigned long buildSetBoilerTemperatureRequest(float temperature);
unsigned long buildGetBoilerTemperatureRequest();
unsigned long buildSetHotWaterTemperatureRequest(float temperature);
unsigned long buildSlaveConfigurationRequest();
//responses
static bool isFault(unsigned long response);
static bool isCentralHeatingActive(unsigned long response);
static bool isHotWaterActive(unsigned long response);
static bool isFlameOn(unsigned long response);
static bool isCoolingActive(unsigned long response);
static bool isDiagnostic(unsigned long response);
static uint16_t getUInt(const unsigned long response);
static float getFloat(const unsigned long response);
static unsigned int temperatureToData(float temperature);
//basic requests
unsigned long setBoilerStatus(bool enableCentralHeating, bool enableHotWater = false, bool enableCooling = false, bool enableOutsideTemperatureCompensation = false, bool enableCentralHeating2 = false);
bool setBoilerTemperature(float temperature);
bool setHotWaterTemperature(float temperature);
float getBoilerTemperature();
float getReturnTemperature();
float getModulation();
float getPressure();
unsigned char getFault();
unsigned long getSlaveConfiguration();
private:
const int inPin;
const int outPin;
const bool isSlave;
volatile unsigned long response;
volatile OpenThermResponseStatus responseStatus;
volatile unsigned long responseTimestamp;
volatile byte responseBitIndex;
int readState();
void setActiveState();
void setIdleState();
void activateBoiler();
void sendBit(bool high);
void(*handleInterruptCallback)();
void(*processResponseCallback)(unsigned long, int);
};
#ifndef ICACHE_RAM_ATTR
#define ICACHE_RAM_ATTR
#endif
#endif // OpenTherm_h

View File

@ -0,0 +1,29 @@
Attention when updating library. Changes in lib needed!!
All OpenTherm constants shall be prepended with `OPTH_` to avoid conflicts with other libs.
See commit https://github.com/arendst/Tasmota/commit/960291729ccc7cb4da50108e5299d44a79cb06de
As of OpenTherm-0.9.0, hte list is:
OPTH_NONE
OPTH_SUCCESS
OPTH_INVALID
OPTH_TIMEOUT
OPTH_READ_DATA
OPTH_READ
OPTH_WRITE_DATA
OPTH_WRITE
OPTH_INVALID_DATA
OPTH_RESERVED
OPTH_READ_ACK
OPTH_WRITE_ACK
OPTH_DATA_INVALID
OPTH_UNKNOWN_DATA_ID
OPTH_NOT_INITIALIZED
OPTH_READY
OPTH_DELAY
OPTH_REQUEST_SENDING
OPTH_RESPONSE_WAITING
OPTH_RESPONSE_START_BIT
OPTH_RESPONSE_RECEIVING
OPTH_RESPONSE_READY
OPTH_RESPONSE_INVALID

View File

@ -1,578 +0,0 @@
/*
OpenTherm.cpp - OpenTherm Communication Library For Arduino, ESP8266, ESP32
Copyright 2023, Ihor Melnyk
*/
#include "OpenTherm.h"
#if !defined(__AVR__)
#include "FunctionalInterrupt.h"
#endif
OpenTherm::OpenTherm(int inPin, int outPin, bool isSlave) :
status(OpenThermStatus::NOT_INITIALIZED),
inPin(inPin),
outPin(outPin),
isSlave(isSlave),
response(0),
responseStatus(OpenThermResponseStatus::NONE),
responseTimestamp(0),
processResponseCallback(NULL)
{
}
void OpenTherm::begin(void (*handleInterruptCallback)(void))
{
pinMode(inPin, INPUT);
pinMode(outPin, OUTPUT);
if (handleInterruptCallback != NULL)
{
attachInterrupt(digitalPinToInterrupt(inPin), handleInterruptCallback, CHANGE);
}
else
{
#if !defined(__AVR__)
attachInterruptArg(
digitalPinToInterrupt(inPin),
OpenTherm::handleInterruptHelper,
this,
CHANGE
);
#endif
}
activateBoiler();
status = OpenThermStatus::READY;
}
void OpenTherm::begin(void (*handleInterruptCallback)(void), void (*processResponseCallback)(unsigned long, int))
{
begin(handleInterruptCallback);
this->processResponseCallback = processResponseCallback;
}
#if !defined(__AVR__)
void OpenTherm::begin()
{
begin(NULL);
}
void OpenTherm::begin(std::function<void(unsigned long, OpenThermResponseStatus)> processResponseFunction)
{
begin();
this->processResponseFunction = processResponseFunction;
}
#endif
bool IRAM_ATTR OpenTherm::isReady()
{
return status == OpenThermStatus::READY;
}
int IRAM_ATTR OpenTherm::readState()
{
return digitalRead(inPin);
}
void OpenTherm::setActiveState()
{
digitalWrite(outPin, LOW);
}
void OpenTherm::setIdleState()
{
digitalWrite(outPin, HIGH);
}
void OpenTherm::activateBoiler()
{
setIdleState();
delay(1000);
}
void OpenTherm::sendBit(bool high)
{
if (high)
setActiveState();
else
setIdleState();
delayMicroseconds(500);
if (high)
setIdleState();
else
setActiveState();
delayMicroseconds(500);
}
bool OpenTherm::sendRequestAsync(unsigned long request)
{
noInterrupts();
const bool ready = isReady();
if (!ready)
{
interrupts();
return false;
}
status = OpenThermStatus::REQUEST_SENDING;
response = 0;
responseStatus = OpenThermResponseStatus::NONE;
#ifdef INC_FREERTOS_H
BaseType_t schedulerState = xTaskGetSchedulerState();
if (schedulerState == taskSCHEDULER_RUNNING)
{
vTaskSuspendAll();
}
#endif
interrupts();
sendBit(HIGH); // start bit
for (int i = 31; i >= 0; i--)
{
sendBit(bitRead(request, i));
}
sendBit(HIGH); // stop bit
setIdleState();
responseTimestamp = micros();
status = OpenThermStatus::RESPONSE_WAITING;
#ifdef INC_FREERTOS_H
if (schedulerState == taskSCHEDULER_RUNNING) {
xTaskResumeAll();
}
#endif
return true;
}
unsigned long OpenTherm::sendRequest(unsigned long request)
{
if (!sendRequestAsync(request))
{
return 0;
}
while (!isReady())
{
process();
yield();
}
return response;
}
bool OpenTherm::sendResponse(unsigned long request)
{
noInterrupts();
const bool ready = isReady();
if (!ready)
{
interrupts();
return false;
}
status = OpenThermStatus::REQUEST_SENDING;
response = 0;
responseStatus = OpenThermResponseStatus::NONE;
#ifdef INC_FREERTOS_H
BaseType_t schedulerState = xTaskGetSchedulerState();
if (schedulerState == taskSCHEDULER_RUNNING)
{
vTaskSuspendAll();
}
#endif
interrupts();
sendBit(HIGH); // start bit
for (int i = 31; i >= 0; i--)
{
sendBit(bitRead(request, i));
}
sendBit(HIGH); // stop bit
setIdleState();
status = OpenThermStatus::READY;
#ifdef INC_FREERTOS_H
if (schedulerState == taskSCHEDULER_RUNNING) {
xTaskResumeAll();
}
#endif
return true;
}
unsigned long OpenTherm::getLastResponse()
{
return response;
}
OpenThermResponseStatus OpenTherm::getLastResponseStatus()
{
return responseStatus;
}
void IRAM_ATTR OpenTherm::handleInterrupt()
{
if (isReady())
{
if (isSlave && readState() == HIGH)
{
status = OpenThermStatus::RESPONSE_WAITING;
}
else
{
return;
}
}
unsigned long newTs = micros();
if (status == OpenThermStatus::RESPONSE_WAITING)
{
if (readState() == HIGH)
{
status = OpenThermStatus::RESPONSE_START_BIT;
responseTimestamp = newTs;
}
else
{
status = OpenThermStatus::RESPONSE_INVALID;
responseTimestamp = newTs;
}
}
else if (status == OpenThermStatus::RESPONSE_START_BIT)
{
if ((newTs - responseTimestamp < 750) && readState() == LOW)
{
status = OpenThermStatus::RESPONSE_RECEIVING;
responseTimestamp = newTs;
responseBitIndex = 0;
}
else
{
status = OpenThermStatus::RESPONSE_INVALID;
responseTimestamp = newTs;
}
}
else if (status == OpenThermStatus::RESPONSE_RECEIVING)
{
if ((newTs - responseTimestamp) > 750)
{
if (responseBitIndex < 32)
{
response = (response << 1) | !readState();
responseTimestamp = newTs;
responseBitIndex = responseBitIndex + 1;
}
else
{ // stop bit
status = OpenThermStatus::RESPONSE_READY;
responseTimestamp = newTs;
}
}
}
}
#if !defined(__AVR__)
void IRAM_ATTR OpenTherm::handleInterruptHelper(void* ptr)
{
static_cast<OpenTherm*>(ptr)->handleInterrupt();
}
#endif
void OpenTherm::processResponse()
{
if (processResponseCallback != NULL)
{
processResponseCallback(response, (int)responseStatus);
}
#if !defined(__AVR__)
if (this->processResponseFunction != NULL)
{
processResponseFunction(response, responseStatus);
}
#endif
}
void OpenTherm::process()
{
noInterrupts();
OpenThermStatus st = status;
unsigned long ts = responseTimestamp;
interrupts();
if (st == OpenThermStatus::READY)
return;
unsigned long newTs = micros();
if (st != OpenThermStatus::NOT_INITIALIZED && st != OpenThermStatus::DELAY && (newTs - ts) > 1000000)
{
status = OpenThermStatus::READY;
responseStatus = OpenThermResponseStatus::TIMEOUT;
processResponse();
}
else if (st == OpenThermStatus::RESPONSE_INVALID)
{
status = OpenThermStatus::DELAY;
responseStatus = OpenThermResponseStatus::INVALID;
processResponse();
}
else if (st == OpenThermStatus::RESPONSE_READY)
{
status = OpenThermStatus::DELAY;
responseStatus = (isSlave ? isValidRequest(response) : isValidResponse(response)) ? OpenThermResponseStatus::SUCCESS : OpenThermResponseStatus::INVALID;
processResponse();
}
else if (st == OpenThermStatus::DELAY)
{
if ((newTs - ts) > (isSlave ? 20000 : 100000))
{
status = OpenThermStatus::READY;
}
}
}
bool OpenTherm::parity(unsigned long frame) // odd parity
{
byte p = 0;
while (frame > 0)
{
if (frame & 1)
p++;
frame = frame >> 1;
}
return (p & 1);
}
OpenThermMessageType OpenTherm::getMessageType(unsigned long message)
{
OpenThermMessageType msg_type = static_cast<OpenThermMessageType>((message >> 28) & 7);
return msg_type;
}
OpenThermMessageID OpenTherm::getDataID(unsigned long frame)
{
return (OpenThermMessageID)((frame >> 16) & 0xFF);
}
unsigned long OpenTherm::buildRequest(OpenThermMessageType type, OpenThermMessageID id, unsigned int data)
{
unsigned long request = data;
if (type == OpenThermMessageType::WRITE_DATA)
{
request |= 1ul << 28;
}
request |= ((unsigned long)id) << 16;
if (parity(request))
request |= (1ul << 31);
return request;
}
unsigned long OpenTherm::buildResponse(OpenThermMessageType type, OpenThermMessageID id, unsigned int data)
{
unsigned long response = data;
response |= ((unsigned long)type) << 28;
response |= ((unsigned long)id) << 16;
if (parity(response))
response |= (1ul << 31);
return response;
}
bool OpenTherm::isValidResponse(unsigned long response)
{
if (parity(response))
return false;
byte msgType = (response << 1) >> 29;
return msgType == (byte)OpenThermMessageType::READ_ACK || msgType == (byte)OpenThermMessageType::WRITE_ACK;
}
bool OpenTherm::isValidRequest(unsigned long request)
{
if (parity(request))
return false;
byte msgType = (request << 1) >> 29;
return msgType == (byte)OpenThermMessageType::READ_DATA || msgType == (byte)OpenThermMessageType::WRITE_DATA;
}
void OpenTherm::end()
{
detachInterrupt(digitalPinToInterrupt(inPin));
}
OpenTherm::~OpenTherm()
{
end();
}
const char *OpenTherm::statusToString(OpenThermResponseStatus status)
{
switch (status)
{
case OpenThermResponseStatus::NONE:
return "NONE";
case OpenThermResponseStatus::SUCCESS:
return "SUCCESS";
case OpenThermResponseStatus::INVALID:
return "INVALID";
case OpenThermResponseStatus::TIMEOUT:
return "TIMEOUT";
default:
return "UNKNOWN";
}
}
const char *OpenTherm::messageTypeToString(OpenThermMessageType message_type)
{
switch (message_type)
{
case OpenThermMessageType::READ_DATA:
return "READ_DATA";
case OpenThermMessageType::WRITE_DATA:
return "WRITE_DATA";
case OpenThermMessageType::INVALID_DATA:
return "INVALID_DATA";
case OpenThermMessageType::RESERVED:
return "RESERVED";
case OpenThermMessageType::READ_ACK:
return "READ_ACK";
case OpenThermMessageType::WRITE_ACK:
return "WRITE_ACK";
case OpenThermMessageType::DATA_INVALID:
return "DATA_INVALID";
case OpenThermMessageType::UNKNOWN_DATA_ID:
return "UNKNOWN_DATA_ID";
default:
return "UNKNOWN";
}
}
// building requests
unsigned long OpenTherm::buildSetBoilerStatusRequest(bool enableCentralHeating, bool enableHotWater, bool enableCooling, bool enableOutsideTemperatureCompensation, bool enableCentralHeating2)
{
unsigned int data = enableCentralHeating | (enableHotWater << 1) | (enableCooling << 2) | (enableOutsideTemperatureCompensation << 3) | (enableCentralHeating2 << 4);
data <<= 8;
return buildRequest(OpenThermMessageType::READ_DATA, OpenThermMessageID::Status, data);
}
unsigned long OpenTherm::buildSetBoilerTemperatureRequest(float temperature)
{
unsigned int data = temperatureToData(temperature);
return buildRequest(OpenThermMessageType::WRITE_DATA, OpenThermMessageID::TSet, data);
}
unsigned long OpenTherm::buildGetBoilerTemperatureRequest()
{
return buildRequest(OpenThermMessageType::READ_DATA, OpenThermMessageID::Tboiler, 0);
}
// parsing responses
bool OpenTherm::isFault(unsigned long response)
{
return response & 0x1;
}
bool OpenTherm::isCentralHeatingActive(unsigned long response)
{
return response & 0x2;
}
bool OpenTherm::isHotWaterActive(unsigned long response)
{
return response & 0x4;
}
bool OpenTherm::isFlameOn(unsigned long response)
{
return response & 0x8;
}
bool OpenTherm::isCoolingActive(unsigned long response)
{
return response & 0x10;
}
bool OpenTherm::isDiagnostic(unsigned long response)
{
return response & 0x40;
}
uint16_t OpenTherm::getUInt(const unsigned long response)
{
const uint16_t u88 = response & 0xffff;
return u88;
}
float OpenTherm::getFloat(const unsigned long response)
{
const uint16_t u88 = getUInt(response);
const float f = (u88 & 0x8000) ? -(0x10000L - u88) / 256.0f : u88 / 256.0f;
return f;
}
unsigned int OpenTherm::temperatureToData(float temperature)
{
if (temperature < 0)
temperature = 0;
if (temperature > 100)
temperature = 100;
unsigned int data = (unsigned int)(temperature * 256);
return data;
}
// basic requests
unsigned long OpenTherm::setBoilerStatus(bool enableCentralHeating, bool enableHotWater, bool enableCooling, bool enableOutsideTemperatureCompensation, bool enableCentralHeating2)
{
return sendRequest(buildSetBoilerStatusRequest(enableCentralHeating, enableHotWater, enableCooling, enableOutsideTemperatureCompensation, enableCentralHeating2));
}
bool OpenTherm::setBoilerTemperature(float temperature)
{
unsigned long response = sendRequest(buildSetBoilerTemperatureRequest(temperature));
return isValidResponse(response);
}
float OpenTherm::getBoilerTemperature()
{
unsigned long response = sendRequest(buildGetBoilerTemperatureRequest());
return isValidResponse(response) ? getFloat(response) : 0;
}
float OpenTherm::getReturnTemperature()
{
unsigned long response = sendRequest(buildRequest(OpenThermRequestType::READ, OpenThermMessageID::Tret, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
bool OpenTherm::setDHWSetpoint(float temperature)
{
unsigned int data = temperatureToData(temperature);
unsigned long response = sendRequest(buildRequest(OpenThermMessageType::WRITE_DATA, OpenThermMessageID::TdhwSet, data));
return isValidResponse(response);
}
float OpenTherm::getDHWTemperature()
{
unsigned long response = sendRequest(buildRequest(OpenThermMessageType::READ_DATA, OpenThermMessageID::Tdhw, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
float OpenTherm::getModulation()
{
unsigned long response = sendRequest(buildRequest(OpenThermRequestType::READ, OpenThermMessageID::RelModLevel, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
float OpenTherm::getPressure()
{
unsigned long response = sendRequest(buildRequest(OpenThermRequestType::READ, OpenThermMessageID::CHPressure, 0));
return isValidResponse(response) ? getFloat(response) : 0;
}
unsigned char OpenTherm::getFault()
{
return ((sendRequest(buildRequest(OpenThermRequestType::READ, OpenThermMessageID::ASFflags, 0)) >> 8) & 0xff);
}

View File

@ -1,256 +0,0 @@
/*
OpenTherm.h - OpenTherm Library for the ESP8266/ESP32/Arduino platform
https://github.com/ihormelnyk/OpenTherm
http://ihormelnyk.com/pages/OpenTherm
Licensed under MIT license
Copyright 2023, Ihor Melnyk
Frame Structure:
P MGS-TYPE SPARE DATA-ID DATA-VALUE
0 000 0000 00000000 00000000 00000000
*/
#ifndef OpenTherm_h
#define OpenTherm_h
#include <stdint.h>
#include <Arduino.h>
enum class OpenThermResponseStatus : byte
{
NONE,
SUCCESS,
INVALID,
TIMEOUT
};
enum class OpenThermMessageType : byte
{
/* Master to Slave */
READ_DATA = 0b000,
READ = READ_DATA, // for backwared compatibility
WRITE_DATA = 0b001,
WRITE = WRITE_DATA, // for backwared compatibility
INVALID_DATA = 0b010,
RESERVED = 0b011,
/* Slave to Master */
READ_ACK = 0b100,
WRITE_ACK = 0b101,
DATA_INVALID = 0b110,
UNKNOWN_DATA_ID = 0b111
};
typedef OpenThermMessageType OpenThermRequestType; // for backwared compatibility
enum class OpenThermMessageID : byte
{
Status = 0, // flag8/flag8 Master and Slave Status flags.
TSet = 1, // f8.8 Control Setpoint i.e.CH water temperature Setpoint(°C)
MConfigMMemberIDcode = 2, // flag8/u8 Master Configuration Flags / Master MemberID Code
SConfigSMemberIDcode = 3, // flag8/u8 Slave Configuration Flags / Slave MemberID Code
RemoteRequest = 4, // u8/u8 Remote Request
ASFflags = 5, // flag8/u8 Application - specific fault flags and OEM fault code
RBPflags = 6, // flag8/flag8 Remote boiler parameter transfer - enable & read / write flags
CoolingControl = 7, // f8.8 Cooling control signal(%)
TsetCH2 = 8, // f8.8 Control Setpoint for 2e CH circuit(°C)
TrOverride = 9, // f8.8 Remote override room Setpoint
TSP = 10, // u8/u8 Number of Transparent - Slave - Parameters supported by slave
TSPindexTSPvalue = 11, // u8/u8 Index number / Value of referred - to transparent slave parameter.
FHBsize = 12, // u8/u8 Size of Fault - History - Buffer supported by slave
FHBindexFHBvalue = 13, // u8/u8 Index number / Value of referred - to fault - history buffer entry.
MaxRelModLevelSetting = 14, // f8.8 Maximum relative modulation level setting(%)
MaxCapacityMinModLevel = 15, // u8/u8 Maximum boiler capacity(kW) / Minimum boiler modulation level(%)
TrSet = 16, // f8.8 Room Setpoint(°C)
RelModLevel = 17, // f8.8 Relative Modulation Level(%)
CHPressure = 18, // f8.8 Water pressure in CH circuit(bar)
DHWFlowRate = 19, // f8.8 Water flow rate in DHW circuit. (litres / minute)
DayTime = 20, // special/u8 Day of Week and Time of Day
Date = 21, // u8/u8 Calendar date
Year = 22, // u16 Calendar year
TrSetCH2 = 23, // f8.8 Room Setpoint for 2nd CH circuit(°C)
Tr = 24, // f8.8 Room temperature(°C)
Tboiler = 25, // f8.8 Boiler flow water temperature(°C)
Tdhw = 26, // f8.8 DHW temperature(°C)
Toutside = 27, // f8.8 Outside temperature(°C)
Tret = 28, // f8.8 Return water temperature(°C)
Tstorage = 29, // f8.8 Solar storage temperature(°C)
Tcollector = 30, // f8.8 Solar collector temperature(°C)
TflowCH2 = 31, // f8.8 Flow water temperature CH2 circuit(°C)
Tdhw2 = 32, // f8.8 Domestic hot water temperature 2 (°C)
Texhaust = 33, // s16 Boiler exhaust temperature(°C)
TboilerHeatExchanger = 34, // f8.8 Boiler heat exchanger temperature(°C)
BoilerFanSpeedSetpointAndActual = 35, // u8/u8 Boiler fan speed Setpoint and actual value
FlameCurrent = 36, // f8.8 Electrical current through burner flame[μA]
TrCH2 = 37, // f8.8 Room temperature for 2nd CH circuit(°C)
RelativeHumidity = 38, // f8.8 Actual relative humidity as a percentage
TrOverride2 = 39, // f8.8 Remote Override Room Setpoint 2
TdhwSetUBTdhwSetLB = 48, // s8/s8 DHW Setpoint upper & lower bounds for adjustment(°C)
MaxTSetUBMaxTSetLB = 49, // s8/s8 Max CH water Setpoint upper & lower bounds for adjustment(°C)
TdhwSet = 56, // f8.8 DHW Setpoint(°C) (Remote parameter 1)
MaxTSet = 57, // f8.8 Max CH water Setpoint(°C) (Remote parameters 2)
StatusVentilationHeatRecovery = 70, // flag8/flag8 Master and Slave Status flags ventilation / heat - recovery
Vset = 71, // -/u8 Relative ventilation position (0-100%). 0% is the minimum set ventilation and 100% is the maximum set ventilation.
ASFflagsOEMfaultCodeVentilationHeatRecovery = 72, // flag8/u8 Application-specific fault flags and OEM fault code ventilation / heat-recovery
OEMDiagnosticCodeVentilationHeatRecovery = 73, // u16 An OEM-specific diagnostic/service code for ventilation / heat-recovery system
SConfigSMemberIDCodeVentilationHeatRecovery = 74, // flag8/u8 Slave Configuration Flags / Slave MemberID Code ventilation / heat-recovery
OpenThermVersionVentilationHeatRecovery = 75, // f8.8 The implemented version of the OpenTherm Protocol Specification in the ventilation / heat-recovery system.
VentilationHeatRecoveryVersion = 76, // u8/u8 Ventilation / heat-recovery product version number and type
RelVentLevel = 77, // -/u8 Relative ventilation (0-100%)
RHexhaust = 78, // -/u8 Relative humidity exhaust air (0-100%)
CO2exhaust = 79, // u16 CO2 level exhaust air (0-2000 ppm)
Tsi = 80, // f8.8 Supply inlet temperature (°C)
Tso = 81, // f8.8 Supply outlet temperature (°C)
Tei = 82, // f8.8 Exhaust inlet temperature (°C)
Teo = 83, // f8.8 Exhaust outlet temperature (°C)
RPMexhaust = 84, // u16 Exhaust fan speed in rpm
RPMsupply = 85, // u16 Supply fan speed in rpm
RBPflagsVentilationHeatRecovery = 86, // flag8/flag8 Remote ventilation / heat-recovery parameter transfer-enable & read/write flags
NominalVentilationValue = 87, // u8/- Nominal relative value for ventilation (0-100 %)
TSPventilationHeatRecovery = 88, // u8/u8 Number of Transparent-Slave-Parameters supported by TSPs ventilation / heat-recovery
TSPindexTSPvalueVentilationHeatRecovery = 89, // u8/u8 Index number / Value of referred-to transparent TSPs ventilation / heat-recovery parameter.
FHBsizeVentilationHeatRecovery = 90, // u8/u8 Size of Fault-History-Buffer supported by ventilation / heat-recovery
FHBindexFHBvalueVentilationHeatRecovery = 91, // u8/u8 Index number / Value of referred-to fault-history buffer entry ventilation / heat-recovery
Brand = 93, // u8/u8 Index number of the character in the text string ASCII character referenced by the above index number
BrandVersion = 94, // u8/u8 Index number of the character in the text string ASCII character referenced by the above index number
BrandSerialNumber = 95, // u8/u8 Index number of the character in the text string ASCII character referenced by the above index number
CoolingOperationHours = 96, // u16 Number of hours that the slave is in Cooling Mode. Reset by zero is optional for slave
PowerCycles = 97, // u16 Number of Power Cycles of a slave (wake-up after Reset), Reset by zero is optional for slave
RFsensorStatusInformation = 98, // special/special For a specific RF sensor the RF strength and battery level is written
RemoteOverrideOperatingModeHeatingDHW = 99, // special/special Operating Mode HC1, HC2/ Operating Mode DHW
RemoteOverrideFunction = 100, // flag8/- Function of manual and program changes in master and remote room Setpoint
StatusSolarStorage = 101, // flag8/flag8 Master and Slave Status flags Solar Storage
ASFflagsOEMfaultCodeSolarStorage = 102, // flag8/u8 Application-specific fault flags and OEM fault code Solar Storage
SConfigSMemberIDcodeSolarStorage = 103, // flag8/u8 Slave Configuration Flags / Slave MemberID Code Solar Storage
SolarStorageVersion = 104, // u8/u8 Solar Storage product version number and type
TSPSolarStorage = 105, // u8/u8 Number of Transparent - Slave - Parameters supported by TSPs Solar Storage
TSPindexTSPvalueSolarStorage = 106, // u8/u8 Index number / Value of referred - to transparent TSPs Solar Storage parameter.
FHBsizeSolarStorage = 107, // u8/u8 Size of Fault - History - Buffer supported by Solar Storage
FHBindexFHBvalueSolarStorage = 108, // u8/u8 Index number / Value of referred - to fault - history buffer entry Solar Storage
ElectricityProducerStarts = 109, // U16 Number of start of the electricity producer.
ElectricityProducerHours = 110, // U16 Number of hours the electricity produces is in operation
ElectricityProduction = 111, // U16 Current electricity production in Watt.
CumulativElectricityProduction = 112, // U16 Cumulative electricity production in KWh.
UnsuccessfulBurnerStarts = 113, // u16 Number of un - successful burner starts
FlameSignalTooLowNumber = 114, // u16 Number of times flame signal was too low
OEMDiagnosticCode = 115, // u16 OEM - specific diagnostic / service code
SuccessfulBurnerStarts = 116, // u16 Number of succesful starts burner
CHPumpStarts = 117, // u16 Number of starts CH pump
DHWPumpValveStarts = 118, // u16 Number of starts DHW pump / valve
DHWBurnerStarts = 119, // u16 Number of starts burner during DHW mode
BurnerOperationHours = 120, // u16 Number of hours that burner is in operation(i.e.flame on)
CHPumpOperationHours = 121, // u16 Number of hours that CH pump has been running
DHWPumpValveOperationHours = 122, // u16 Number of hours that DHW pump has been running or DHW valve has been opened
DHWBurnerOperationHours = 123, // u16 Number of hours that burner is in operation during DHW mode
OpenThermVersionMaster = 124, // f8.8 The implemented version of the OpenTherm Protocol Specification in the master.
OpenThermVersionSlave = 125, // f8.8 The implemented version of the OpenTherm Protocol Specification in the slave.
MasterVersion = 126, // u8/u8 Master product version number and type
SlaveVersion = 127, // u8/u8 Slave product version number and type
};
enum class OpenThermStatus : byte
{
NOT_INITIALIZED,
READY,
DELAY,
REQUEST_SENDING,
RESPONSE_WAITING,
RESPONSE_START_BIT,
RESPONSE_RECEIVING,
RESPONSE_READY,
RESPONSE_INVALID
};
class OpenTherm
{
public:
OpenTherm(int inPin = 4, int outPin = 5, bool isSlave = false);
~OpenTherm();
volatile OpenThermStatus status;
void begin(void (*handleInterruptCallback)(void));
void begin(void (*handleInterruptCallback)(void), void (*processResponseCallback)(unsigned long, int));
#if !defined(__AVR__)
void begin();
void begin(std::function<void(unsigned long, OpenThermResponseStatus)> processResponseFunction);
#endif
bool isReady();
unsigned long sendRequest(unsigned long request);
bool sendResponse(unsigned long request);
bool sendRequestAsync(unsigned long request);
static unsigned long buildRequest(OpenThermMessageType type, OpenThermMessageID id, unsigned int data);
static unsigned long buildResponse(OpenThermMessageType type, OpenThermMessageID id, unsigned int data);
unsigned long getLastResponse();
OpenThermResponseStatus getLastResponseStatus();
static const char *statusToString(OpenThermResponseStatus status);
void handleInterrupt();
#if !defined(__AVR__)
static void handleInterruptHelper(void* ptr);
#endif
void process();
void end();
static bool parity(unsigned long frame);
static OpenThermMessageType getMessageType(unsigned long message);
static OpenThermMessageID getDataID(unsigned long frame);
static const char *messageTypeToString(OpenThermMessageType message_type);
static bool isValidRequest(unsigned long request);
static bool isValidResponse(unsigned long response);
// requests
static unsigned long buildSetBoilerStatusRequest(bool enableCentralHeating, bool enableHotWater = false, bool enableCooling = false, bool enableOutsideTemperatureCompensation = false, bool enableCentralHeating2 = false);
static unsigned long buildSetBoilerTemperatureRequest(float temperature);
static unsigned long buildGetBoilerTemperatureRequest();
// responses
static bool isFault(unsigned long response);
static bool isCentralHeatingActive(unsigned long response);
static bool isHotWaterActive(unsigned long response);
static bool isFlameOn(unsigned long response);
static bool isCoolingActive(unsigned long response);
static bool isDiagnostic(unsigned long response);
static uint16_t getUInt(const unsigned long response);
static float getFloat(const unsigned long response);
static unsigned int temperatureToData(float temperature);
// basic requests
unsigned long setBoilerStatus(bool enableCentralHeating, bool enableHotWater = false, bool enableCooling = false, bool enableOutsideTemperatureCompensation = false, bool enableCentralHeating2 = false);
bool setBoilerTemperature(float temperature);
float getBoilerTemperature();
float getReturnTemperature();
bool setDHWSetpoint(float temperature);
float getDHWTemperature();
float getModulation();
float getPressure();
unsigned char getFault();
private:
const int inPin;
const int outPin;
const bool isSlave;
volatile unsigned long response;
volatile OpenThermResponseStatus responseStatus;
volatile unsigned long responseTimestamp;
volatile byte responseBitIndex;
int readState();
void setActiveState();
void setIdleState();
void activateBoiler();
void sendBit(bool high);
void processResponse();
void (*processResponseCallback)(unsigned long, int);
#if !defined(__AVR__)
std::function<void(unsigned long, OpenThermResponseStatus)> processResponseFunction;
#endif
};
#ifndef ICACHE_RAM_ATTR
#define ICACHE_RAM_ATTR
#endif
#ifndef IRAM_ATTR
#define IRAM_ATTR ICACHE_RAM_ATTR
#endif
#endif // OpenTherm_h

View File

@ -154,7 +154,6 @@ static const RCSwitch::Protocol PROGMEM proto[] = {
{ 250, 0, { 0, 0 }, 1, { 18, 6 }, { 1, 3 }, { 3, 1 }, false, 0 }, // 36 Dooya remote DC2700AC for Dooya DT82TV curtains motor
{ 200, 0, { 0, 0 }, 0, { 0, 0 }, { 1, 3 }, { 3, 1 }, false, 20 }, // 37 DEWENWILS Power Strip
{ 500, 0, { 0, 0 }, 1, { 7, 1 }, { 2, 1 }, { 4, 1 }, true, 0 }, // 38 temperature and humidity sensor, various brands, nexus protocol, 36 bits + start impulse
{ 560, 0, { 0, 0 }, 1, { 15, 1 }, { 3, 1 }, { 7, 1 }, true, 0 } // 39 Hyundai WS Senzor 77/77TH, 36 bits (requires disabled protocol 38: 'RfProtocol38 0')
};
enum {
@ -659,6 +658,17 @@ void RCSwitch::send(unsigned long long code, unsigned int length) {
else
this->transmit(protocol.zero);
}
// for kilok, there should be a duration of 66, and 64 significant data codes are stored
// send two more bits for even count
if (length == 64) {
if (nRepeat == 0) {
this->transmit(protocol.zero);
this->transmit(protocol.zero);
} else {
this->transmit(protocol.one);
this->transmit(protocol.one);
}
}
// Set the guard Time
if (protocol.Guard > 0) {
digitalWrite(this->nTransmitterPin, LOW);

Some files were not shown because too many files have changed in this diff Show More