Merge branch 'main' into usermod-libs

This commit is contained in:
Will Tatam 2025-02-16 10:40:30 +00:00
commit 1dc7647bb9
52 changed files with 1093 additions and 777 deletions

View File

@ -80,7 +80,7 @@ body:
id: terms
attributes:
label: Code of Conduct
description: By submitting this issue, you agree to follow our [Code of Conduct](https://github.com/Aircoookie/WLED/blob/master/CODE_OF_CONDUCT.md)
description: By submitting this issue, you agree to follow our [Code of Conduct](https://github.com/wled-dev/WLED/blob/main/CODE_OF_CONDUCT.md)
options:
- label: I agree to follow this project's Code of Conduct
required: true

View File

@ -19,14 +19,6 @@ jobs:
uses: actions/download-artifact@v4
with:
merge-multiple: true
- name: Show Files
run: ls -la
- name: "✏️ Generate release changelog"
id: changelog
uses: janheinrichmerker/action-github-changelog-generator@v2.3
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
- name: Update Nightly Release
uses: andelf/nightly-release@main
env:
@ -35,7 +27,7 @@ jobs:
tag_name: nightly
name: 'Nightly Release $$'
prerelease: true
body: ${{ steps.changelog.outputs.changelog }}
body: 'nightly'
files: |
*.bin
*.bin.gz

1
.gitignore vendored
View File

@ -15,6 +15,7 @@ wled-update.sh
/build_output/
/node_modules/
/logs/
/wled00/extLibs
/wled00/LittleFS

View File

@ -27,7 +27,7 @@ Github will pick up the changes so your PR stays up-to-date.
> For example, we regularly lost review comments when the PR author force-pushes code changes. So, pretty please, do not force-push.
You can find a collection of very useful tips and tricks here: https://github.com/Aircoookie/WLED/wiki/How-to-properly-submit-a-PR
You can find a collection of very useful tips and tricks here: https://github.com/wled-dev/WLED/wiki/How-to-properly-submit-a-PR
### Code style

View File

@ -14,14 +14,14 @@
},
"repository": {
"type": "git",
"url": "git+https://github.com/Aircoookie/WLED.git"
"url": "git+https://github.com/wled-dev/WLED.git"
},
"author": "",
"license": "ISC",
"bugs": {
"url": "https://github.com/Aircoookie/WLED/issues"
"url": "https://github.com/wled-dev/WLED/issues"
},
"homepage": "https://github.com/Aircoookie/WLED#readme",
"homepage": "https://github.com/wled-dev/WLED#readme",
"dependencies": {
"clean-css": "^5.3.3",
"html-minifier-terser": "^7.2.0",

View File

@ -1,3 +1,21 @@
Import('env')
Import("env")
import shutil
env.Execute("npm run build")
node_ex = shutil.which("node")
# Check if Node.js is installed and present in PATH if it failed, abort the build
if node_ex is None:
print('\x1b[0;31;43m' + 'Node.js is not installed or missing from PATH html css js will not be processed check https://kno.wled.ge/advanced/compiling-wled/' + '\x1b[0m')
exitCode = env.Execute("null")
exit(exitCode)
else:
# Install the necessary node packages for the pre-build asset bundling script
print('\x1b[6;33;42m' + 'Installing node packages' + '\x1b[0m')
env.Execute("npm install")
# Call the bundling script
exitCode = env.Execute("npm run build")
# If it failed, abort the build
if (exitCode):
print('\x1b[0;31;43m' + 'npm run build fails check https://kno.wled.ge/advanced/compiling-wled/' + '\x1b[0m')
exit(exitCode)

View File

@ -139,7 +139,7 @@ lib_compat_mode = strict
lib_deps =
fastled/FastLED @ 3.6.0
IRremoteESP8266 @ 2.8.2
makuna/NeoPixelBus @ 2.8.0
makuna/NeoPixelBus @ 2.8.3
#https://github.com/makuna/NeoPixelBus.git#CoreShaderBeta
https://github.com/Aircoookie/ESPAsyncWebServer.git#v2.4.0
# for I2C interface

View File

@ -280,7 +280,7 @@ lib_deps = ${esp32s2.lib_deps}
[env:esp32s3dev_8MB_PSRAM_qspi]
;; ESP32-TinyS3 development board, with 8MB FLASH and PSRAM (memory_type: qio_qspi)
extends = env:esp32s3dev_8MB_PSRAM_opi
;board = um_tinys3 ; -> needs workaround from https://github.com/Aircoookie/WLED/pull/2905#issuecomment-1328049860
;board = um_tinys3 ; -> needs workaround from https://github.com/wled-dev/WLED/pull/2905#issuecomment-1328049860
board = esp32-s3-devkitc-1 ;; generic dev board; the next line adds PSRAM support
board_build.arduino.memory_type = qio_qspi ;; use with PSRAM: 2MB or 4MB

View File

@ -1,12 +1,12 @@
<p align="center">
<img src="/images/wled_logo_akemi.png">
<a href="https://github.com/Aircoookie/WLED/releases"><img src="https://img.shields.io/github/release/Aircoookie/WLED.svg?style=flat-square"></a>
<a href="https://raw.githubusercontent.com/Aircoookie/WLED/master/LICENSE"><img src="https://img.shields.io/github/license/Aircoookie/wled?color=blue&style=flat-square"></a>
<a href="https://github.com/wled-dev/WLED/releases"><img src="https://img.shields.io/github/release/wled-dev/WLED.svg?style=flat-square"></a>
<a href="https://raw.githubusercontent.com/wled-dev/WLED/main/LICENSE"><img src="https://img.shields.io/github/license/wled-dev/wled?color=blue&style=flat-square"></a>
<a href="https://wled.discourse.group"><img src="https://img.shields.io/discourse/topics?colorB=blue&label=forum&server=https%3A%2F%2Fwled.discourse.group%2F&style=flat-square"></a>
<a href="https://discord.gg/QAh7wJHrRM"><img src="https://img.shields.io/discord/473448917040758787.svg?colorB=blue&label=discord&style=flat-square"></a>
<a href="https://kno.wled.ge"><img src="https://img.shields.io/badge/quick_start-wiki-blue.svg?style=flat-square"></a>
<a href="https://github.com/Aircoookie/WLED-App"><img src="https://img.shields.io/badge/app-wled-blue.svg?style=flat-square"></a>
<a href="https://gitpod.io/#https://github.com/Aircoookie/WLED"><img src="https://img.shields.io/badge/Gitpod-ready--to--code-blue?style=flat-square&logo=gitpod"></a>
<a href="https://gitpod.io/#https://github.com/wled-dev/WLED"><img src="https://img.shields.io/badge/Gitpod-ready--to--code-blue?style=flat-square&logo=gitpod"></a>
</p>

View File

@ -89,7 +89,7 @@ function adoptVersionAndRepo(html) {
repoUrl = repoUrl.replace(/^git\+/, "");
repoUrl = repoUrl.replace(/\.git$/, "");
html = html.replaceAll("https://github.com/atuline/WLED", repoUrl);
html = html.replaceAll("https://github.com/Aircoookie/WLED", repoUrl);
html = html.replaceAll("https://github.com/wled-dev/WLED", repoUrl);
}
let version = packageJson.version;
if (version) {

View File

@ -2,7 +2,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This is an example for a v2 usermod.
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.

View File

@ -8,7 +8,7 @@
* By this procedure the net services of WLED remains accessible in some problematic WLAN environments.
*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.

View File

@ -42,7 +42,7 @@
*
*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.

View File

@ -24,7 +24,7 @@
* Maintained by: @blazoncek
*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.

View File

@ -5,7 +5,7 @@ This usermod-v2 modification allows the connection of a PIR sensor to switch on
_Story:_
I use the PIR Sensor to automatically turn on the WLED analog clock in my home office room when I am there.
The LED strip is switched [using a relay](https://github.com/Aircoookie/WLED/wiki/Control-a-relay-with-WLED) to keep the power consumption low when it is switched off.
The LED strip is switched [using a relay](https://kno.wled.ge/features/relay-control/) to keep the power consumption low when it is switched off.
## Web interface

View File

@ -1,7 +1,7 @@
/*
* This file allows you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* bytes 2400+ are currently unused, but might be used for future wled features
*/

View File

@ -6,7 +6,7 @@ Version 1.0
## Installation
Just activate the usermod with `-D USERMOD_TETRISAI` and the effect will become available under the name 'Tetris AI'. If you are running out of flash memory, use a different memory layout (e.g. [WLED_ESP32_4MB_256KB_FS.csv](https://github.com/Aircoookie/WLED/blob/main/tools/WLED_ESP32_4MB_256KB_FS.csv)).
Just activate the usermod with `-D USERMOD_TETRISAI` and the effect will become available under the name 'Tetris AI'. If you are running out of flash memory, use a different memory layout (e.g. [WLED_ESP32_4MB_256KB_FS.csv](https://github.com/wled-dev/WLED/blob/main/tools/WLED_ESP32_4MB_256KB_FS.csv)).
If needed simply add to `platformio_override.ini` (or `platformio_override.ini`):

View File

@ -18,7 +18,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This is an audioreactive v2 usermod.
* ....

View File

@ -10,7 +10,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* Using a usermod:
* 1. Copy the usermod into the sketch folder (same folder as wled00.ino)

View File

@ -1,7 +1,7 @@
#include "wled.h"
/*
* This v1 usermod file allows you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* If you just need 8 bytes, use 2551-2559 (you do not need to increase EEPSIZE)
*

View File

@ -102,7 +102,7 @@ lib_deps = ${esp32s3.lib_deps}
# parallel. Also not clear exactly what difference between the ESP32 and the
# ESP32S3 would be causing this, though they do run different BLE versions.
# May be related to some of the issues discussed in:
# https://github.com/Aircoookie/WLED/issues/1382
# https://github.com/wled-dev/WLED/issues/1382
; [env:esp32dev_dice]
; extends = env:esp32dev
; build_flags = ${common.build_flags} ${esp32.build_flags} -D WLED_RELEASE_NAME=ESP32

View File

@ -2,7 +2,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This is Stairway-Wipe as a v2 usermod.
*

View File

@ -0,0 +1,35 @@
# Update Brightness Follow Sun
This UserMod can set brightness by mapping [minimum-maximum-minimum] from [sunrise-suntop-sunset], I use this UserMod to adjust the brightness of my plant growth light (pwm led), and I think it will make my plants happy.
This UserMod will adjust brightness from sunrise to sunset, reaching maximum brightness at the zenith of the sun. It can also maintain the lowest brightness within 0-6 hours before sunrise and after sunset according to the settings.
## Installation
define `USERMOD_BRIGHTNESS_FOLLOW_SUN` e.g. `#define USERMOD_BRIGHTNESS_FOLLOW_SUN` in my_config.h
or add `-D USERMOD_BRIGHTNESS_FOLLOW_SUN` to `build_flags` in platformio_override.ini
### Options
Open Usermod Settings in WLED to change settings:
`Enable` - When checked `Enable`, turn on the `Brightness Follow Sun` Usermod, which will automatically turn on the lights, adjust the brightness, and turn off the lights. If you need to completely turn off the lights, please unchecked `Enable`.
`Update Interval Sec` - The unit is seconds, and the brightness will be automatically refreshed according to the set parameters.
`Min Brightness` - set brightness by map of min-max-min : sunrise-suntop-sunset
`Max Brightness` - It needs to be set to a value greater than `Min Brightness`, otherwise it will always remain at `Min Brightness`.
`Relax Hour` - The unit is in hours, with an effective range of 0-6. According to the settings, maintain the lowest brightness for 0-6 hours before sunrise and after sunset.
### PlatformIO requirements
No special requirements.
## Change Log
2025-01-02
* init

View File

@ -0,0 +1,130 @@
#pragma once
#include "wled.h"
//v2 usermod that allows to change brightness and color using a rotary encoder,
//change between modes by pressing a button (many encoders have one included)
class UsermodBrightnessFollowSun : public Usermod
{
private:
static const char _name[];
static const char _enabled[];
static const char _update_interval[];
static const char _min_bri[];
static const char _max_bri[];
static const char _relax_hour[];
private:
bool enabled = false; //WLEDMM
unsigned long update_interval = 60;
unsigned long update_interval_ms = 60000;
int min_bri = 1;
int max_bri = 255;
float relax_hour = 0;
int relaxSec = 0;
unsigned long lastUMRun = 0;
public:
void setup() {};
float mapFloat(float inputValue, float inMin, float inMax, float outMin, float outMax) {
if (inMax == inMin)
return outMin;
inputValue = constrain(inputValue, inMin, inMax);
return ((inputValue - inMin) * (outMax - outMin) / (inMax - inMin)) + outMin;
}
uint16_t getId() override
{
return USERMOD_ID_BRIGHTNESS_FOLLOW_SUN;
}
void update()
{
if (sunrise == 0 || sunset == 0 || localTime == 0)
return;
int curSec = elapsedSecsToday(localTime);
int sunriseSec = elapsedSecsToday(sunrise);
int sunsetSec = elapsedSecsToday(sunset);
int sunMiddleSec = sunriseSec + (sunsetSec-sunriseSec)/2;
int relaxSecH = sunriseSec-relaxSec;
int relaxSecE = sunsetSec+relaxSec;
int briSet = 0;
if (curSec >= relaxSecH && curSec <= relaxSecE) {
float timeMapToAngle = curSec < sunMiddleSec ?
mapFloat(curSec, sunriseSec, sunMiddleSec, 0, M_PI/2.0) :
mapFloat(curSec, sunMiddleSec, sunsetSec, M_PI/2.0, M_PI);
float sinValue = sin_t(timeMapToAngle);
briSet = min_bri + (max_bri-min_bri)*sinValue;
}
bri = briSet;
stateUpdated(CALL_MODE_DIRECT_CHANGE);
}
void loop() override
{
if (!enabled || strip.isUpdating())
return;
if (millis() - lastUMRun < update_interval_ms)
return;
lastUMRun = millis();
update();
}
void addToConfig(JsonObject& root)
{
JsonObject top = root.createNestedObject(FPSTR(_name)); // usermodname
top[FPSTR(_enabled)] = enabled;
top[FPSTR(_update_interval)] = update_interval;
top[FPSTR(_min_bri)] = min_bri;
top[FPSTR(_max_bri)] = max_bri;
top[FPSTR(_relax_hour)] = relax_hour;
}
bool readFromConfig(JsonObject& root)
{
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINTF("[%s] No config found. (Using defaults.)\n", _name);
return false;
}
bool configComplete = true;
configComplete &= getJsonValue(top[FPSTR(_enabled)], enabled, false);
configComplete &= getJsonValue(top[FPSTR(_update_interval)], update_interval, 60);
configComplete &= getJsonValue(top[FPSTR(_min_bri)], min_bri, 1);
configComplete &= getJsonValue(top[FPSTR(_max_bri)], max_bri, 255);
configComplete &= getJsonValue(top[FPSTR(_relax_hour)], relax_hour, 0);
update_interval = constrain(update_interval, 1, SECS_PER_HOUR);
min_bri = constrain(min_bri, 1, 255);
max_bri = constrain(max_bri, 1, 255);
relax_hour = constrain(relax_hour, 0, 6);
update_interval_ms = update_interval*1000;
relaxSec = SECS_PER_HOUR*relax_hour;
lastUMRun = 0;
update();
return configComplete;
}
};
const char UsermodBrightnessFollowSun::_name[] PROGMEM = "Brightness Follow Sun";
const char UsermodBrightnessFollowSun::_enabled[] PROGMEM = "Enabled";
const char UsermodBrightnessFollowSun::_update_interval[] PROGMEM = "Update Interval Sec";
const char UsermodBrightnessFollowSun::_min_bri[] PROGMEM = "Min Brightness";
const char UsermodBrightnessFollowSun::_max_bri[] PROGMEM = "Max Brightness";
const char UsermodBrightnessFollowSun::_relax_hour[] PROGMEM = "Relax Hour";

View File

@ -2,7 +2,7 @@
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
*
* This usermod can be used to drive a wordclock with a 11x10 pixel matrix with WLED. There are also 4 additional dots for the minutes.
* The visualisation is described in 4 mask with LED numbers (single dots for minutes, minutes, hours and "clock/Uhr").

View File

@ -1134,7 +1134,7 @@ uint16_t mode_running_random(void) {
unsigned z = it % zoneSize;
bool nzone = (!z && it != SEGENV.aux1);
for (unsigned i=SEGLEN-1; i > 0; i--) {
for (int i=SEGLEN-1; i >= 0; i--) {
if (nzone || z >= zoneSize) {
unsigned lastrand = PRNG16 >> 8;
int16_t diff = 0;
@ -1768,7 +1768,7 @@ uint16_t mode_random_chase(void) {
uint32_t color = SEGENV.step;
random16_set_seed(SEGENV.aux0);
for (unsigned i = SEGLEN -1; i > 0; i--) {
for (int i = SEGLEN -1; i >= 0; i--) {
uint8_t r = random8(6) != 0 ? (color >> 16 & 0xFF) : random8();
uint8_t g = random8(6) != 0 ? (color >> 8 & 0xFF) : random8();
uint8_t b = random8(6) != 0 ? (color & 0xFF) : random8();
@ -2358,12 +2358,14 @@ uint16_t mode_meteor() {
for (unsigned i = 0; i < SEGLEN; i++) {
uint32_t col;
if (hw_random8() <= 255 - SEGMENT.intensity) {
if(meteorSmooth) {
int change = trail[i] + 4 - hw_random8(24); //change each time between -20 and +4
trail[i] = constrain(change, 0, max);
col = SEGMENT.check1 ? SEGMENT.color_from_palette(i, true, false, 0, trail[i]) : SEGMENT.color_from_palette(trail[i], false, true, 255);
if(meteorSmooth) {
if (trail[i] > 0) {
int change = trail[i] + 4 - hw_random8(24); //change each time between -20 and +4
trail[i] = constrain(change, 0, max);
}
else {
col = SEGMENT.check1 ? SEGMENT.color_from_palette(i, true, false, 0, trail[i]) : SEGMENT.color_from_palette(trail[i], false, true, 255);
}
else {
trail[i] = scale8(trail[i], 128 + hw_random8(127));
int index = trail[i];
int idx = 255;
@ -3015,7 +3017,7 @@ static const char _data_FX_MODE_BOUNCINGBALLS[] PROGMEM = "Bouncing Balls@Gravit
/*
* bouncing balls on a track track Effect modified from Aircoookie's bouncing balls
* Courtesy of pjhatch (https://github.com/pjhatch)
* https://github.com/Aircoookie/WLED/pull/1039
* https://github.com/wled-dev/WLED/pull/1039
*/
// modified for balltrack mode
typedef struct RollingBall {
@ -4852,7 +4854,6 @@ static const char _data_FX_MODE_FLOWSTRIPE[] PROGMEM = "Flow Stripe@Hue speed,Ef
#ifndef WLED_DISABLE_2D
///////////////////////////////////////////////////////////////////////////////
//*************************** 2D routines ***********************************
#define XY(x,y) SEGMENT.XY(x,y)
// Black hole
@ -5101,6 +5102,7 @@ uint16_t mode_2Dgameoflife(void) { // Written by Ewoud Wijma, inspired by https:
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return (x%cols) + (y%rows) * cols; };
const unsigned dataSize = sizeof(CRGB) * SEGMENT.length(); // using width*height prevents reallocation if mirroring is enabled
const int crcBufferLen = 2; //(SEGMENT.width() + SEGMENT.height())*71/100; // roughly sqrt(2)/2 for better repetition detection (Ewowi)
@ -5374,6 +5376,7 @@ uint16_t mode_2Dmatrix(void) { // Matrix2D. By Jeremy Williams.
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return (x%cols) + (y%rows) * cols; };
unsigned dataSize = (SEGMENT.length()+7) >> 3; //1 bit per LED for trails
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
@ -7471,6 +7474,7 @@ uint16_t mode_2Dsoap() {
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return (x%cols) + (y%rows) * cols; };
const size_t dataSize = SEGMENT.width() * SEGMENT.height() * sizeof(uint8_t); // prevent reallocation if mirrored or grouped
if (!SEGENV.allocateData(dataSize + sizeof(uint32_t)*3)) return mode_static(); //allocation failed
@ -7583,6 +7587,7 @@ uint16_t mode_2Doctopus() {
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return (x%cols) + (y%rows) * cols; };
const uint8_t mapp = 180 / MAX(cols,rows);
typedef struct {

View File

@ -1,3 +1,4 @@
#pragma once
/*
WS2812FX.h - Library for WS2812 LED effects.
Harm Aldick - 2016
@ -8,12 +9,15 @@
Adapted from code originally licensed under the MIT license
Modified for WLED
Segment class/struct (c) 2022 Blaz Kristan (@blazoncek)
*/
#ifndef WS2812FX_h
#define WS2812FX_h
#include <vector>
#include "wled.h"
#include "const.h"
#include "bus_manager.h"
@ -71,18 +75,15 @@ extern byte realtimeMode; // used in getMappedPixelIndex()
/* each segment uses 82 bytes of SRAM memory, so if you're application fails because of
insufficient memory, decreasing MAX_NUM_SEGMENTS may help */
#ifdef ESP8266
#define MAX_NUM_SEGMENTS 16
#define MAX_NUM_SEGMENTS 16
/* How much data bytes all segments combined may allocate */
#define MAX_SEGMENT_DATA 5120
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
#define MAX_NUM_SEGMENTS 20
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*512) // 10k by default (S2 is short on free RAM)
#else
#ifndef MAX_NUM_SEGMENTS
#define MAX_NUM_SEGMENTS 32
#endif
#if defined(ARDUINO_ARCH_ESP32S2)
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*768) // 24k by default (S2 is short on free RAM)
#else
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*1280) // 40k by default
#endif
#define MAX_NUM_SEGMENTS 32 // warning: going beyond 32 may consume too much RAM for stable operation
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*1280) // 40k by default
#endif
/* How much data bytes each segment should max allocate to leave enough space for other segments,
@ -571,6 +572,8 @@ typedef struct Segment {
inline uint16_t groupLength() const { return grouping + spacing; }
inline uint8_t getLightCapabilities() const { return _capabilities; }
inline void deactivate() { setGeometry(0,0); }
inline Segment &clearName() { if (name) free(name); name = nullptr; return *this; }
inline Segment &setName(const String &name) { return setName(name.c_str()); }
inline static unsigned getUsedSegmentData() { return Segment::_usedSegmentData; }
inline static void addUsedSegmentData(int len) { Segment::_usedSegmentData += len; }
@ -593,6 +596,7 @@ typedef struct Segment {
Segment &setOption(uint8_t n, bool val);
Segment &setMode(uint8_t fx, bool loadDefaults = false);
Segment &setPalette(uint8_t pal);
Segment &setName(const char* name);
uint8_t differs(const Segment& b) const;
void refreshLightCapabilities();
@ -674,7 +678,6 @@ typedef struct Segment {
}
#ifndef WLED_DISABLE_2D
inline bool is2D() const { return (width()>1 && height()>1); }
[[gnu::hot]] int XY(int x, int y) const; // support function to get relative index within segment
[[gnu::hot]] void setPixelColorXY(int x, int y, uint32_t c) const; // set relative pixel within segment with color
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) const { setPixelColorXY(int(x), int(y), c); }
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) const { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
@ -711,8 +714,7 @@ typedef struct Segment {
void wu_pixel(uint32_t x, uint32_t y, CRGB c);
inline void fill_solid(CRGB c) { fill(RGBW32(c.r,c.g,c.b,0)); }
#else
inline constexpr bool is2D() const { return false; }
inline int XY(int x, int y) const { return x; }
inline bool is2D() const { return false; }
inline void setPixelColorXY(int x, int y, uint32_t c) { setPixelColor(x, c); }
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) { setPixelColor(int(x), c); }
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColor(x, RGBW32(r,g,b,w)); }

View File

@ -145,14 +145,6 @@ void WS2812FX::setUpMatrix() {
#ifndef WLED_DISABLE_2D
// XY(x,y) - gets pixel index within current segment (often used to reference leds[] array element)
int IRAM_ATTR_YN Segment::XY(int x, int y) const
{
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
return isActive() ? (x%vW) + (y%vH) * vW : 0;
}
// raw setColor function without checks (checks are done in setPixelColorXY())
void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(const int& x, const int& y, uint32_t& col) const
{
@ -166,16 +158,11 @@ void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(const int& x, const int& y, uint
// Apply mirroring
if (mirror || mirror_y) {
auto setMirroredPixel = [&](int mx, int my) {
strip.setPixelColorXY(mx, my, col);
};
const int mirrorX = start + width() - x - 1;
const int mirrorY = startY + height() - y - 1;
if (mirror) setMirroredPixel(transpose ? baseX : mirrorX, transpose ? mirrorY : baseY);
if (mirror_y) setMirroredPixel(transpose ? mirrorX : baseX, transpose ? baseY : mirrorY);
if (mirror && mirror_y) setMirroredPixel(mirrorX, mirrorY);
if (mirror) strip.setPixelColorXY(transpose ? baseX : mirrorX, transpose ? mirrorY : baseY, col);
if (mirror_y) strip.setPixelColorXY(transpose ? mirrorX : baseX, transpose ? baseY : mirrorY, col);
if (mirror && mirror_y) strip.setPixelColorXY(mirrorX, mirrorY, col);
}
}

View File

@ -649,6 +649,20 @@ Segment &Segment::setPalette(uint8_t pal) {
return *this;
}
Segment &Segment::setName(const char *newName) {
if (newName) {
const int newLen = min(strlen(newName), (size_t)WLED_MAX_SEGNAME_LEN);
if (newLen) {
if (name) name = static_cast<char*>(realloc(name, newLen+1));
else name = static_cast<char*>(malloc(newLen+1));
if (name) strlcpy(name, newName, newLen+1);
name[newLen] = 0;
return *this;
}
}
return clearName();
}
// 2D matrix
unsigned Segment::virtualWidth() const {
unsigned groupLen = groupLength();
@ -754,7 +768,7 @@ bool IRAM_ATTR_YN Segment::isPixelClipped(int i) const {
//if (!invert && iInside) return _modeBlend;
//if ( invert && !iInside) return _modeBlend;
//return !_modeBlend;
return !iInside ^ invert ^ _modeBlend; // thanks @willmmiles (https://github.com/Aircoookie/WLED/pull/3877#discussion_r1554633876)
return !iInside ^ invert ^ _modeBlend; // thanks @willmmiles (https://github.com/wled-dev/WLED/pull/3877#discussion_r1554633876)
}
#endif
return false;
@ -1311,6 +1325,34 @@ void WS2812FX::finalizeInit() {
_hasWhiteChannel = _isOffRefreshRequired = false;
unsigned digitalCount = 0;
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
unsigned maxLedsOnBus = 0;
for (const auto &bus : busConfigs) {
if (Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type)) {
digitalCount++;
if (bus.count > maxLedsOnBus) maxLedsOnBus = bus.count;
}
}
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
if (maxLedsOnBus <= 300 && useParallelI2S) BusManager::useParallelOutput(); // must call before creating buses
else useParallelI2S = false; // enforce single I2S
#endif
// create buses/outputs
unsigned mem = 0;
digitalCount = 0;
for (const auto &bus : busConfigs) {
mem += bus.memUsage(Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type) ? digitalCount++ : 0); // includes global buffer
if (mem <= MAX_LED_MEMORY) {
if (BusManager::add(bus) == -1) break;
} else DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus %d (%d) #%u not created."), (int)bus.type, (int)bus.count, digitalCount);
}
busConfigs.clear();
busConfigs.shrink_to_fit();
//if busses failed to load, add default (fresh install, FS issue, ...)
if (BusManager::getNumBusses() == 0) {
DEBUG_PRINTLN(F("No busses, init default"));
@ -1326,6 +1368,7 @@ void WS2812FX::finalizeInit() {
unsigned prevLen = 0;
unsigned pinsIndex = 0;
digitalCount = 0;
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
uint8_t defPin[OUTPUT_MAX_PINS];
// if we have less types than requested outputs and they do not align, use last known type to set current type
@ -1390,9 +1433,11 @@ void WS2812FX::finalizeInit() {
if (Bus::isPWM(dataType) || Bus::isOnOff(dataType)) count = 1;
prevLen += count;
BusConfig defCfg = BusConfig(dataType, defPin, start, count, DEFAULT_LED_COLOR_ORDER, false, 0, RGBW_MODE_MANUAL_ONLY, 0, useGlobalLedBuffer);
mem += defCfg.memUsage(Bus::isDigital(dataType) && !Bus::is2Pin(dataType) ? digitalCount++ : 0);
if (BusManager::add(defCfg) == -1) break;
}
}
DEBUG_PRINTF_P(PSTR("LED buffer size: %uB/%uB\n"), mem, BusManager::memUsage());
_length = 0;
for (int i=0; i<BusManager::getNumBusses(); i++) {
@ -1409,6 +1454,7 @@ void WS2812FX::finalizeInit() {
// This must be done after all buses have been created, as some kinds (parallel I2S) interact
bus->begin();
}
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
Segment::maxWidth = _length;
Segment::maxHeight = 1;

View File

@ -21,10 +21,12 @@
#endif
#include "const.h"
#include "pin_manager.h"
#include "bus_wrapper.h"
#include "bus_manager.h"
#include "bus_wrapper.h"
#include <bits/unique_ptr.h>
extern bool cctICused;
extern bool useParallelI2S;
//colors.cpp
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
@ -32,28 +34,6 @@ uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
//udp.cpp
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const uint8_t* buffer, uint8_t bri=255, bool isRGBW=false);
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
#define DEBUGOUT NetDebug
#else
#define DEBUGOUT Serial
#endif
#ifdef WLED_DEBUG
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
#define DEBUG_PRINTF_P(x...) DEBUGOUT.printf_P(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#define DEBUG_PRINTF_P(x...)
#endif
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
@ -66,6 +46,7 @@ uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const
bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
if (count() >= WLED_MAX_COLOR_ORDER_MAPPINGS || len == 0 || (colorOrder & 0x0F) > COL_ORDER_MAX) return false; // upper nibble contains W swap information
_mappings.push_back({start,len,colorOrder});
DEBUGBUS_PRINTF_P(PSTR("Bus: Add COM (%d,%d,%d)\n"), (int)start, (int)len, (int)colorOrder);
return true;
}
@ -119,10 +100,14 @@ uint32_t Bus::autoWhiteCalc(uint32_t c) const {
}
uint8_t *Bus::allocateData(size_t size) {
if (_data) free(_data); // should not happen, but for safety
freeData(); // should not happen, but for safety
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
}
void Bus::freeData() {
if (_data) free(_data);
_data = nullptr;
}
BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
@ -132,30 +117,41 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com
, _milliAmpsMax(bc.milliAmpsMax)
, _colorOrderMap(com)
{
if (!isDigital(bc.type) || !bc.count) return;
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
DEBUGBUS_PRINTLN(F("Bus: Creating digital bus."));
if (!isDigital(bc.type) || !bc.count) { DEBUGBUS_PRINTLN(F("Not digial or empty bus!")); return; }
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) { DEBUGBUS_PRINTLN(F("Pin 0 allocated!")); return; }
_frequencykHz = 0U;
_pins[0] = bc.pins[0];
if (is2Pin(bc.type)) {
if (!PinManager::allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
cleanup();
DEBUGBUS_PRINTLN(F("Pin 1 allocated!"));
return;
}
_pins[1] = bc.pins[1];
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
}
_iType = PolyBus::getI(bc.type, _pins, nr);
if (_iType == I_NONE) return;
if (_iType == I_NONE) { DEBUGBUS_PRINTLN(F("Incorrect iType!")); return; }
_hasRgb = hasRGB(bc.type);
_hasWhite = hasWhite(bc.type);
_hasCCT = hasCCT(bc.type);
if (bc.doubleBuffer && !allocateData(bc.count * Bus::getNumberOfChannels(bc.type))) return;
if (bc.doubleBuffer && !allocateData(bc.count * Bus::getNumberOfChannels(bc.type))) { DEBUGBUS_PRINTLN(F("Buffer allocation failed!")); return; }
//_buffering = bc.doubleBuffer;
uint16_t lenToCreate = bc.count;
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr);
_valid = (_busPtr != nullptr);
DEBUG_PRINTF_P(PSTR("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u). mA=%d/%d\n"), _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], is2Pin(bc.type)?_pins[1]:255, _iType, _milliAmpsPerLed, _milliAmpsMax);
DEBUGBUS_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
_valid?"S":"Uns",
(int)nr,
(int)bc.count,
(int)bc.type,
(int)_hasRgb, (int)_hasWhite, (int)_hasCCT,
(unsigned)_pins[0], is2Pin(bc.type)?(unsigned)_pins[1]:255U,
(unsigned)_iType,
(int)_milliAmpsPerLed, (int)_milliAmpsMax
);
}
//DISCLAIMER
@ -166,7 +162,7 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com
//I am NOT to be held liable for burned down garages or houses!
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
uint8_t BusDigital::estimateCurrentAndLimitBri() {
uint8_t BusDigital::estimateCurrentAndLimitBri() const {
bool useWackyWS2815PowerModel = false;
byte actualMilliampsPerLed = _milliAmpsPerLed;
@ -179,7 +175,7 @@ uint8_t BusDigital::estimateCurrentAndLimitBri() {
actualMilliampsPerLed = 12; // from testing an actual strip
}
size_t powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
unsigned powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
if (powerBudget > getLength()) { //each LED uses about 1mA in standby, exclude that from power budget
powerBudget -= getLength();
} else {
@ -204,26 +200,25 @@ uint8_t BusDigital::estimateCurrentAndLimitBri() {
}
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
busPowerSum = (busPowerSum * actualMilliampsPerLed) / 765;
_milliAmpsTotal = busPowerSum * _bri / 255;
BusDigital::_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * _bri) / (765*255);
uint8_t newBri = _bri;
if (busPowerSum * _bri / 255 > powerBudget) { //scale brightness down to stay in current limit
float scale = (float)(powerBudget * 255) / (float)(busPowerSum * _bri);
if (scale >= 1.0f) return _bri;
_milliAmpsTotal = ceilf((float)_milliAmpsTotal * scale);
uint8_t scaleB = min((int)(scale * 255), 255);
newBri = unsigned(_bri * scaleB) / 256 + 1;
if (BusDigital::_milliAmpsTotal > powerBudget) {
//scale brightness down to stay in current limit
unsigned scaleB = powerBudget * 255 / BusDigital::_milliAmpsTotal;
newBri = (_bri * scaleB) / 256 + 1;
BusDigital::_milliAmpsTotal = powerBudget;
//_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * newBri) / (765*255);
}
return newBri;
}
void BusDigital::show() {
_milliAmpsTotal = 0;
BusDigital::_milliAmpsTotal = 0;
if (!_valid) return;
uint8_t cctWW = 0, cctCW = 0;
unsigned newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal
unsigned newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal (TODO: could use PolyBus::CalcTotalMilliAmpere())
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, newBri); // limit brightness to stay within current limits
if (_data) {
@ -249,6 +244,7 @@ void BusDigital::show() {
// TODO: there is an issue if CCT is calculated from RGB value (_cct==-1), we cannot do that with double buffer
Bus::_cct = _data[offset+channels-1];
Bus::calculateCCT(c, cctWW, cctCW);
if (_type == TYPE_WS2812_WWA) c = RGBW32(cctWW, cctCW, 0, W(c)); // may need swapping
}
unsigned pix = i;
if (_reversed) pix = _len - pix -1;
@ -334,8 +330,8 @@ void IRAM_ATTR BusDigital::setPixelColor(unsigned pix, uint32_t c) {
uint8_t cctWW = 0, cctCW = 0;
Bus::calculateCCT(c, cctWW, cctCW);
wwcw = (cctCW<<8) | cctWW;
if (_type == TYPE_WS2812_WWA) c = RGBW32(cctWW, cctCW, 0, W(c)); // may need swapping
}
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, wwcw);
}
}
@ -367,23 +363,31 @@ uint32_t IRAM_ATTR BusDigital::getPixelColor(unsigned pix) const {
case 2: c = RGBW32(b, b, b, b); break;
}
}
if (_type == TYPE_WS2812_WWA) {
uint8_t w = R(c) | G(c);
c = RGBW32(w, w, 0, w);
}
return c;
}
}
uint8_t BusDigital::getPins(uint8_t* pinArray) const {
unsigned BusDigital::getPins(uint8_t* pinArray) const {
unsigned numPins = is2Pin(_type) + 1;
if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
unsigned BusDigital::getBusSize() const {
return sizeof(BusDigital) + (isOk() ? PolyBus::getDataSize(_busPtr, _iType) + (_data ? _len * getNumberOfChannels() : 0) : 0);
}
void BusDigital::setColorOrder(uint8_t colorOrder) {
// upper nibble contains W swap information
if ((colorOrder & 0x0F) > 5) return;
_colorOrder = colorOrder;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusDigital::getLEDTypes() {
return {
{TYPE_WS2812_RGB, "D", PSTR("WS281x")},
@ -399,8 +403,8 @@ std::vector<LEDType> BusDigital::getLEDTypes() {
{TYPE_WS2805, "D", PSTR("WS2805 RGBCW")},
{TYPE_SM16825, "D", PSTR("SM16825 RGBCW")},
{TYPE_WS2812_1CH_X3, "D", PSTR("WS2811 White")},
//{TYPE_WS2812_2CH_X3, "D", PSTR("WS2811 CCT")}, // not implemented
//{TYPE_WS2812_WWA, "D", PSTR("WS2811 WWA")}, // not implemented
//{TYPE_WS2812_2CH_X3, "D", PSTR("WS281x CCT")}, // not implemented
{TYPE_WS2812_WWA, "D", PSTR("WS281x WWA")}, // amber ignored
{TYPE_WS2801, "2P", PSTR("WS2801")},
{TYPE_APA102, "2P", PSTR("APA102")},
{TYPE_LPD8806, "2P", PSTR("LPD8806")},
@ -415,12 +419,13 @@ void BusDigital::begin() {
}
void BusDigital::cleanup() {
DEBUG_PRINTLN(F("Digital Cleanup."));
DEBUGBUS_PRINTLN(F("Digital Cleanup."));
PolyBus::cleanup(_busPtr, _iType);
_iType = I_NONE;
_valid = false;
_busPtr = nullptr;
if (_data != nullptr) freeData();
freeData();
//PinManager::deallocateMultiplePins(_pins, 2, PinOwner::BusDigital);
PinManager::deallocatePin(_pins[1], PinOwner::BusDigital);
PinManager::deallocatePin(_pins[0], PinOwner::BusDigital);
}
@ -492,9 +497,9 @@ BusPwm::BusPwm(const BusConfig &bc)
_hasRgb = hasRGB(bc.type);
_hasWhite = hasWhite(bc.type);
_hasCCT = hasCCT(bc.type);
_data = _pwmdata; // avoid malloc() and use stack
_data = _pwmdata; // avoid malloc() and use already allocated memory
_valid = true;
DEBUG_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
}
void BusPwm::setPixelColor(unsigned pix, uint32_t c) {
@ -564,7 +569,7 @@ void BusPwm::show() {
constexpr unsigned bitShift = 8; // 256 clocks for dead time, ~3us at 80MHz
#else
// if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
// https://github.com/Aircoookie/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
// https://github.com/wled-dev/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
const bool dithering = _needsRefresh; // avoid working with bitfield
const unsigned maxBri = (1<<_depth); // possible values: 16384 (14), 8192 (13), 4096 (12), 2048 (11), 1024 (10), 512 (9) and 256 (8)
const unsigned bitShift = dithering * 4; // if dithering, _depth is 12 bit but LEDC channel is set to 8 bit (using 4 fractional bits)
@ -623,14 +628,14 @@ void BusPwm::show() {
}
}
uint8_t BusPwm::getPins(uint8_t* pinArray) const {
unsigned BusPwm::getPins(uint8_t* pinArray) const {
if (!_valid) return 0;
unsigned numPins = numPWMPins(_type);
if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusPwm::getLEDTypes() {
return {
{TYPE_ANALOG_1CH, "A", PSTR("PWM White")},
@ -676,7 +681,7 @@ BusOnOff::BusOnOff(const BusConfig &bc)
_hasCCT = false;
_data = &_onoffdata; // avoid malloc() and use stack
_valid = true;
DEBUG_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
}
void BusOnOff::setPixelColor(unsigned pix, uint32_t c) {
@ -699,13 +704,13 @@ void BusOnOff::show() {
digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
}
uint8_t BusOnOff::getPins(uint8_t* pinArray) const {
unsigned BusOnOff::getPins(uint8_t* pinArray) const {
if (!_valid) return 0;
if (pinArray) pinArray[0] = _pin;
return 1;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusOnOff::getLEDTypes() {
return {
{TYPE_ONOFF, "", PSTR("On/Off")},
@ -736,7 +741,7 @@ BusNetwork::BusNetwork(const BusConfig &bc)
_UDPchannels = _hasWhite + 3;
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_valid = (allocateData(_len * _UDPchannels) != nullptr);
DEBUG_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
}
void BusNetwork::setPixelColor(unsigned pix, uint32_t c) {
@ -763,12 +768,12 @@ void BusNetwork::show() {
_broadcastLock = false;
}
uint8_t BusNetwork::getPins(uint8_t* pinArray) const {
unsigned BusNetwork::getPins(uint8_t* pinArray) const {
if (pinArray) for (unsigned i = 0; i < 4; i++) pinArray[i] = _client[i];
return 4;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
std::vector<LEDType> BusNetwork::getLEDTypes() {
return {
{TYPE_NET_DDP_RGB, "N", PSTR("DDP RGB (network)")}, // should be "NNNN" to determine 4 "pin" fields
@ -779,11 +784,12 @@ std::vector<LEDType> BusNetwork::getLEDTypes() {
//{TYPE_VIRTUAL_I2C_W, "V", PSTR("I2C White (virtual)")}, // allows setting I2C address in _pin[0]
//{TYPE_VIRTUAL_I2C_CCT, "V", PSTR("I2C CCT (virtual)")}, // allows setting I2C address in _pin[0]
//{TYPE_VIRTUAL_I2C_RGB, "VVV", PSTR("I2C RGB (virtual)")}, // allows setting I2C address in _pin[0] and 2 additional values in _pin[1] & _pin[2]
//{TYPE_USERMOD, "VVVVV", PSTR("Usermod (virtual)")}, // 5 data fields (see https://github.com/Aircoookie/WLED/pull/4123)
//{TYPE_USERMOD, "VVVVV", PSTR("Usermod (virtual)")}, // 5 data fields (see https://github.com/wled-dev/WLED/pull/4123)
};
}
void BusNetwork::cleanup() {
DEBUGBUS_PRINTLN(F("Virtual Cleanup."));
_type = I_NONE;
_valid = false;
freeData();
@ -791,43 +797,66 @@ void BusNetwork::cleanup() {
//utility to get the approx. memory usage of a given BusConfig
uint32_t BusManager::memUsage(const BusConfig &bc) {
if (Bus::isOnOff(bc.type) || Bus::isPWM(bc.type)) return OUTPUT_MAX_PINS;
unsigned len = bc.count + bc.skipAmount;
unsigned channels = Bus::getNumberOfChannels(bc.type);
unsigned multiplier = 1;
if (Bus::isDigital(bc.type)) { // digital types
if (Bus::is16bit(bc.type)) len *= 2; // 16-bit LEDs
#ifdef ESP8266
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
multiplier = 5;
}
#else //ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
multiplier = PolyBus::isParallelI2S1Output() ? 24 : 2;
#endif
unsigned BusConfig::memUsage(unsigned nr) const {
if (Bus::isVirtual(type)) {
return sizeof(BusNetwork) + (count * Bus::getNumberOfChannels(type));
} else if (Bus::isDigital(type)) {
return sizeof(BusDigital) + PolyBus::memUsage(count + skipAmount, PolyBus::getI(type, pins, nr)) + doubleBuffer * (count + skipAmount) * Bus::getNumberOfChannels(type);
} else if (Bus::isOnOff(type)) {
return sizeof(BusOnOff);
} else {
return sizeof(BusPwm);
}
return (len * multiplier + bc.doubleBuffer * (bc.count + bc.skipAmount)) * channels;
}
uint32_t BusManager::memUsage(unsigned maxChannels, unsigned maxCount, unsigned minBuses) {
//ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
unsigned multiplier = PolyBus::isParallelI2S1Output() ? 3 : 2;
return (maxChannels * maxCount * minBuses * multiplier);
unsigned BusManager::memUsage() {
// when ESP32, S2 & S3 use parallel I2S only the largest bus determines the total memory requirements for back buffers
// front buffers are always allocated per bus
unsigned size = 0;
unsigned maxI2S = 0;
#if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(ESP8266)
unsigned digitalCount = 0;
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
#define MAX_RMT 4
#else
#define MAX_RMT 8
#endif
#endif
for (const auto &bus : busses) {
unsigned busSize = bus->getBusSize();
#if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(ESP8266)
if (bus->isDigital() && !bus->is2Pin()) digitalCount++;
if (PolyBus::isParallelI2S1Output() && digitalCount > MAX_RMT) {
unsigned i2sCommonSize = 3 * bus->getLength() * bus->getNumberOfChannels() * (bus->is16bit()+1);
if (i2sCommonSize > maxI2S) maxI2S = i2sCommonSize;
busSize -= i2sCommonSize;
}
#endif
size += busSize;
}
return size + maxI2S;
}
int BusManager::add(const BusConfig &bc) {
DEBUGBUS_PRINTF_P(PSTR("Bus: Adding bus (%d - %d >= %d)\n"), getNumBusses(), getNumVirtualBusses(), WLED_MAX_BUSSES);
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
unsigned numDigital = 0;
for (const auto &bus : busses) if (bus->isDigital() && !bus->is2Pin()) numDigital++;
if (Bus::isVirtual(bc.type)) {
busses[numBusses] = new BusNetwork(bc);
//busses.push_back(std::make_unique<BusNetwork>(bc)); // when C++ >11
busses.push_back(new BusNetwork(bc));
} else if (Bus::isDigital(bc.type)) {
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
//busses.push_back(std::make_unique<BusDigital>(bc, numDigital, colorOrderMap));
busses.push_back(new BusDigital(bc, numDigital, colorOrderMap));
} else if (Bus::isOnOff(bc.type)) {
busses[numBusses] = new BusOnOff(bc);
//busses.push_back(std::make_unique<BusOnOff>(bc));
busses.push_back(new BusOnOff(bc));
} else {
busses[numBusses] = new BusPwm(bc);
//busses.push_back(std::make_unique<BusPwm>(bc));
busses.push_back(new BusPwm(bc));
}
return numBusses++;
return busses.size();
}
// credit @willmmiles
@ -843,7 +872,7 @@ static String LEDTypesToJson(const std::vector<LEDType>& types) {
return json;
}
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
// credit @willmmiles & @netmindz https://github.com/wled-dev/WLED/pull/4056
String BusManager::getLEDTypesJSONString() {
String json = "[";
json += LEDTypesToJson(BusDigital::getLEDTypes());
@ -856,18 +885,21 @@ String BusManager::getLEDTypesJSONString() {
}
void BusManager::useParallelOutput() {
_parallelOutputs = 8; // hardcoded since we use NPB I2S x8 methods
DEBUGBUS_PRINTLN(F("Bus: Enabling parallel I2S."));
PolyBus::setParallelI2S1Output();
}
bool BusManager::hasParallelOutput() {
return PolyBus::isParallelI2S1Output();
}
//do not call this method from system context (network callback)
void BusManager::removeAll() {
DEBUG_PRINTLN(F("Removing all."));
DEBUGBUS_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
for (unsigned i = 0; i < numBusses; i++) delete busses[i];
numBusses = 0;
_parallelOutputs = 1;
for (auto &bus : busses) delete bus; // needed when not using std::unique_ptr C++ >11
busses.clear();
PolyBus::setParallelI2S1Output(false);
}
@ -878,7 +910,9 @@ void BusManager::removeAll() {
void BusManager::esp32RMTInvertIdle() {
bool idle_out;
unsigned rmt = 0;
for (unsigned u = 0; u < numBusses(); u++) {
unsigned u = 0;
for (auto &bus : busses) {
if (bus->getLength()==0 || !bus->isDigital() || bus->is2Pin()) continue;
#if defined(CONFIG_IDF_TARGET_ESP32C3) // 2 RMT, only has 1 I2S but NPB does not support it ATM
if (u > 1) return;
rmt = u;
@ -889,11 +923,11 @@ void BusManager::esp32RMTInvertIdle() {
if (u > 3) return;
rmt = u;
#else
if (u < _parallelOutputs) continue;
if (u >= _parallelOutputs + 8) return; // only 8 RMT channels
rmt = u - _parallelOutputs;
unsigned numI2S = !PolyBus::isParallelI2S1Output(); // if using parallel I2S, RMT is used 1st
if (numI2S > u) continue;
if (u > 7 + numI2S) return;
rmt = u - numI2S;
#endif
if (busses[u]->getLength()==0 || !busses[u]->isDigital() || busses[u]->is2Pin()) continue;
//assumes that bus number to rmt channel mapping stays 1:1
rmt_channel_t ch = static_cast<rmt_channel_t>(rmt);
rmt_idle_level_t lvl;
@ -902,6 +936,7 @@ void BusManager::esp32RMTInvertIdle() {
else if (lvl == RMT_IDLE_LEVEL_LOW) lvl = RMT_IDLE_LEVEL_HIGH;
else continue;
rmt_set_idle_level(ch, idle_out, lvl);
u++
}
}
#endif
@ -910,12 +945,12 @@ void BusManager::on() {
#ifdef ESP8266
//Fix for turning off onboard LED breaking bus
if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
for (unsigned i = 0; i < numBusses; i++) {
for (auto &bus : busses) {
uint8_t pins[2] = {255,255};
if (busses[i]->isDigital() && busses[i]->getPins(pins)) {
if (bus->isDigital() && bus->getPins(pins)) {
if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
BusDigital *bus = static_cast<BusDigital*>(busses[i]);
bus->begin();
BusDigital *b = static_cast<BusDigital*>(bus);
b->begin();
break;
}
}
@ -932,7 +967,7 @@ void BusManager::off() {
// turn off built-in LED if strip is turned off
// this will break digital bus so will need to be re-initialised on On
if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
for (unsigned i = 0; i < numBusses; i++) if (busses[i]->isOffRefreshRequired()) return;
for (const auto &bus : busses) if (bus->isOffRefreshRequired()) return;
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
}
@ -944,30 +979,26 @@ void BusManager::off() {
void BusManager::show() {
_milliAmpsUsed = 0;
for (unsigned i = 0; i < numBusses; i++) {
busses[i]->show();
_milliAmpsUsed += busses[i]->getUsedCurrent();
for (auto &bus : busses) {
bus->show();
_milliAmpsUsed += bus->getUsedCurrent();
}
}
void BusManager::setStatusPixel(uint32_t c) {
for (unsigned i = 0; i < numBusses; i++) {
busses[i]->setStatusPixel(c);
}
for (auto &bus : busses) bus->setStatusPixel(c);
}
void IRAM_ATTR BusManager::setPixelColor(unsigned pix, uint32_t c) {
for (unsigned i = 0; i < numBusses; i++) {
unsigned bstart = busses[i]->getStart();
if (pix < bstart || pix >= bstart + busses[i]->getLength()) continue;
busses[i]->setPixelColor(pix - bstart, c);
for (auto &bus : busses) {
unsigned bstart = bus->getStart();
if (pix < bstart || pix >= bstart + bus->getLength()) continue;
bus->setPixelColor(pix - bstart, c);
}
}
void BusManager::setBrightness(uint8_t b) {
for (unsigned i = 0; i < numBusses; i++) {
busses[i]->setBrightness(b);
}
for (auto &bus : busses) bus->setBrightness(b);
}
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
@ -980,34 +1011,32 @@ void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
}
uint32_t BusManager::getPixelColor(unsigned pix) {
for (unsigned i = 0; i < numBusses; i++) {
unsigned bstart = busses[i]->getStart();
if (!busses[i]->containsPixel(pix)) continue;
return busses[i]->getPixelColor(pix - bstart);
for (auto &bus : busses) {
unsigned bstart = bus->getStart();
if (!bus->containsPixel(pix)) continue;
return bus->getPixelColor(pix - bstart);
}
return 0;
}
bool BusManager::canAllShow() {
for (unsigned i = 0; i < numBusses; i++) {
if (!busses[i]->canShow()) return false;
}
for (const auto &bus : busses) if (!bus->canShow()) return false;
return true;
}
Bus* BusManager::getBus(uint8_t busNr) {
if (busNr >= numBusses) return nullptr;
if (busNr >= busses.size()) return nullptr;
return busses[busNr];
}
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
uint16_t BusManager::getTotalLength() {
unsigned len = 0;
for (unsigned i=0; i<numBusses; i++) len += busses[i]->getLength();
for (const auto &bus : busses) len += bus->getLength();
return len;
}
bool PolyBus::useParallelI2S = false;
bool PolyBus::_useParallelI2S = false;
// Bus static member definition
int16_t Bus::_cct = -1;
@ -1016,9 +1045,8 @@ uint8_t Bus::_gAWM = 255;
uint16_t BusDigital::_milliAmpsTotal = 0;
uint8_t BusManager::numBusses = 0;
Bus* BusManager::busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
//std::vector<std::unique_ptr<Bus>> BusManager::busses;
std::vector<Bus*> BusManager::busses;
ColorOrderMap BusManager::colorOrderMap = {};
uint16_t BusManager::_milliAmpsUsed = 0;
uint16_t BusManager::_milliAmpsMax = ABL_MILLIAMPS_DEFAULT;
uint8_t BusManager::_parallelOutputs = 1;

View File

@ -1,3 +1,4 @@
#pragma once
#ifndef BusManager_h
#define BusManager_h
@ -8,6 +9,30 @@
#include "const.h"
#include "pin_manager.h"
#include <vector>
#include <memory>
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
#define DEBUGOUT NetDebug
#else
#define DEBUGOUT Serial
#endif
#ifdef WLED_DEBUG_BUS
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUGBUS_PRINT(x) DEBUGOUT.print(x)
#define DEBUGBUS_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUGBUS_PRINTF(x...) DEBUGOUT.printf(x)
#define DEBUGBUS_PRINTF_P(x...) DEBUGOUT.printf_P(x)
#else
#define DEBUGBUS_PRINT(x)
#define DEBUGBUS_PRINTLN(x)
#define DEBUGBUS_PRINTF(x...)
#define DEBUGBUS_PRINTF_P(x...)
#endif
//colors.cpp
uint16_t approximateKelvinFromRGB(uint32_t rgb);
@ -78,50 +103,51 @@ class Bus {
_autoWhiteMode = Bus::hasWhite(type) ? aw : RGBW_MODE_MANUAL_ONLY;
};
virtual ~Bus() {} //throw the bus under the bus
virtual ~Bus() {} //throw the bus under the bus (derived class needs to freeData())
virtual void begin() {};
virtual void begin() {};
virtual void show() = 0;
virtual bool canShow() const { return true; }
virtual void setStatusPixel(uint32_t c) {}
virtual bool canShow() const { return true; }
virtual void setStatusPixel(uint32_t c) {}
virtual void setPixelColor(unsigned pix, uint32_t c) = 0;
virtual void setBrightness(uint8_t b) { _bri = b; };
virtual void setColorOrder(uint8_t co) {}
virtual uint32_t getPixelColor(unsigned pix) const { return 0; }
virtual uint8_t getPins(uint8_t* pinArray = nullptr) const { return 0; }
virtual uint16_t getLength() const { return isOk() ? _len : 0; }
virtual uint8_t getColorOrder() const { return COL_ORDER_RGB; }
virtual uint8_t skippedLeds() const { return 0; }
virtual uint16_t getFrequency() const { return 0U; }
virtual uint16_t getLEDCurrent() const { return 0; }
virtual uint16_t getUsedCurrent() const { return 0; }
virtual uint16_t getMaxCurrent() const { return 0; }
virtual void setBrightness(uint8_t b) { _bri = b; };
virtual void setColorOrder(uint8_t co) {}
virtual uint32_t getPixelColor(unsigned pix) const { return 0; }
virtual unsigned getPins(uint8_t* pinArray = nullptr) const { return 0; }
virtual uint16_t getLength() const { return isOk() ? _len : 0; }
virtual uint8_t getColorOrder() const { return COL_ORDER_RGB; }
virtual unsigned skippedLeds() const { return 0; }
virtual uint16_t getFrequency() const { return 0U; }
virtual uint16_t getLEDCurrent() const { return 0; }
virtual uint16_t getUsedCurrent() const { return 0; }
virtual uint16_t getMaxCurrent() const { return 0; }
virtual unsigned getBusSize() const { return sizeof(Bus); }
inline bool hasRGB() const { return _hasRgb; }
inline bool hasWhite() const { return _hasWhite; }
inline bool hasCCT() const { return _hasCCT; }
inline bool isDigital() const { return isDigital(_type); }
inline bool is2Pin() const { return is2Pin(_type); }
inline bool isOnOff() const { return isOnOff(_type); }
inline bool isPWM() const { return isPWM(_type); }
inline bool isVirtual() const { return isVirtual(_type); }
inline bool is16bit() const { return is16bit(_type); }
inline bool mustRefresh() const { return mustRefresh(_type); }
inline void setReversed(bool reversed) { _reversed = reversed; }
inline void setStart(uint16_t start) { _start = start; }
inline void setAutoWhiteMode(uint8_t m) { if (m < 5) _autoWhiteMode = m; }
inline uint8_t getAutoWhiteMode() const { return _autoWhiteMode; }
inline uint32_t getNumberOfChannels() const { return hasWhite() + 3*hasRGB() + hasCCT(); }
inline uint16_t getStart() const { return _start; }
inline uint8_t getType() const { return _type; }
inline bool isOk() const { return _valid; }
inline bool isReversed() const { return _reversed; }
inline bool isOffRefreshRequired() const { return _needsRefresh; }
inline bool containsPixel(uint16_t pix) const { return pix >= _start && pix < _start + _len; }
inline bool hasRGB() const { return _hasRgb; }
inline bool hasWhite() const { return _hasWhite; }
inline bool hasCCT() const { return _hasCCT; }
inline bool isDigital() const { return isDigital(_type); }
inline bool is2Pin() const { return is2Pin(_type); }
inline bool isOnOff() const { return isOnOff(_type); }
inline bool isPWM() const { return isPWM(_type); }
inline bool isVirtual() const { return isVirtual(_type); }
inline bool is16bit() const { return is16bit(_type); }
inline bool mustRefresh() const { return mustRefresh(_type); }
inline void setReversed(bool reversed) { _reversed = reversed; }
inline void setStart(uint16_t start) { _start = start; }
inline void setAutoWhiteMode(uint8_t m) { if (m < 5) _autoWhiteMode = m; }
inline uint8_t getAutoWhiteMode() const { return _autoWhiteMode; }
inline unsigned getNumberOfChannels() const { return hasWhite() + 3*hasRGB() + hasCCT(); }
inline uint16_t getStart() const { return _start; }
inline uint8_t getType() const { return _type; }
inline bool isOk() const { return _valid; }
inline bool isReversed() const { return _reversed; }
inline bool isOffRefreshRequired() const { return _needsRefresh; }
inline bool containsPixel(uint16_t pix) const { return pix >= _start && pix < _start + _len; }
static inline std::vector<LEDType> getLEDTypes() { return {{TYPE_NONE, "", PSTR("None")}}; } // not used. just for reference for derived classes
static constexpr uint32_t getNumberOfPins(uint8_t type) { return isVirtual(type) ? 4 : isPWM(type) ? numPWMPins(type) : is2Pin(type) + 1; } // credit @PaoloTK
static constexpr uint32_t getNumberOfChannels(uint8_t type) { return hasWhite(type) + 3*hasRGB(type) + hasCCT(type); }
static inline std::vector<LEDType> getLEDTypes() { return {{TYPE_NONE, "", PSTR("None")}}; } // not used. just for reference for derived classes
static constexpr unsigned getNumberOfPins(uint8_t type) { return isVirtual(type) ? 4 : isPWM(type) ? numPWMPins(type) : is2Pin(type) + 1; } // credit @PaoloTK
static constexpr unsigned getNumberOfChannels(uint8_t type) { return hasWhite(type) + 3*hasRGB(type) + hasCCT(type); }
static constexpr bool hasRGB(uint8_t type) {
return !((type >= TYPE_WS2812_1CH && type <= TYPE_WS2812_WWA) || type == TYPE_ANALOG_1CH || type == TYPE_ANALOG_2CH || type == TYPE_ONOFF);
}
@ -153,7 +179,7 @@ class Bus {
static inline uint8_t getGlobalAWMode() { return _gAWM; }
static inline void setCCT(int16_t cct) { _cct = cct; }
static inline uint8_t getCCTBlend() { return _cctBlend; }
static inline void setCCTBlend(uint8_t b) {
static inline void setCCTBlend(uint8_t b) {
_cctBlend = (std::min((int)b,100) * 127) / 100;
//compile-time limiter for hardware that can't power both white channels at max
#ifdef WLED_MAX_CCT_BLEND
@ -192,7 +218,7 @@ class Bus {
uint32_t autoWhiteCalc(uint32_t c) const;
uint8_t *allocateData(size_t size = 1);
void freeData() { if (_data != nullptr) free(_data); _data = nullptr; }
void freeData();
};
@ -209,12 +235,13 @@ class BusDigital : public Bus {
void setColorOrder(uint8_t colorOrder) override;
[[gnu::hot]] uint32_t getPixelColor(unsigned pix) const override;
uint8_t getColorOrder() const override { return _colorOrder; }
uint8_t getPins(uint8_t* pinArray = nullptr) const override;
uint8_t skippedLeds() const override { return _skip; }
unsigned getPins(uint8_t* pinArray = nullptr) const override;
unsigned skippedLeds() const override { return _skip; }
uint16_t getFrequency() const override { return _frequencykHz; }
uint16_t getLEDCurrent() const override { return _milliAmpsPerLed; }
uint16_t getUsedCurrent() const override { return _milliAmpsTotal; }
uint16_t getMaxCurrent() const override { return _milliAmpsMax; }
unsigned getBusSize() const override;
void begin() override;
void cleanup();
@ -244,7 +271,7 @@ class BusDigital : public Bus {
return c;
}
uint8_t estimateCurrentAndLimitBri();
uint8_t estimateCurrentAndLimitBri() const;
};
@ -255,10 +282,11 @@ class BusPwm : public Bus {
void setPixelColor(unsigned pix, uint32_t c) override;
uint32_t getPixelColor(unsigned pix) const override; //does no index check
uint8_t getPins(uint8_t* pinArray = nullptr) const override;
unsigned getPins(uint8_t* pinArray = nullptr) const override;
uint16_t getFrequency() const override { return _frequency; }
unsigned getBusSize() const override { return sizeof(BusPwm); }
void show() override;
void cleanup() { deallocatePins(); }
inline void cleanup() { deallocatePins(); _data = nullptr; }
static std::vector<LEDType> getLEDTypes();
@ -282,9 +310,10 @@ class BusOnOff : public Bus {
void setPixelColor(unsigned pix, uint32_t c) override;
uint32_t getPixelColor(unsigned pix) const override;
uint8_t getPins(uint8_t* pinArray) const override;
unsigned getPins(uint8_t* pinArray) const override;
unsigned getBusSize() const override { return sizeof(BusOnOff); }
void show() override;
void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); }
inline void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); _data = nullptr; }
static std::vector<LEDType> getLEDTypes();
@ -300,9 +329,10 @@ class BusNetwork : public Bus {
~BusNetwork() { cleanup(); }
bool canShow() const override { return !_broadcastLock; } // this should be a return value from UDP routine if it is still sending data out
void setPixelColor(unsigned pix, uint32_t c) override;
uint32_t getPixelColor(unsigned pix) const override;
uint8_t getPins(uint8_t* pinArray = nullptr) const override;
[[gnu::hot]] void setPixelColor(unsigned pix, uint32_t c) override;
[[gnu::hot]] uint32_t getPixelColor(unsigned pix) const override;
unsigned getPins(uint8_t* pinArray = nullptr) const override;
unsigned getBusSize() const override { return sizeof(BusNetwork) + (isOk() ? _len * _UDPchannels : 0); }
void show() override;
void cleanup();
@ -348,6 +378,16 @@ struct BusConfig {
type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh)
size_t nPins = Bus::getNumberOfPins(type);
for (size_t i = 0; i < nPins; i++) pins[i] = ppins[i];
DEBUGBUS_PRINTF_P(PSTR("Bus: Config (%d-%d, type:%d, CO:%d, rev:%d, skip:%d, AW:%d kHz:%d, mA:%d/%d)\n"),
(int)start, (int)(start+len),
(int)type,
(int)colorOrder,
(int)reversed,
(int)skipAmount,
(int)autoWhite,
(int)frequency,
(int)milliAmpsPerLed, (int)milliAmpsMax
);
}
//validates start and length and extends total if needed
@ -361,6 +401,8 @@ struct BusConfig {
if (start + count > total) total = start + count;
return true;
}
unsigned memUsage(unsigned nr = 0) const;
};
@ -378,14 +420,13 @@ class BusManager {
public:
BusManager() {};
//utility to get the approx. memory usage of a given BusConfig
static uint32_t memUsage(const BusConfig &bc);
static uint32_t memUsage(unsigned channels, unsigned count, unsigned buses = 1);
static unsigned memUsage();
static uint16_t currentMilliamps() { return _milliAmpsUsed + MA_FOR_ESP; }
static uint16_t ablMilliampsMax() { return _milliAmpsMax; }
static int add(const BusConfig &bc);
static void useParallelOutput(); // workaround for inaccessible PolyBus
static bool hasParallelOutput(); // workaround for inaccessible PolyBus
//do not call this method from system context (network callback)
static void removeAll();
@ -409,25 +450,24 @@ class BusManager {
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
static uint16_t getTotalLength();
static inline uint8_t getNumBusses() { return numBusses; }
static inline uint8_t getNumBusses() { return busses.size(); }
static String getLEDTypesJSONString();
static inline ColorOrderMap& getColorOrderMap() { return colorOrderMap; }
private:
static uint8_t numBusses;
static Bus* busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
//static std::vector<std::unique_ptr<Bus>> busses; // we'd need C++ >11
static std::vector<Bus*> busses;
static ColorOrderMap colorOrderMap;
static uint16_t _milliAmpsUsed;
static uint16_t _milliAmpsMax;
static uint8_t _parallelOutputs;
#ifdef ESP32_DATA_IDLE_HIGH
static void esp32RMTInvertIdle() ;
#endif
static uint8_t getNumVirtualBusses() {
int j = 0;
for (int i=0; i<numBusses; i++) if (busses[i]->isVirtual()) j++;
for (const auto &bus : busses) j += bus->isVirtual();
return j;
}
};

View File

@ -1,23 +1,9 @@
#pragma once
#ifndef BusWrapper_h
#define BusWrapper_h
//#define NPB_CONF_4STEP_CADENCE
#include "NeoPixelBusLg.h"
#include "bus_manager.h"
// temporary - these defines should actually be set in platformio.ini
// C3: I2S0 and I2S1 methods not supported (has one I2S bus)
// S2: I2S1 methods not supported (has one I2S bus)
// S3: I2S0 and I2S1 methods not supported yet (has two I2S buses)
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/Esp32_i2s.h#L4
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/NeoEsp32RmtMethod.h#L857
#if !defined(WLED_NO_I2S0_PIXELBUS) && (defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
#define WLED_NO_I2S0_PIXELBUS
#endif
#if !defined(WLED_NO_I2S1_PIXELBUS) && (defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2))
#define WLED_NO_I2S1_PIXELBUS
#endif
// temporary end
//Hardware SPI Pins
#define P_8266_HS_MOSI 13
@ -55,110 +41,98 @@
#define I_8266_DM_TM2_3 19
#define I_8266_BB_TM2_3 20
//UCS8903 (RGB)
#define I_8266_U0_UCS_3 49
#define I_8266_U1_UCS_3 50
#define I_8266_DM_UCS_3 51
#define I_8266_BB_UCS_3 52
#define I_8266_U0_UCS_3 21
#define I_8266_U1_UCS_3 22
#define I_8266_DM_UCS_3 23
#define I_8266_BB_UCS_3 24
//UCS8904 (RGBW)
#define I_8266_U0_UCS_4 53
#define I_8266_U1_UCS_4 54
#define I_8266_DM_UCS_4 55
#define I_8266_BB_UCS_4 56
#define I_8266_U0_UCS_4 25
#define I_8266_U1_UCS_4 26
#define I_8266_DM_UCS_4 27
#define I_8266_BB_UCS_4 28
//FW1906 GRBCW
#define I_8266_U0_FW6_5 66
#define I_8266_U1_FW6_5 67
#define I_8266_DM_FW6_5 68
#define I_8266_BB_FW6_5 69
#define I_8266_U0_FW6_5 29
#define I_8266_U1_FW6_5 30
#define I_8266_DM_FW6_5 31
#define I_8266_BB_FW6_5 32
//ESP8266 APA106
#define I_8266_U0_APA106_3 81
#define I_8266_U1_APA106_3 82
#define I_8266_DM_APA106_3 83
#define I_8266_BB_APA106_3 84
#define I_8266_U0_APA106_3 33
#define I_8266_U1_APA106_3 34
#define I_8266_DM_APA106_3 35
#define I_8266_BB_APA106_3 36
//WS2805 (RGBCW)
#define I_8266_U0_2805_5 89
#define I_8266_U1_2805_5 90
#define I_8266_DM_2805_5 91
#define I_8266_BB_2805_5 92
#define I_8266_U0_2805_5 37
#define I_8266_U1_2805_5 38
#define I_8266_DM_2805_5 39
#define I_8266_BB_2805_5 40
//TM1914 (RGB)
#define I_8266_U0_TM1914_3 99
#define I_8266_U1_TM1914_3 100
#define I_8266_DM_TM1914_3 101
#define I_8266_BB_TM1914_3 102
#define I_8266_U0_TM1914_3 41
#define I_8266_U1_TM1914_3 42
#define I_8266_DM_TM1914_3 43
#define I_8266_BB_TM1914_3 44
//SM16825 (RGBCW)
#define I_8266_U0_SM16825_5 103
#define I_8266_U1_SM16825_5 104
#define I_8266_DM_SM16825_5 105
#define I_8266_BB_SM16825_5 106
#define I_8266_U0_SM16825_5 45
#define I_8266_U1_SM16825_5 46
#define I_8266_DM_SM16825_5 47
#define I_8266_BB_SM16825_5 48
/*** ESP32 Neopixel methods ***/
//RGB
#define I_32_RN_NEO_3 21
#define I_32_I0_NEO_3 22
#define I_32_I1_NEO_3 23
#define I_32_RN_NEO_3 1
#define I_32_I2_NEO_3 2
//RGBW
#define I_32_RN_NEO_4 25
#define I_32_I0_NEO_4 26
#define I_32_I1_NEO_4 27
#define I_32_RN_NEO_4 5
#define I_32_I2_NEO_4 6
//400Kbps
#define I_32_RN_400_3 29
#define I_32_I0_400_3 30
#define I_32_I1_400_3 31
#define I_32_RN_400_3 9
#define I_32_I2_400_3 10
//TM1814 (RGBW)
#define I_32_RN_TM1_4 33
#define I_32_I0_TM1_4 34
#define I_32_I1_TM1_4 35
#define I_32_RN_TM1_4 13
#define I_32_I2_TM1_4 14
//TM1829 (RGB)
#define I_32_RN_TM2_3 36
#define I_32_I0_TM2_3 37
#define I_32_I1_TM2_3 38
#define I_32_RN_TM2_3 17
#define I_32_I2_TM2_3 18
//UCS8903 (RGB)
#define I_32_RN_UCS_3 57
#define I_32_I0_UCS_3 58
#define I_32_I1_UCS_3 59
#define I_32_RN_UCS_3 21
#define I_32_I2_UCS_3 22
//UCS8904 (RGBW)
#define I_32_RN_UCS_4 60
#define I_32_I0_UCS_4 61
#define I_32_I1_UCS_4 62
#define I_32_RN_UCS_4 25
#define I_32_I2_UCS_4 26
//FW1906 GRBCW
#define I_32_RN_FW6_5 63
#define I_32_I0_FW6_5 64
#define I_32_I1_FW6_5 65
#define I_32_RN_FW6_5 29
#define I_32_I2_FW6_5 30
//APA106
#define I_32_RN_APA106_3 85
#define I_32_I0_APA106_3 86
#define I_32_I1_APA106_3 87
#define I_32_RN_APA106_3 33
#define I_32_I2_APA106_3 34
//WS2805 (RGBCW)
#define I_32_RN_2805_5 93
#define I_32_I0_2805_5 94
#define I_32_I1_2805_5 95
#define I_32_RN_2805_5 37
#define I_32_I2_2805_5 38
//TM1914 (RGB)
#define I_32_RN_TM1914_3 96
#define I_32_I0_TM1914_3 97
#define I_32_I1_TM1914_3 98
#define I_32_RN_TM1914_3 41
#define I_32_I2_TM1914_3 42
//SM16825 (RGBCW)
#define I_32_RN_SM16825_5 107
#define I_32_I0_SM16825_5 108
#define I_32_I1_SM16825_5 109
#define I_32_RN_SM16825_5 45
#define I_32_I2_SM16825_5 46
//APA102
#define I_HS_DOT_3 39 //hardware SPI
#define I_SS_DOT_3 40 //soft SPI
#define I_HS_DOT_3 101 //hardware SPI
#define I_SS_DOT_3 102 //soft SPI
//LPD8806
#define I_HS_LPD_3 41
#define I_SS_LPD_3 42
#define I_HS_LPD_3 103
#define I_SS_LPD_3 104
//WS2801
#define I_HS_WS1_3 43
#define I_SS_WS1_3 44
#define I_HS_WS1_3 105
#define I_SS_WS1_3 106
//P9813
#define I_HS_P98_3 45
#define I_SS_P98_3 46
#define I_HS_P98_3 107
#define I_SS_P98_3 108
//LPD6803
#define I_HS_LPO_3 47
#define I_SS_LPO_3 48
#define I_HS_LPO_3 109
#define I_SS_LPO_3 110
// In the following NeoGammaNullMethod can be replaced with NeoGammaWLEDMethod to perform Gamma correction implicitly
@ -230,66 +204,95 @@
/*** ESP32 Neopixel methods ***/
#ifdef ARDUINO_ARCH_ESP32
// C3: I2S0 and I2S1 methods not supported (has one I2S bus)
// S2: I2S0 methods supported (single & parallel), I2S1 methods not supported (has one I2S bus)
// S3: I2S0 methods not supported, I2S1 supports LCD parallel methods (has two I2S buses)
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/Esp32_i2s.h#L4
// https://github.com/Makuna/NeoPixelBus/blob/b32f719e95ef3c35c46da5c99538017ef925c026/src/internal/NeoEsp32RmtMethod.h#L857
#if defined(CONFIG_IDF_TARGET_ESP32S3)
// S3 will always use LCD parallel output
typedef X8Ws2812xMethod X1Ws2812xMethod;
typedef X8Sk6812Method X1Sk6812Method;
typedef X8400KbpsMethod X1400KbpsMethod;
typedef X8800KbpsMethod X1800KbpsMethod;
typedef X8Tm1814Method X1Tm1814Method;
typedef X8Tm1829Method X1Tm1829Method;
typedef X8Apa106Method X1Apa106Method;
typedef X8Ws2805Method X1Ws2805Method;
typedef X8Tm1914Method X1Tm1914Method;
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
// S2 will use I2S0
typedef NeoEsp32I2s0Ws2812xMethod X1Ws2812xMethod;
typedef NeoEsp32I2s0Sk6812Method X1Sk6812Method;
typedef NeoEsp32I2s0400KbpsMethod X1400KbpsMethod;
typedef NeoEsp32I2s0800KbpsMethod X1800KbpsMethod;
typedef NeoEsp32I2s0Tm1814Method X1Tm1814Method;
typedef NeoEsp32I2s0Tm1829Method X1Tm1829Method;
typedef NeoEsp32I2s0Apa106Method X1Apa106Method;
typedef NeoEsp32I2s0Ws2805Method X1Ws2805Method;
typedef NeoEsp32I2s0Tm1914Method X1Tm1914Method;
#elif !defined(CONFIG_IDF_TARGET_ESP32C3)
// regular ESP32 will use I2S1
typedef NeoEsp32I2s1Ws2812xMethod X1Ws2812xMethod;
typedef NeoEsp32I2s1Sk6812Method X1Sk6812Method;
typedef NeoEsp32I2s1400KbpsMethod X1400KbpsMethod;
typedef NeoEsp32I2s1800KbpsMethod X1800KbpsMethod;
typedef NeoEsp32I2s1Tm1814Method X1Tm1814Method;
typedef NeoEsp32I2s1Tm1829Method X1Tm1829Method;
typedef NeoEsp32I2s1Apa106Method X1Apa106Method;
typedef NeoEsp32I2s1Ws2805Method X1Ws2805Method;
typedef NeoEsp32I2s1Tm1914Method X1Tm1914Method;
#endif
//RGB
#define B_32_RN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_NEO_3P NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_RN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod> // ESP32, S2, S3, C3
//#define B_32_IN_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2sNWs2812xMethod, NeoGammaNullMethod> // ESP32 (dynamic I2S selection)
#define B_32_I2_NEO_3 NeoPixelBusLg<NeoGrbFeature, X1Ws2812xMethod, NeoGammaNullMethod> // ESP32, S2, S3 (automatic I2S selection, see typedef above)
#define B_32_IP_NEO_3 NeoPixelBusLg<NeoGrbFeature, X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S (ESP32, S2, S3)
//RGBW
#define B_32_RN_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32RmtNSk6812Method, NeoGammaNullMethod>
#define B_32_I0_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s0Sk6812Method, NeoGammaNullMethod>
#define B_32_I1_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1Sk6812Method, NeoGammaNullMethod>
#define B_32_I1_NEO_4P NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_NEO_4 NeoPixelBusLg<NeoGrbwFeature, X1Sk6812Method, NeoGammaNullMethod>
#define B_32_IP_NEO_4 NeoPixelBusLg<NeoGrbwFeature, X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
//400Kbps
#define B_32_RN_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtN400KbpsMethod, NeoGammaNullMethod>
#define B_32_I0_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0400KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1400KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_400_3P NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_400_3 NeoPixelBusLg<NeoGrbFeature, X1400KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_400_3 NeoPixelBusLg<NeoGrbFeature, X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
//TM1814 (RGBW)
#define B_32_RN_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32RmtNTm1814Method, NeoGammaNullMethod>
#define B_32_I0_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s0Tm1814Method, NeoGammaNullMethod>
#define B_32_I1_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1Tm1814Method, NeoGammaNullMethod>
#define B_32_I1_TM1_4P NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, X1Tm1814Method, NeoGammaNullMethod>
#define B_32_IP_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
//TM1829 (RGB)
#define B_32_RN_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32RmtNTm1829Method, NeoGammaNullMethod>
#define B_32_I0_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s0Tm1829Method, NeoGammaNullMethod>
#define B_32_I1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1Tm1829Method, NeoGammaNullMethod>
#define B_32_I1_TM2_3P NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_TM2_3 NeoPixelBusLg<NeoBrgFeature, X1Tm1829Method, NeoGammaNullMethod>
#define B_32_IP_TM2_3 NeoPixelBusLg<NeoBrgFeature, X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
//UCS8903
#define B_32_RN_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s0800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_3P NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
//UCS8904
#define B_32_RN_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s0800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_UCS_4P NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
#define B_32_I2_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
//APA106
#define B_32_RN_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNApa106Method, NeoGammaNullMethod>
#define B_32_I0_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0Apa106Method, NeoGammaNullMethod>
#define B_32_I1_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1Apa106Method, NeoGammaNullMethod>
#define B_32_I1_APA106_3P NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Apa106Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_APA106_3 NeoPixelBusLg<NeoGrbFeature, X1Apa106Method, NeoGammaNullMethod>
#define B_32_IP_APA106_3 NeoPixelBusLg<NeoGrbFeature, X8Apa106Method, NeoGammaNullMethod> // parallel I2S
//FW1906 GRBCW
#define B_32_RN_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s0800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
#define B_32_I1_FW6_5P NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, X1800KbpsMethod, NeoGammaNullMethod>
#define B_32_IP_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
//WS2805 RGBWC
#define B_32_RN_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32RmtNWs2805Method, NeoGammaNullMethod>
#define B_32_I0_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s0Ws2805Method, NeoGammaNullMethod>
#define B_32_I1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1Ws2805Method, NeoGammaNullMethod>
#define B_32_I1_2805_5P NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_2805_5 NeoPixelBusLg<NeoGrbwwFeature, X1Ws2805Method, NeoGammaNullMethod>
#define B_32_IP_2805_5 NeoPixelBusLg<NeoGrbwwFeature, X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
//TM1914 (RGB)
#define B_32_RN_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32RmtNTm1914Method, NeoGammaNullMethod>
#define B_32_I0_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s0Tm1914Method, NeoGammaNullMethod>
#define B_32_I1_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s1Tm1914Method, NeoGammaNullMethod>
#define B_32_I1_TM1914_3P NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s1X8Tm1914Method, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, X1Tm1914Method, NeoGammaNullMethod>
#define B_32_IP_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, X8Tm1914Method, NeoGammaNullMethod> // parallel I2S
//Sm16825 (RGBWC)
#define B_32_RN_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
#define B_32_I0_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32I2s0Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32I2s1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_I1_SM16825_5P NeoPixelBusLg<NeoRgbcwSm16825eFeature, NeoEsp32I2s1X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#define B_32_I2_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, X1Ws2812xMethod, NeoGammaNullMethod>
#define B_32_IP_SM16825_5 NeoPixelBusLg<NeoRgbcwSm16825eFeature, X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
#endif
//APA102
@ -328,11 +331,11 @@
//handles pointer type conversion for all possible bus types
class PolyBus {
private:
static bool useParallelI2S;
static bool _useParallelI2S;
public:
static inline void setParallelI2S1Output(bool b = true) { useParallelI2S = b; }
static inline bool isParallelI2S1Output(void) { return useParallelI2S; }
static inline void setParallelI2S1Output(bool b = true) { _useParallelI2S = b; }
static inline bool isParallelI2S1Output(void) { return _useParallelI2S; }
// initialize SPI bus speed for DotStar methods
template <class T>
@ -436,34 +439,19 @@ class PolyBus {
case I_32_RN_TM1914_3: beginTM1914<B_32_RN_TM1914_3*>(busPtr); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->Begin(); break;
// I2S1 bus or parellel buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_NEO_3*>(busPtr))->Begin(); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->Begin(); else (static_cast<B_32_I1_NEO_4*>(busPtr))->Begin(); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_400_3*>(busPtr))->Begin(); break;
case I_32_I1_TM1_4: if (useParallelI2S) beginTM1814<B_32_I1_TM1_4P*>(busPtr); else beginTM1814<B_32_I1_TM1_4*>(busPtr); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_TM2_3*>(busPtr))->Begin(); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_UCS_3*>(busPtr))->Begin(); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->Begin(); else (static_cast<B_32_I1_UCS_4*>(busPtr))->Begin(); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->Begin(); else (static_cast<B_32_I1_FW6_5*>(busPtr))->Begin(); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->Begin(); else (static_cast<B_32_I1_APA106_3*>(busPtr))->Begin(); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->Begin(); else (static_cast<B_32_I1_2805_5*>(busPtr))->Begin(); break;
case I_32_I1_TM1914_3: if (useParallelI2S) beginTM1914<B_32_I1_TM1914_3P*>(busPtr); else beginTM1914<B_32_I1_TM1914_3*>(busPtr); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->Begin(); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->Begin(); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->Begin(); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->Begin(); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->Begin(); break;
case I_32_I0_TM1_4: beginTM1814<B_32_I0_TM1_4*>(busPtr); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->Begin(); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->Begin(); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->Begin(); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->Begin(); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->Begin(); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->Begin(); break;
case I_32_I0_TM1914_3: beginTM1914<B_32_I0_TM1914_3*>(busPtr); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->Begin(); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_NEO_3*>(busPtr))->Begin(); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->Begin(); else (static_cast<B_32_I2_NEO_4*>(busPtr))->Begin(); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_400_3*>(busPtr))->Begin(); break;
case I_32_I2_TM1_4: if (_useParallelI2S) beginTM1814<B_32_IP_TM1_4*>(busPtr); else beginTM1814<B_32_I2_TM1_4*>(busPtr); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_TM2_3*>(busPtr))->Begin(); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_UCS_3*>(busPtr))->Begin(); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->Begin(); else (static_cast<B_32_I2_UCS_4*>(busPtr))->Begin(); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->Begin(); else (static_cast<B_32_I2_FW6_5*>(busPtr))->Begin(); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->Begin(); else (static_cast<B_32_I2_APA106_3*>(busPtr))->Begin(); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->Begin(); else (static_cast<B_32_I2_2805_5*>(busPtr))->Begin(); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) beginTM1914<B_32_IP_TM1914_3*>(busPtr); else beginTM1914<B_32_I2_TM1914_3*>(busPtr); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->Begin(); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->Begin(); break;
#endif
// ESP32 can (and should, to avoid inadvertantly driving the chip select signal) specify the pins used for SPI, but only in begin()
case I_HS_DOT_3: beginDotStar<B_HS_DOT_3*>(busPtr, pins[1], -1, pins[0], -1, clock_kHz); break;
@ -484,8 +472,8 @@ class PolyBus {
#if defined(ARDUINO_ARCH_ESP32) && !(defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
// NOTE: "channel" is only used on ESP32 (and its variants) for RMT channel allocation
// since 0.15.0-b3 I2S1 is favoured for classic ESP32 and moved to position 0 (channel 0) so we need to subtract 1 for correct RMT allocation
if (useParallelI2S && channel > 7) channel -= 8; // accommodate parallel I2S1 which is used 1st on classic ESP32
else if (channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
if (!_useParallelI2S && channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
// if user selected parallel I2S, RMT is used 1st (8 channels) followed by parallel I2S (8 channels)
#endif
void* busPtr = nullptr;
switch (busType) {
@ -555,34 +543,19 @@ class PolyBus {
case I_32_RN_TM1914_3: busPtr = new B_32_RN_TM1914_3(len, pins[0], (NeoBusChannel)channel); break;
case I_32_RN_SM16825_5: busPtr = new B_32_RN_SM16825_5(len, pins[0], (NeoBusChannel)channel); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) busPtr = new B_32_I1_NEO_3P(len, pins[0]); else busPtr = new B_32_I1_NEO_3(len, pins[0]); break;
case I_32_I1_NEO_4: if (useParallelI2S) busPtr = new B_32_I1_NEO_4P(len, pins[0]); else busPtr = new B_32_I1_NEO_4(len, pins[0]); break;
case I_32_I1_400_3: if (useParallelI2S) busPtr = new B_32_I1_400_3P(len, pins[0]); else busPtr = new B_32_I1_400_3(len, pins[0]); break;
case I_32_I1_TM1_4: if (useParallelI2S) busPtr = new B_32_I1_TM1_4P(len, pins[0]); else busPtr = new B_32_I1_TM1_4(len, pins[0]); break;
case I_32_I1_TM2_3: if (useParallelI2S) busPtr = new B_32_I1_TM2_3P(len, pins[0]); else busPtr = new B_32_I1_TM2_3(len, pins[0]); break;
case I_32_I1_UCS_3: if (useParallelI2S) busPtr = new B_32_I1_UCS_3P(len, pins[0]); else busPtr = new B_32_I1_UCS_3(len, pins[0]); break;
case I_32_I1_UCS_4: if (useParallelI2S) busPtr = new B_32_I1_UCS_4P(len, pins[0]); else busPtr = new B_32_I1_UCS_4(len, pins[0]); break;
case I_32_I1_APA106_3: if (useParallelI2S) busPtr = new B_32_I1_APA106_3P(len, pins[0]); else busPtr = new B_32_I1_APA106_3(len, pins[0]); break;
case I_32_I1_FW6_5: if (useParallelI2S) busPtr = new B_32_I1_FW6_5P(len, pins[0]); else busPtr = new B_32_I1_FW6_5(len, pins[0]); break;
case I_32_I1_2805_5: if (useParallelI2S) busPtr = new B_32_I1_2805_5P(len, pins[0]); else busPtr = new B_32_I1_2805_5(len, pins[0]); break;
case I_32_I1_TM1914_3: if (useParallelI2S) busPtr = new B_32_I1_TM1914_3P(len, pins[0]); else busPtr = new B_32_I1_TM1914_3(len, pins[0]); break;
case I_32_I1_SM16825_5: if (useParallelI2S) busPtr = new B_32_I1_SM16825_5P(len, pins[0]); else busPtr = new B_32_I1_SM16825_5(len, pins[0]); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: busPtr = new B_32_I0_NEO_3(len, pins[0]); break;
case I_32_I0_NEO_4: busPtr = new B_32_I0_NEO_4(len, pins[0]); break;
case I_32_I0_400_3: busPtr = new B_32_I0_400_3(len, pins[0]); break;
case I_32_I0_TM1_4: busPtr = new B_32_I0_TM1_4(len, pins[0]); break;
case I_32_I0_TM2_3: busPtr = new B_32_I0_TM2_3(len, pins[0]); break;
case I_32_I0_UCS_3: busPtr = new B_32_I0_UCS_3(len, pins[0]); break;
case I_32_I0_UCS_4: busPtr = new B_32_I0_UCS_4(len, pins[0]); break;
case I_32_I0_APA106_3: busPtr = new B_32_I0_APA106_3(len, pins[0]); break;
case I_32_I0_FW6_5: busPtr = new B_32_I0_FW6_5(len, pins[0]); break;
case I_32_I0_2805_5: busPtr = new B_32_I0_2805_5(len, pins[0]); break;
case I_32_I0_TM1914_3: busPtr = new B_32_I0_TM1914_3(len, pins[0]); break;
case I_32_I0_SM16825_5: busPtr = new B_32_I0_SM16825_5(len, pins[0]); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) busPtr = new B_32_IP_NEO_3(len, pins[0]); else busPtr = new B_32_I2_NEO_3(len, pins[0]); break;
case I_32_I2_NEO_4: if (_useParallelI2S) busPtr = new B_32_IP_NEO_4(len, pins[0]); else busPtr = new B_32_I2_NEO_4(len, pins[0]); break;
case I_32_I2_400_3: if (_useParallelI2S) busPtr = new B_32_IP_400_3(len, pins[0]); else busPtr = new B_32_I2_400_3(len, pins[0]); break;
case I_32_I2_TM1_4: if (_useParallelI2S) busPtr = new B_32_IP_TM1_4(len, pins[0]); else busPtr = new B_32_I2_TM1_4(len, pins[0]); break;
case I_32_I2_TM2_3: if (_useParallelI2S) busPtr = new B_32_IP_TM2_3(len, pins[0]); else busPtr = new B_32_I2_TM2_3(len, pins[0]); break;
case I_32_I2_UCS_3: if (_useParallelI2S) busPtr = new B_32_IP_UCS_3(len, pins[0]); else busPtr = new B_32_I2_UCS_3(len, pins[0]); break;
case I_32_I2_UCS_4: if (_useParallelI2S) busPtr = new B_32_IP_UCS_4(len, pins[0]); else busPtr = new B_32_I2_UCS_4(len, pins[0]); break;
case I_32_I2_APA106_3: if (_useParallelI2S) busPtr = new B_32_IP_APA106_3(len, pins[0]); else busPtr = new B_32_I2_APA106_3(len, pins[0]); break;
case I_32_I2_FW6_5: if (_useParallelI2S) busPtr = new B_32_IP_FW6_5(len, pins[0]); else busPtr = new B_32_I2_FW6_5(len, pins[0]); break;
case I_32_I2_2805_5: if (_useParallelI2S) busPtr = new B_32_IP_2805_5(len, pins[0]); else busPtr = new B_32_I2_2805_5(len, pins[0]); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) busPtr = new B_32_IP_TM1914_3(len, pins[0]); else busPtr = new B_32_I2_TM1914_3(len, pins[0]); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) busPtr = new B_32_IP_SM16825_5(len, pins[0]); else busPtr = new B_32_I2_SM16825_5(len, pins[0]); break;
#endif
#endif
// for 2-wire: pins[1] is clk, pins[0] is dat. begin expects (len, clk, dat)
@ -669,34 +642,19 @@ class PolyBus {
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->Show(consistent); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_NEO_3*>(busPtr))->Show(consistent); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_NEO_4*>(busPtr))->Show(consistent); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_400_3*>(busPtr))->Show(consistent); break;
case I_32_I1_TM1_4: if (useParallelI2S) (static_cast<B_32_I1_TM1_4P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_TM1_4*>(busPtr))->Show(consistent); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_TM2_3*>(busPtr))->Show(consistent); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_UCS_3*>(busPtr))->Show(consistent); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_UCS_4*>(busPtr))->Show(consistent); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_APA106_3*>(busPtr))->Show(consistent); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_FW6_5*>(busPtr))->Show(consistent); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_2805_5*>(busPtr))->Show(consistent); break;
case I_32_I1_TM1914_3: if (useParallelI2S) (static_cast<B_32_I1_TM1914_3P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->Show(consistent); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->Show(consistent); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->Show(consistent); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->Show(consistent); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->Show(consistent); break;
case I_32_I0_TM1_4: (static_cast<B_32_I0_TM1_4*>(busPtr))->Show(consistent); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->Show(consistent); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->Show(consistent); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->Show(consistent); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->Show(consistent); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->Show(consistent); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->Show(consistent); break;
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->Show(consistent); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_NEO_3*>(busPtr))->Show(consistent); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_NEO_4*>(busPtr))->Show(consistent); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_400_3*>(busPtr))->Show(consistent); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_TM1_4*>(busPtr))->Show(consistent); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_TM2_3*>(busPtr))->Show(consistent); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_UCS_3*>(busPtr))->Show(consistent); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_UCS_4*>(busPtr))->Show(consistent); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_APA106_3*>(busPtr))->Show(consistent); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_FW6_5*>(busPtr))->Show(consistent); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_2805_5*>(busPtr))->Show(consistent); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->Show(consistent); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->Show(consistent); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->Show(consistent); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->Show(consistent); break;
@ -743,6 +701,7 @@ class PolyBus {
case I_8266_U0_UCS_4: return (static_cast<B_8266_U0_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_U1_UCS_4: return (static_cast<B_8266_U1_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_DM_UCS_4: return (static_cast<B_8266_DM_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_BB_UCS_4: return (static_cast<B_8266_BB_UCS_4*>(busPtr))->CanShow(); break;
case I_8266_U0_APA106_3: return (static_cast<B_8266_U0_APA106_3*>(busPtr))->CanShow(); break;
case I_8266_U1_APA106_3: return (static_cast<B_8266_U1_APA106_3*>(busPtr))->CanShow(); break;
case I_8266_DM_APA106_3: return (static_cast<B_8266_DM_APA106_3*>(busPtr))->CanShow(); break;
@ -779,34 +738,19 @@ class PolyBus {
case I_32_RN_TM1914_3: return (static_cast<B_32_RN_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_RN_SM16825_5: return (static_cast<B_32_RN_SM16825_5*>(busPtr))->CanShow(); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) return (static_cast<B_32_I1_NEO_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_NEO_3*>(busPtr))->CanShow(); break;
case I_32_I1_NEO_4: if (useParallelI2S) return (static_cast<B_32_I1_NEO_4P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_NEO_4*>(busPtr))->CanShow(); break;
case I_32_I1_400_3: if (useParallelI2S) return (static_cast<B_32_I1_400_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_400_3*>(busPtr))->CanShow(); break;
case I_32_I1_TM1_4: if (useParallelI2S) return (static_cast<B_32_I1_TM1_4P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_TM1_4*>(busPtr))->CanShow(); break;
case I_32_I1_TM2_3: if (useParallelI2S) return (static_cast<B_32_I1_TM2_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_TM2_3*>(busPtr))->CanShow(); break;
case I_32_I1_UCS_3: if (useParallelI2S) return (static_cast<B_32_I1_UCS_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_UCS_3*>(busPtr))->CanShow(); break;
case I_32_I1_UCS_4: if (useParallelI2S) return (static_cast<B_32_I1_UCS_4P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_UCS_4*>(busPtr))->CanShow(); break;
case I_32_I1_APA106_3: if (useParallelI2S) return (static_cast<B_32_I1_APA106_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_APA106_3*>(busPtr))->CanShow(); break;
case I_32_I1_FW6_5: if (useParallelI2S) return (static_cast<B_32_I1_FW6_5P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_FW6_5*>(busPtr))->CanShow(); break;
case I_32_I1_2805_5: if (useParallelI2S) return (static_cast<B_32_I1_2805_5P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_2805_5*>(busPtr))->CanShow(); break;
case I_32_I1_TM1914_3: if (useParallelI2S) return (static_cast<B_32_I1_TM1914_3P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_I1_SM16825_5: if (useParallelI2S) return (static_cast<B_32_I1_SM16825_5P*>(busPtr))->CanShow(); else return (static_cast<B_32_I1_SM16825_5*>(busPtr))->CanShow(); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: return (static_cast<B_32_I0_NEO_3*>(busPtr))->CanShow(); break;
case I_32_I0_NEO_4: return (static_cast<B_32_I0_NEO_4*>(busPtr))->CanShow(); break;
case I_32_I0_400_3: return (static_cast<B_32_I0_400_3*>(busPtr))->CanShow(); break;
case I_32_I0_TM1_4: return (static_cast<B_32_I0_TM1_4*>(busPtr))->CanShow(); break;
case I_32_I0_TM2_3: return (static_cast<B_32_I0_TM2_3*>(busPtr))->CanShow(); break;
case I_32_I0_UCS_3: return (static_cast<B_32_I0_UCS_3*>(busPtr))->CanShow(); break;
case I_32_I0_UCS_4: return (static_cast<B_32_I0_UCS_4*>(busPtr))->CanShow(); break;
case I_32_I0_APA106_3: return (static_cast<B_32_I0_APA106_3*>(busPtr))->CanShow(); break;
case I_32_I0_FW6_5: return (static_cast<B_32_I0_FW6_5*>(busPtr))->CanShow(); break;
case I_32_I0_2805_5: return (static_cast<B_32_I0_2805_5*>(busPtr))->CanShow(); break;
case I_32_I0_TM1914_3: return (static_cast<B_32_I0_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_I0_SM16825_5: return (static_cast<B_32_I0_SM16825_5*>(busPtr))->CanShow(); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) return (static_cast<B_32_IP_NEO_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_NEO_3*>(busPtr))->CanShow(); break;
case I_32_I2_NEO_4: if (_useParallelI2S) return (static_cast<B_32_IP_NEO_4*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_NEO_4*>(busPtr))->CanShow(); break;
case I_32_I2_400_3: if (_useParallelI2S) return (static_cast<B_32_IP_400_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_400_3*>(busPtr))->CanShow(); break;
case I_32_I2_TM1_4: if (_useParallelI2S) return (static_cast<B_32_IP_TM1_4*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_TM1_4*>(busPtr))->CanShow(); break;
case I_32_I2_TM2_3: if (_useParallelI2S) return (static_cast<B_32_IP_TM2_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_TM2_3*>(busPtr))->CanShow(); break;
case I_32_I2_UCS_3: if (_useParallelI2S) return (static_cast<B_32_IP_UCS_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_UCS_3*>(busPtr))->CanShow(); break;
case I_32_I2_UCS_4: if (_useParallelI2S) return (static_cast<B_32_IP_UCS_4*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_UCS_4*>(busPtr))->CanShow(); break;
case I_32_I2_APA106_3: if (_useParallelI2S) return (static_cast<B_32_IP_APA106_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_APA106_3*>(busPtr))->CanShow(); break;
case I_32_I2_FW6_5: if (_useParallelI2S) return (static_cast<B_32_IP_FW6_5*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_FW6_5*>(busPtr))->CanShow(); break;
case I_32_I2_2805_5: if (_useParallelI2S) return (static_cast<B_32_IP_2805_5*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_2805_5*>(busPtr))->CanShow(); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) return (static_cast<B_32_IP_TM1914_3*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_TM1914_3*>(busPtr))->CanShow(); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) return (static_cast<B_32_IP_SM16825_5*>(busPtr))->CanShow(); else return (static_cast<B_32_I2_SM16825_5*>(busPtr))->CanShow(); break;
#endif
#endif
case I_HS_DOT_3: return (static_cast<B_HS_DOT_3*>(busPtr))->CanShow(); break;
@ -823,7 +767,7 @@ class PolyBus {
return true;
}
static void setPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint32_t c, uint8_t co, uint16_t wwcw = 0) {
[[gnu::hot]] static void setPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint32_t c, uint8_t co, uint16_t wwcw = 0) {
uint8_t r = c >> 16;
uint8_t g = c >> 8;
uint8_t b = c >> 0;
@ -916,34 +860,19 @@ class PolyBus {
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_NEO_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_TM1_4: if (useParallelI2S) (static_cast<B_32_I1_TM1_4P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_UCS_4*>(busPtr))->SetPixelColor(pix, Rgbw64Color(col)); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I1_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I1_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I1_TM1914_3: if (useParallelI2S) (static_cast<B_32_I1_TM1914_3P*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I1_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_TM1_4: (static_cast<B_32_I0_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->SetPixelColor(pix, Rgbw64Color(col)); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_NEO_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_400_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_UCS_4*>(busPtr))->SetPixelColor(pix, Rgbw64Color(col)); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_APA106_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I2_FW6_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); else (static_cast<B_32_I2_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->SetPixelColor(pix, Rgbww80Color(col.R*257, col.G*257, col.B*257, cctWW*257, cctCW*257)); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
@ -1027,34 +956,19 @@ class PolyBus {
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_RN_SM16825_5: (static_cast<B_32_RN_SM16825_5*>(busPtr))->SetLuminance(b); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) (static_cast<B_32_I1_NEO_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_NEO_4: if (useParallelI2S) (static_cast<B_32_I1_NEO_4P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I1_400_3: if (useParallelI2S) (static_cast<B_32_I1_400_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_TM1_4: if (useParallelI2S) (static_cast<B_32_I1_TM1_4P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I1_TM2_3: if (useParallelI2S) (static_cast<B_32_I1_TM2_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_UCS_3: if (useParallelI2S) (static_cast<B_32_I1_UCS_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_UCS_4: if (useParallelI2S) (static_cast<B_32_I1_UCS_4P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I1_APA106_3: if (useParallelI2S) (static_cast<B_32_I1_APA106_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_FW6_5: if (useParallelI2S) (static_cast<B_32_I1_FW6_5P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I1_2805_5: if (useParallelI2S) (static_cast<B_32_I1_2805_5P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I1_TM1914_3: if (useParallelI2S) (static_cast<B_32_I1_TM1914_3P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I1_SM16825_5: if (useParallelI2S) (static_cast<B_32_I1_SM16825_5P*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I1_SM16825_5*>(busPtr))->SetLuminance(b); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: (static_cast<B_32_I0_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_NEO_4: (static_cast<B_32_I0_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I0_400_3: (static_cast<B_32_I0_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_TM1_4: (static_cast<B_32_I0_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I0_TM2_3: (static_cast<B_32_I0_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_UCS_3: (static_cast<B_32_I0_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_UCS_4: (static_cast<B_32_I0_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I0_APA106_3: (static_cast<B_32_I0_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_FW6_5: (static_cast<B_32_I0_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I0_2805_5: (static_cast<B_32_I0_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I0_SM16825_5: (static_cast<B_32_I0_SM16825_5*>(busPtr))->SetLuminance(b); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) (static_cast<B_32_IP_NEO_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_NEO_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_NEO_4: if (_useParallelI2S) (static_cast<B_32_IP_NEO_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_NEO_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_400_3: if (_useParallelI2S) (static_cast<B_32_IP_400_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_400_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM1_4: if (_useParallelI2S) (static_cast<B_32_IP_TM1_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM1_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM2_3: if (_useParallelI2S) (static_cast<B_32_IP_TM2_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM2_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_UCS_3: if (_useParallelI2S) (static_cast<B_32_IP_UCS_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_UCS_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_UCS_4: if (_useParallelI2S) (static_cast<B_32_IP_UCS_4*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_UCS_4*>(busPtr))->SetLuminance(b); break;
case I_32_I2_APA106_3: if (_useParallelI2S) (static_cast<B_32_IP_APA106_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_APA106_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_FW6_5: if (_useParallelI2S) (static_cast<B_32_IP_FW6_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_FW6_5*>(busPtr))->SetLuminance(b); break;
case I_32_I2_2805_5: if (_useParallelI2S) (static_cast<B_32_IP_2805_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_2805_5*>(busPtr))->SetLuminance(b); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) (static_cast<B_32_IP_TM1914_3*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_TM1914_3*>(busPtr))->SetLuminance(b); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) (static_cast<B_32_IP_SM16825_5*>(busPtr))->SetLuminance(b); else (static_cast<B_32_I2_SM16825_5*>(busPtr))->SetLuminance(b); break;
#endif
#endif
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetLuminance(b); break;
@ -1070,7 +984,7 @@ class PolyBus {
}
}
static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
[[gnu::hot]] static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
RgbwColor col(0,0,0,0);
switch (busType) {
case I_NONE: break;
@ -1139,34 +1053,19 @@ class PolyBus {
case I_32_RN_TM1914_3: col = (static_cast<B_32_RN_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_RN_SM16825_5: { Rgbww80Color c = (static_cast<B_32_RN_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: col = (useParallelI2S) ? (static_cast<B_32_I1_NEO_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_NEO_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_NEO_4: col = (useParallelI2S) ? (static_cast<B_32_I1_NEO_4P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_NEO_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_400_3: col = (useParallelI2S) ? (static_cast<B_32_I1_400_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_400_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_TM1_4: col = (useParallelI2S) ? (static_cast<B_32_I1_TM1_4P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_TM1_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_TM2_3: col = (useParallelI2S) ? (static_cast<B_32_I1_TM2_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_TM2_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_UCS_3: { Rgb48Color c = (useParallelI2S) ? (static_cast<B_32_I1_UCS_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,0); } break;
case I_32_I1_UCS_4: { Rgbw64Color c = (useParallelI2S) ? (static_cast<B_32_I1_UCS_4P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_UCS_4*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,c.W/257); } break;
case I_32_I1_APA106_3: col = (useParallelI2S) ? (static_cast<B_32_I1_APA106_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_APA106_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_FW6_5: { RgbwwColor c = (useParallelI2S) ? (static_cast<B_32_I1_FW6_5P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_FW6_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I1_2805_5: { RgbwwColor c = (useParallelI2S) ? (static_cast<B_32_I1_2805_5P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I1_TM1914_3: col = (useParallelI2S) ? (static_cast<B_32_I1_TM1914_3P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I1_SM16825_5: { Rgbww80Color c = (useParallelI2S) ? (static_cast<B_32_I1_SM16825_5P*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I1_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: col = (static_cast<B_32_I0_NEO_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_NEO_4: col = (static_cast<B_32_I0_NEO_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_400_3: col = (static_cast<B_32_I0_400_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_TM1_4: col = (static_cast<B_32_I0_TM1_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_TM2_3: col = (static_cast<B_32_I0_TM2_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_UCS_3: { Rgb48Color c = (static_cast<B_32_I0_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,0); } break;
case I_32_I0_UCS_4: { Rgbw64Color c = (static_cast<B_32_I0_UCS_4*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,c.W/257); } break;
case I_32_I0_APA106_3: col = (static_cast<B_32_I0_APA106_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_FW6_5: { RgbwwColor c = (static_cast<B_32_I0_FW6_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I0_2805_5: { RgbwwColor c = (static_cast<B_32_I0_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I0_TM1914_3: col = (static_cast<B_32_I0_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I0_SM16825_5: { Rgbww80Color c = (static_cast<B_32_I0_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_NEO_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_NEO_4: col = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_4*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_NEO_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_400_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_400_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_400_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_TM1_4: col = (_useParallelI2S) ? (static_cast<B_32_IP_TM1_4*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_TM1_4*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_TM2_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_TM2_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_TM2_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_UCS_3: { Rgb48Color c = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,0); } break;
case I_32_I2_UCS_4: { Rgbw64Color c = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_4*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_UCS_4*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,c.W/257); } break;
case I_32_I2_APA106_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_APA106_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_APA106_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_FW6_5: { RgbwwColor c = (_useParallelI2S) ? (static_cast<B_32_IP_FW6_5*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_FW6_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I2_2805_5: { RgbwwColor c = (_useParallelI2S) ? (static_cast<B_32_IP_2805_5*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
case I_32_I2_TM1914_3: col = (_useParallelI2S) ? (static_cast<B_32_IP_TM1914_3*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
case I_32_I2_SM16825_5: { Rgbww80Color c = (_useParallelI2S) ? (static_cast<B_32_IP_SM16825_5*>(busPtr))->GetPixelColor(pix) : (static_cast<B_32_I2_SM16825_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R/257,c.G/257,c.B/257,max(c.WW,c.CW)/257); } break; // will not return original W
#endif
#endif
case I_HS_DOT_3: col = (static_cast<B_HS_DOT_3*>(busPtr))->GetPixelColor(pix); break;
@ -1269,34 +1168,19 @@ class PolyBus {
case I_32_RN_TM1914_3: delete (static_cast<B_32_RN_TM1914_3*>(busPtr)); break;
case I_32_RN_SM16825_5: delete (static_cast<B_32_RN_SM16825_5*>(busPtr)); break;
// I2S1 bus or paralell buses
#ifndef WLED_NO_I2S1_PIXELBUS
case I_32_I1_NEO_3: if (useParallelI2S) delete (static_cast<B_32_I1_NEO_3P*>(busPtr)); else delete (static_cast<B_32_I1_NEO_3*>(busPtr)); break;
case I_32_I1_NEO_4: if (useParallelI2S) delete (static_cast<B_32_I1_NEO_4P*>(busPtr)); else delete (static_cast<B_32_I1_NEO_4*>(busPtr)); break;
case I_32_I1_400_3: if (useParallelI2S) delete (static_cast<B_32_I1_400_3P*>(busPtr)); else delete (static_cast<B_32_I1_400_3*>(busPtr)); break;
case I_32_I1_TM1_4: if (useParallelI2S) delete (static_cast<B_32_I1_TM1_4P*>(busPtr)); else delete (static_cast<B_32_I1_TM1_4*>(busPtr)); break;
case I_32_I1_TM2_3: if (useParallelI2S) delete (static_cast<B_32_I1_TM2_3P*>(busPtr)); else delete (static_cast<B_32_I1_TM2_3*>(busPtr)); break;
case I_32_I1_UCS_3: if (useParallelI2S) delete (static_cast<B_32_I1_UCS_3P*>(busPtr)); else delete (static_cast<B_32_I1_UCS_3*>(busPtr)); break;
case I_32_I1_UCS_4: if (useParallelI2S) delete (static_cast<B_32_I1_UCS_4P*>(busPtr)); else delete (static_cast<B_32_I1_UCS_4*>(busPtr)); break;
case I_32_I1_APA106_3: if (useParallelI2S) delete (static_cast<B_32_I1_APA106_3P*>(busPtr)); else delete (static_cast<B_32_I1_APA106_3*>(busPtr)); break;
case I_32_I1_FW6_5: if (useParallelI2S) delete (static_cast<B_32_I1_FW6_5P*>(busPtr)); else delete (static_cast<B_32_I1_FW6_5*>(busPtr)); break;
case I_32_I1_2805_5: if (useParallelI2S) delete (static_cast<B_32_I1_2805_5P*>(busPtr)); else delete (static_cast<B_32_I1_2805_5*>(busPtr)); break;
case I_32_I1_TM1914_3: if (useParallelI2S) delete (static_cast<B_32_I1_TM1914_3P*>(busPtr)); else delete (static_cast<B_32_I1_TM1914_3*>(busPtr)); break;
case I_32_I1_SM16825_5: if (useParallelI2S) delete (static_cast<B_32_I1_SM16825_5P*>(busPtr)); else delete (static_cast<B_32_I1_SM16825_5*>(busPtr)); break;
#endif
// I2S0 bus
#ifndef WLED_NO_I2S0_PIXELBUS
case I_32_I0_NEO_3: delete (static_cast<B_32_I0_NEO_3*>(busPtr)); break;
case I_32_I0_NEO_4: delete (static_cast<B_32_I0_NEO_4*>(busPtr)); break;
case I_32_I0_400_3: delete (static_cast<B_32_I0_400_3*>(busPtr)); break;
case I_32_I0_TM1_4: delete (static_cast<B_32_I0_TM1_4*>(busPtr)); break;
case I_32_I0_TM2_3: delete (static_cast<B_32_I0_TM2_3*>(busPtr)); break;
case I_32_I0_UCS_3: delete (static_cast<B_32_I0_UCS_3*>(busPtr)); break;
case I_32_I0_UCS_4: delete (static_cast<B_32_I0_UCS_4*>(busPtr)); break;
case I_32_I0_APA106_3: delete (static_cast<B_32_I0_APA106_3*>(busPtr)); break;
case I_32_I0_FW6_5: delete (static_cast<B_32_I0_FW6_5*>(busPtr)); break;
case I_32_I0_2805_5: delete (static_cast<B_32_I0_2805_5*>(busPtr)); break;
case I_32_I0_TM1914_3: delete (static_cast<B_32_I0_TM1914_3*>(busPtr)); break;
case I_32_I0_SM16825_5: delete (static_cast<B_32_I0_SM16825_5*>(busPtr)); break;
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: if (_useParallelI2S) delete (static_cast<B_32_IP_NEO_3*>(busPtr)); else delete (static_cast<B_32_I2_NEO_3*>(busPtr)); break;
case I_32_I2_NEO_4: if (_useParallelI2S) delete (static_cast<B_32_IP_NEO_4*>(busPtr)); else delete (static_cast<B_32_I2_NEO_4*>(busPtr)); break;
case I_32_I2_400_3: if (_useParallelI2S) delete (static_cast<B_32_IP_400_3*>(busPtr)); else delete (static_cast<B_32_I2_400_3*>(busPtr)); break;
case I_32_I2_TM1_4: if (_useParallelI2S) delete (static_cast<B_32_IP_TM1_4*>(busPtr)); else delete (static_cast<B_32_I2_TM1_4*>(busPtr)); break;
case I_32_I2_TM2_3: if (_useParallelI2S) delete (static_cast<B_32_IP_TM2_3*>(busPtr)); else delete (static_cast<B_32_I2_TM2_3*>(busPtr)); break;
case I_32_I2_UCS_3: if (_useParallelI2S) delete (static_cast<B_32_IP_UCS_3*>(busPtr)); else delete (static_cast<B_32_I2_UCS_3*>(busPtr)); break;
case I_32_I2_UCS_4: if (_useParallelI2S) delete (static_cast<B_32_IP_UCS_4*>(busPtr)); else delete (static_cast<B_32_I2_UCS_4*>(busPtr)); break;
case I_32_I2_APA106_3: if (_useParallelI2S) delete (static_cast<B_32_IP_APA106_3*>(busPtr)); else delete (static_cast<B_32_I2_APA106_3*>(busPtr)); break;
case I_32_I2_FW6_5: if (_useParallelI2S) delete (static_cast<B_32_IP_FW6_5*>(busPtr)); else delete (static_cast<B_32_I2_FW6_5*>(busPtr)); break;
case I_32_I2_2805_5: if (_useParallelI2S) delete (static_cast<B_32_IP_2805_5*>(busPtr)); else delete (static_cast<B_32_I2_2805_5*>(busPtr)); break;
case I_32_I2_TM1914_3: if (_useParallelI2S) delete (static_cast<B_32_IP_TM1914_3*>(busPtr)); else delete (static_cast<B_32_I2_TM1914_3*>(busPtr)); break;
case I_32_I2_SM16825_5: if (_useParallelI2S) delete (static_cast<B_32_IP_SM16825_5*>(busPtr)); else delete (static_cast<B_32_I2_SM16825_5*>(busPtr)); break;
#endif
#endif
case I_HS_DOT_3: delete (static_cast<B_HS_DOT_3*>(busPtr)); break;
@ -1312,8 +1196,178 @@ class PolyBus {
}
}
static unsigned getDataSize(void* busPtr, uint8_t busType) {
unsigned size = 0;
switch (busType) {
case I_NONE: break;
#ifdef ESP8266
case I_8266_U0_NEO_3: size = (static_cast<B_8266_U0_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_NEO_3: size = (static_cast<B_8266_U1_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_NEO_3: size = (static_cast<B_8266_DM_NEO_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_NEO_3: size = (static_cast<B_8266_BB_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_NEO_4: size = (static_cast<B_8266_U0_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_NEO_4: size = (static_cast<B_8266_U1_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_NEO_4: size = (static_cast<B_8266_DM_NEO_4*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_NEO_4: size = (static_cast<B_8266_BB_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_400_3: size = (static_cast<B_8266_U0_400_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_400_3: size = (static_cast<B_8266_U1_400_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_400_3: size = (static_cast<B_8266_DM_400_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_400_3: size = (static_cast<B_8266_BB_400_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_TM1_4: size = (static_cast<B_8266_U0_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_TM1_4: size = (static_cast<B_8266_U1_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_TM1_4: size = (static_cast<B_8266_DM_TM1_4*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_TM1_4: size = (static_cast<B_8266_BB_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_TM2_3: size = (static_cast<B_8266_U0_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_TM2_3: size = (static_cast<B_8266_U1_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_TM2_3: size = (static_cast<B_8266_DM_TM2_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_TM2_3: size = (static_cast<B_8266_BB_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_UCS_3: size = (static_cast<B_8266_U0_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_UCS_3: size = (static_cast<B_8266_U1_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_UCS_3: size = (static_cast<B_8266_DM_UCS_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_UCS_3: size = (static_cast<B_8266_BB_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_UCS_4: size = (static_cast<B_8266_U0_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_UCS_4: size = (static_cast<B_8266_U1_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_UCS_4: size = (static_cast<B_8266_DM_UCS_4*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_UCS_4: size = (static_cast<B_8266_BB_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_APA106_3: size = (static_cast<B_8266_U0_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_APA106_3: size = (static_cast<B_8266_U1_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_APA106_3: size = (static_cast<B_8266_DM_APA106_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_APA106_3: size = (static_cast<B_8266_BB_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_FW6_5: size = (static_cast<B_8266_U0_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_FW6_5: size = (static_cast<B_8266_U1_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_FW6_5: size = (static_cast<B_8266_DM_FW6_5*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_FW6_5: size = (static_cast<B_8266_BB_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_2805_5: size = (static_cast<B_8266_U0_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_2805_5: size = (static_cast<B_8266_U1_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_2805_5: size = (static_cast<B_8266_DM_2805_5*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_2805_5: size = (static_cast<B_8266_BB_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_TM1914_3: size = (static_cast<B_8266_U0_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_TM1914_3: size = (static_cast<B_8266_U1_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_TM1914_3: size = (static_cast<B_8266_DM_TM1914_3*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_TM1914_3: size = (static_cast<B_8266_BB_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_8266_U0_SM16825_5: size = (static_cast<B_8266_U0_SM16825_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_U1_SM16825_5: size = (static_cast<B_8266_U1_SM16825_5*>(busPtr))->PixelsSize()*2; break;
case I_8266_DM_SM16825_5: size = (static_cast<B_8266_DM_SM16825_5*>(busPtr))->PixelsSize()*5; break;
case I_8266_BB_SM16825_5: size = (static_cast<B_8266_BB_SM16825_5*>(busPtr))->PixelsSize()*2; break;
#endif
#ifdef ARDUINO_ARCH_ESP32
// RMT buses (front + back + small system managed RMT)
case I_32_RN_NEO_3: size = (static_cast<B_32_RN_NEO_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_NEO_4: size = (static_cast<B_32_RN_NEO_4*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_400_3: size = (static_cast<B_32_RN_400_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_TM1_4: size = (static_cast<B_32_RN_TM1_4*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_TM2_3: size = (static_cast<B_32_RN_TM2_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_UCS_3: size = (static_cast<B_32_RN_UCS_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_UCS_4: size = (static_cast<B_32_RN_UCS_4*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_APA106_3: size = (static_cast<B_32_RN_APA106_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_FW6_5: size = (static_cast<B_32_RN_FW6_5*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_2805_5: size = (static_cast<B_32_RN_2805_5*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_TM1914_3: size = (static_cast<B_32_RN_TM1914_3*>(busPtr))->PixelsSize()*2; break;
case I_32_RN_SM16825_5: size = (static_cast<B_32_RN_SM16825_5*>(busPtr))->PixelsSize()*2; break;
// I2S1 bus or paralell buses (front + DMA; DMA = front * cadence, aligned to 4 bytes)
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_NEO_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_NEO_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_NEO_4*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_400_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_400_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_400_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_TM1_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM1_4*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_TM2_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM2_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM2_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_UCS_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_UCS_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_UCS_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_UCS_4*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_APA106_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_APA106_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_APA106_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_FW6_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_FW6_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_FW6_5*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_2805_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_2805_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_2805_5*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_TM1914_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1914_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM1914_3*>(busPtr))->PixelsSize()*4; break;
case I_32_I2_SM16825_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_SM16825_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_SM16825_5*>(busPtr))->PixelsSize()*4; break;
#endif
#endif
case I_HS_DOT_3: size = (static_cast<B_HS_DOT_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_DOT_3: size = (static_cast<B_SS_DOT_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_LPD_3: size = (static_cast<B_HS_LPD_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_LPD_3: size = (static_cast<B_SS_LPD_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_LPO_3: size = (static_cast<B_HS_LPO_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_LPO_3: size = (static_cast<B_SS_LPO_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_WS1_3: size = (static_cast<B_HS_WS1_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_WS1_3: size = (static_cast<B_SS_WS1_3*>(busPtr))->PixelsSize()*2; break;
case I_HS_P98_3: size = (static_cast<B_HS_P98_3*>(busPtr))->PixelsSize()*2; break;
case I_SS_P98_3: size = (static_cast<B_SS_P98_3*>(busPtr))->PixelsSize()*2; break;
}
return size;
}
static unsigned memUsage(unsigned count, unsigned busType) {
unsigned size = count*3; // let's assume 3 channels, we will add count or 2*count below for 4 channels or 5 channels
switch (busType) {
case I_NONE: size = 0; break;
#ifdef ESP8266
// UART methods have front + back buffers + small UART
case I_8266_U0_NEO_4: size = (size + count)*2; break; // 4 channels
case I_8266_U1_NEO_4: size = (size + count)*2; break; // 4 channels
case I_8266_BB_NEO_4: size = (size + count)*2; break; // 4 channels
case I_8266_U0_TM1_4: size = (size + count)*2; break; // 4 channels
case I_8266_U1_TM1_4: size = (size + count)*2; break; // 4 channels
case I_8266_BB_TM1_4: size = (size + count)*2; break; // 4 channels
case I_8266_U0_UCS_3: size *= 4; break; // 16 bit
case I_8266_U1_UCS_3: size *= 4; break; // 16 bit
case I_8266_BB_UCS_3: size *= 4; break; // 16 bit
case I_8266_U0_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
case I_8266_U1_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
case I_8266_BB_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
case I_8266_U0_FW6_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U1_FW6_5: size = (size + 2*count)*2; break; // 5channels
case I_8266_BB_FW6_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U0_2805_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U1_2805_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_BB_2805_5: size = (size + 2*count)*2; break; // 5 channels
case I_8266_U0_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
case I_8266_U1_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
case I_8266_BB_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
// DMA methods have front + DMA buffer = ((1+(3+1)) * channels)
case I_8266_DM_NEO_3: size *= 5; break;
case I_8266_DM_NEO_4: size = (size + count)*5; break;
case I_8266_DM_400_3: size *= 5; break;
case I_8266_DM_TM1_4: size = (size + count)*5; break;
case I_8266_DM_TM2_3: size *= 5; break;
case I_8266_DM_UCS_3: size *= 2*5; break;
case I_8266_DM_UCS_4: size = (size + count)*2*5; break;
case I_8266_DM_APA106_3: size *= 5; break;
case I_8266_DM_FW6_5: size = (size + 2*count)*5; break;
case I_8266_DM_2805_5: size = (size + 2*count)*5; break;
case I_8266_DM_TM1914_3: size *= 5; break;
case I_8266_DM_SM16825_5: size = (size + 2*count)*2*5; break;
#endif
#ifdef ARDUINO_ARCH_ESP32
// RMT buses (1x front and 1x back buffer)
case I_32_RN_NEO_4: size = (size + count)*2; break;
case I_32_RN_TM1_4: size = (size + count)*2; break;
case I_32_RN_UCS_3: size *= 2*2; break;
case I_32_RN_UCS_4: size = (size + count)*2*2; break;
case I_32_RN_FW6_5: size = (size + 2*count)*2; break;
case I_32_RN_2805_5: size = (size + 2*count)*2; break;
case I_32_RN_SM16825_5: size = (size + 2*count)*2*2; break;
// I2S1 bus or paralell buses (individual 1x front and 1 DMA (3x or 4x pixel count) or common back DMA buffers)
#ifndef CONFIG_IDF_TARGET_ESP32C3
case I_32_I2_NEO_3: size *= 4; break;
case I_32_I2_NEO_4: size = (size + count)*4; break;
case I_32_I2_400_3: size *= 4; break;
case I_32_I2_TM1_4: size = (size + count)*4; break;
case I_32_I2_TM2_3: size *= 4; break;
case I_32_I2_UCS_3: size *= 2*4; break;
case I_32_I2_UCS_4: size = (size + count)*2*4; break;
case I_32_I2_APA106_3: size *= 4; break;
case I_32_I2_FW6_5: size = (size + 2*count)*4; break;
case I_32_I2_2805_5: size = (size + 2*count)*4; break;
case I_32_I2_TM1914_3: size *= 4; break;
case I_32_I2_SM16825_5: size = (size + 2*count)*2*4; break;
#endif
#endif
// everything else uses 2 buffers
default: size *= 2; break;
}
return size;
}
//gives back the internal type index (I_XX_XXX_X above) for the input
static uint8_t getI(uint8_t busType, uint8_t* pins, uint8_t num = 0) {
static uint8_t getI(uint8_t busType, const uint8_t* pins, uint8_t num = 0) {
if (!Bus::isDigital(busType)) return I_NONE;
if (Bus::is2Pin(busType)) { //SPI LED chips
bool isHSPI = false;
@ -1372,26 +1426,33 @@ class PolyBus {
uint8_t offset = 0; // 0 = RMT (num 1-8), 1 = I2S0 (used by Audioreactive), 2 = I2S1
#if defined(CONFIG_IDF_TARGET_ESP32S2)
// ESP32-S2 only has 4 RMT channels
if (num > 4) return I_NONE;
if (num > 3) offset = 1; // only one I2S (use last to allow Audioreactive)
if (_useParallelI2S) {
if (num > 11) return I_NONE;
if (num > 3) offset = 1; // use x8 parallel I2S0 channels (use last to allow Audioreactive)
} else {
if (num > 4) return I_NONE;
if (num > 3) offset = 1; // only one I2S0 (use last to allow Audioreactive)
}
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
// On ESP32-C3 only the first 2 RMT channels are usable for transmitting
if (num > 1) return I_NONE;
//if (num > 1) offset = 1; // I2S not supported yet (only 1 I2S)
#elif defined(CONFIG_IDF_TARGET_ESP32S3)
// On ESP32-S3 only the first 4 RMT channels are usable for transmitting
if (num > 3) return I_NONE;
//if (num > 3) offset = num -4; // I2S not supported yet
if (_useParallelI2S) {
if (num > 11) return I_NONE;
if (num > 3) offset = 1; // use x8 parallel I2S LCD channels
} else {
if (num > 3) return I_NONE; // do not use single I2S (as it is not supported)
}
#else
// standard ESP32 has 8 RMT and 2 I2S channels
if (useParallelI2S) {
if (num > 16) return I_NONE;
if (num < 8) offset = 2; // prefer 8 parallel I2S1 channels
if (num == 16) offset = 1;
// standard ESP32 has 8 RMT and x1/x8 I2S1 channels
if (_useParallelI2S) {
if (num > 15) return I_NONE;
if (num > 7) offset = 1; // 8 RMT followed by 8 I2S
} else {
if (num > 9) return I_NONE;
if (num > 8) offset = 1;
if (num == 0) offset = 2; // prefer I2S1 for 1st bus (less flickering but more RAM needed)
if (num == 0) offset = 1; // prefer I2S1 for 1st bus (less flickering but more RAM needed)
}
#endif
switch (busType) {

View File

@ -118,6 +118,9 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
Bus::setCCTBlend(cctBlending);
strip.setTargetFps(hw_led["fps"]); //NOP if 0, default 42 FPS
CJSON(useGlobalLedBuffer, hw_led[F("ld")]);
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
CJSON(useParallelI2S, hw_led[F("prl")]);
#endif
#ifndef WLED_DISABLE_2D
// 2D Matrix Settings
@ -162,34 +165,6 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
DEBUG_PRINTF_P(PSTR("Heap before buses: %d\n"), ESP.getFreeHeap());
int s = 0; // bus iterator
if (fromFS) BusManager::removeAll(); // can't safely manipulate busses directly in network callback
unsigned mem = 0;
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
bool useParallel = false;
#if defined(ARDUINO_ARCH_ESP32) && !defined(ARDUINO_ARCH_ESP32S2) && !defined(ARDUINO_ARCH_ESP32S3) && !defined(ARDUINO_ARCH_ESP32C3)
unsigned digitalCount = 0;
unsigned maxLedsOnBus = 0;
unsigned maxChannels = 0;
for (JsonObject elm : ins) {
unsigned type = elm["type"] | TYPE_WS2812_RGB;
unsigned len = elm["len"] | DEFAULT_LED_COUNT;
if (!Bus::isDigital(type)) continue;
if (!Bus::is2Pin(type)) {
digitalCount++;
unsigned channels = Bus::getNumberOfChannels(type);
if (len > maxLedsOnBus) maxLedsOnBus = len;
if (channels > maxChannels) maxChannels = channels;
}
}
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
if (maxLedsOnBus <= 300 && digitalCount > 5) {
DEBUG_PRINTLN(F("Switching to parallel I2S."));
useParallel = true;
BusManager::useParallelOutput();
mem = BusManager::memUsage(maxChannels, maxLedsOnBus, 8); // use alternate memory calculation
}
#endif
for (JsonObject elm : ins) {
if (s >= WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES) break;
@ -220,24 +195,11 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
maMax = 0;
}
ledType |= refresh << 7; // hack bit 7 to indicate strip requires off refresh
if (fromFS) {
BusConfig bc = BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax);
if (useParallel && s < 8) {
// if for some unexplained reason the above pre-calculation was wrong, update
unsigned memT = BusManager::memUsage(bc); // includes x8 memory allocation for parallel I2S
if (memT > mem) mem = memT; // if we have unequal LED count use the largest
} else
mem += BusManager::memUsage(bc); // includes global buffer
if (mem <= MAX_LED_MEMORY) if (BusManager::add(bc) == -1) break; // finalization will be done in WLED::beginStrip()
} else {
if (busConfigs[s] != nullptr) delete busConfigs[s];
busConfigs[s] = new BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax);
doInitBusses = true; // finalization done in beginStrip()
}
busConfigs.push_back(std::move(BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax)));
doInitBusses = true; // finalization done in beginStrip()
s++;
}
DEBUG_PRINTF_P(PSTR("LED buffer size: %uB\n"), mem);
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
}
if (hw_led["rev"]) BusManager::getBus(0)->setReversed(true); //set 0.11 global reversed setting for first bus
@ -828,6 +790,9 @@ void serializeConfig() {
hw_led["fps"] = strip.getTargetFps();
hw_led[F("rgbwm")] = Bus::getGlobalAWMode(); // global auto white mode override
hw_led[F("ld")] = useGlobalLedBuffer;
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
hw_led[F("prl")] = BusManager::hasParallelOutput();
#endif
#ifndef WLED_DISABLE_2D
// 2D Matrix Settings
@ -852,8 +817,19 @@ void serializeConfig() {
JsonArray hw_led_ins = hw_led.createNestedArray("ins");
for (size_t s = 0; s < BusManager::getNumBusses(); s++) {
DEBUG_PRINTF_P(PSTR("Cfg: Saving bus #%u\n"), s);
Bus *bus = BusManager::getBus(s);
if (!bus || bus->getLength()==0) break;
DEBUG_PRINTF_P(PSTR(" (%d-%d, type:%d, CO:%d, rev:%d, skip:%d, AW:%d kHz:%d, mA:%d/%d)\n"),
(int)bus->getStart(), (int)(bus->getStart()+bus->getLength()),
(int)(bus->getType() & 0x7F),
(int)bus->getColorOrder(),
(int)bus->isReversed(),
(int)bus->skippedLeds(),
(int)bus->getAutoWhiteMode(),
(int)bus->getFrequency(),
(int)bus->getLEDCurrent(), (int)bus->getMaxCurrent()
);
JsonObject ins = hw_led_ins.createNestedObject();
ins["start"] = bus->getStart();
ins["len"] = bus->getLength();

View File

@ -21,7 +21,7 @@ uint32_t color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
/*
* color add function that preserves ratio
* original idea: https://github.com/Aircoookie/WLED/pull/2465 by https://github.com/Proto-molecule
* original idea: https://github.com/wled-dev/WLED/pull/2465 by https://github.com/Proto-molecule
* speed optimisations by @dedehai
*/
uint32_t color_add(uint32_t c1, uint32_t c2, bool preserveCR)
@ -87,25 +87,26 @@ uint32_t color_fade(uint32_t c1, uint8_t amount, bool video)
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType)
{
if (blendType == LINEARBLEND_NOWRAP) {
index = (index*240) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
index = (index * 0xF0) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
}
unsigned hi4 = byte(index) >> 4;
const CRGB* entry = (CRGB*)((uint8_t*)(&(pal[0])) + (hi4 * sizeof(CRGB)));
unsigned lo4 = (index & 0x0F);
const CRGB* entry = (CRGB*)&(pal[0]) + hi4;
unsigned red1 = entry->r;
unsigned green1 = entry->g;
unsigned blue1 = entry->b;
if (blendType != NOBLEND) {
if(lo4 && blendType != NOBLEND) {
if (hi4 == 15) entry = &(pal[0]);
else ++entry;
unsigned f2 = ((index & 0x0F) << 4) + 1; // +1 so we scale by 256 as a max value, then result can just be shifted by 8
unsigned f1 = (257 - f2); // f2 is 1 minimum, so this is 256 max
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8;
unsigned f2 = (lo4 << 4);
unsigned f1 = 256 - f2;
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8; // note: using color_blend() is 20% slower
green1 = (green1 * f1 + (unsigned)entry->g * f2) >> 8;
blue1 = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
}
if (brightness < 255) { // note: zero checking could be done to return black but that is hardly ever used so it is omitted
uint32_t scale = brightness + 1; // adjust for rounding (bitshift)
red1 = (red1 * scale) >> 8;
red1 = (red1 * scale) >> 8; // note: using color_fade() is 30% slower
green1 = (green1 * scale) >> 8;
blue1 = (blue1 * scale) >> 8;
}

View File

@ -37,7 +37,7 @@
#endif
#ifndef WLED_MAX_USERMODS
#ifdef ESP8266
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
#define WLED_MAX_USERMODS 4
#else
#define WLED_MAX_USERMODS 6
@ -49,31 +49,31 @@
#define WLED_MAX_DIGITAL_CHANNELS 3
#define WLED_MAX_ANALOG_CHANNELS 5
#define WLED_MAX_BUSSES 4 // will allow 3 digital & 1 analog RGB
#define WLED_MIN_VIRTUAL_BUSSES 2
#define WLED_MIN_VIRTUAL_BUSSES 3
#else
#define WLED_MAX_ANALOG_CHANNELS (LEDC_CHANNEL_MAX*LEDC_SPEED_MODE_MAX)
#if defined(CONFIG_IDF_TARGET_ESP32C3) // 2 RMT, 6 LEDC, only has 1 I2S but NPB does not support it ATM
#define WLED_MAX_BUSSES 6 // will allow 2 digital & 2 analog RGB or 6 PWM white
#define WLED_MAX_DIGITAL_CHANNELS 2
//#define WLED_MAX_ANALOG_CHANNELS 6
#define WLED_MIN_VIRTUAL_BUSSES 3
#define WLED_MIN_VIRTUAL_BUSSES 4
#elif defined(CONFIG_IDF_TARGET_ESP32S2) // 4 RMT, 8 LEDC, only has 1 I2S bus, supported in NPB
// the 5th bus (I2S) will prevent Audioreactive usermod from functioning (it is last used though)
#define WLED_MAX_BUSSES 7 // will allow 5 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 5
//#define WLED_MAX_ANALOG_CHANNELS 8
#define WLED_MIN_VIRTUAL_BUSSES 3
#elif defined(CONFIG_IDF_TARGET_ESP32S3) // 4 RMT, 8 LEDC, has 2 I2S but NPB does not support them ATM
#define WLED_MAX_BUSSES 6 // will allow 4 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 4
#define WLED_MAX_BUSSES 14 // will allow 12 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 12 // x4 RMT + x1/x8 I2S0
//#define WLED_MAX_ANALOG_CHANNELS 8
#define WLED_MIN_VIRTUAL_BUSSES 4
#elif defined(CONFIG_IDF_TARGET_ESP32S3) // 4 RMT, 8 LEDC, has 2 I2S but NPB supports parallel x8 LCD on I2S1
#define WLED_MAX_BUSSES 14 // will allow 12 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 12 // x4 RMT + x8 I2S-LCD
//#define WLED_MAX_ANALOG_CHANNELS 8
#define WLED_MIN_VIRTUAL_BUSSES 6
#else
// the last digital bus (I2S0) will prevent Audioreactive usermod from functioning
#define WLED_MAX_BUSSES 20 // will allow 17 digital & 3 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 17
#define WLED_MAX_BUSSES 19 // will allow 16 digital & 3 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 16 // x1/x8 I2S1 + x8 RMT
//#define WLED_MAX_ANALOG_CHANNELS 16
#define WLED_MIN_VIRTUAL_BUSSES 4
#define WLED_MIN_VIRTUAL_BUSSES 6
#endif
#endif
#else
@ -115,7 +115,7 @@
#endif
#endif
#ifdef ESP8266
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
#define WLED_MAX_COLOR_ORDER_MAPPINGS 5
#else
#define WLED_MAX_COLOR_ORDER_MAPPINGS 10
@ -125,7 +125,7 @@
#undef WLED_MAX_LEDMAPS
#endif
#ifndef WLED_MAX_LEDMAPS
#ifdef ESP8266
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
#define WLED_MAX_LEDMAPS 10
#else
#define WLED_MAX_LEDMAPS 16
@ -205,6 +205,7 @@
#define USERMOD_ID_PIXELS_DICE_TRAY 54 //Usermod "pixels_dice_tray.h"
#define USERMOD_ID_DEEP_SLEEP 55 //Usermod "usermod_deep_sleep.h"
#define USERMOD_ID_RF433 56 //Usermod "usermod_v2_RF433.h"
#define USERMOD_ID_BRIGHTNESS_FOLLOW_SUN 57 //Usermod "usermod_v2_brightness_follow_sun.h"
//Access point behavior
#define AP_BEHAVIOR_BOOT_NO_CONN 0 //Open AP when no connection after boot
@ -476,6 +477,8 @@
#ifndef MAX_LEDS
#ifdef ESP8266
#define MAX_LEDS 1664 //can't rely on memory limit to limit this to 1600 LEDs
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
#define MAX_LEDS 2048 //due to memory constraints
#else
#define MAX_LEDS 8192
#endif
@ -485,7 +488,9 @@
#ifdef ESP8266
#define MAX_LED_MEMORY 4000
#else
#if defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32C3)
#if defined(ARDUINO_ARCH_ESP32S2)
#define MAX_LED_MEMORY 16000
#elif defined(ARDUINO_ARCH_ESP32C3)
#define MAX_LED_MEMORY 32000
#else
#define MAX_LED_MEMORY 64000

View File

@ -2,7 +2,7 @@ var d=document;
var loc = false, locip, locproto = "http:";
function H(pg="") { window.open("https://kno.wled.ge/"+pg); }
function GH() { window.open("https://github.com/Aircoookie/WLED"); }
function GH() { window.open("https://github.com/wled-dev/WLED"); }
function gId(c) { return d.getElementById(c); } // getElementById
function cE(e) { return d.createElement(e); } // createElement
function gEBCN(c) { return d.getElementsByClassName(c); } // getElementsByClassName
@ -16,7 +16,7 @@ function isI(n) { return n === +n && n === (n|0); } // isInteger
function toggle(el) { gId(el).classList.toggle("hide"); gId('No'+el).classList.toggle("hide"); }
function tooltip(cont=null) {
d.querySelectorAll((cont?cont+" ":"")+"[title]").forEach((element)=>{
element.addEventListener("mouseover", ()=>{
element.addEventListener("pointerover", ()=>{
// save title
element.setAttribute("data-title", element.getAttribute("title"));
const tooltip = d.createElement("span");
@ -41,7 +41,7 @@ function tooltip(cont=null) {
tooltip.classList.add("visible");
});
element.addEventListener("mouseout", ()=>{
element.addEventListener("pointerout", ()=>{
d.querySelectorAll('.tooltip').forEach((tooltip)=>{
tooltip.classList.remove("visible");
d.body.removeChild(tooltip);

View File

@ -362,7 +362,7 @@
<!--
If you want to load iro.js and rangetouch.js as consecutive requests, you can do it like it was done in 0.14.0:
https://github.com/Aircoookie/WLED/blob/v0.14.0/wled00/data/index.htm
https://github.com/wled-dev/WLED/blob/v0.14.0/wled00/data/index.htm
-->
<script src="iro.js"></script>
<script src="rangetouch.js"></script>

View File

@ -807,6 +807,8 @@ function populateSegments(s)
`<div class="sel-p"><select class="sel-p" id="seg${i}si" onchange="setSi(${i})">`+
`<option value="0" ${inst.si==0?' selected':''}>BeatSin</option>`+
`<option value="1" ${inst.si==1?' selected':''}>WeWillRockYou</option>`+
`<option value="2" ${inst.si==2?' selected':''}>10/13</option>`+
`<option value="3" ${inst.si==3?' selected':''}>14/3</option>`+
`</select></div>`+
`</div>`;
cn += `<div class="seg lstI ${i==s.mainseg && !simplifiedUI ? 'selected' : ''} ${exp ? "expanded":""}" id="seg${i}" data-set="${inst.set}">`+
@ -1416,7 +1418,7 @@ function makeWS() {
ws = null;
}
ws.onopen = (e)=>{
//ws.send("{'v':true}"); // unnecessary (https://github.com/Aircoookie/WLED/blob/master/wled00/ws.cpp#L18)
//ws.send("{'v':true}"); // unnecessary (https://github.com/wled-dev/WLED/blob/main/wled00/ws.cpp#L18)
wsRpt = 0;
reqsLegal = true;
}
@ -2727,7 +2729,7 @@ setInterval(()=>{
gId('heart').style.color = `hsl(${hc}, 100%, 50%)`;
}, 910);
function openGH() { window.open("https://github.com/Aircoookie/WLED/wiki"); }
function openGH() { window.open("https://github.com/wled-dev/WLED/wiki"); }
var cnfr = false;
function cnfReset()
@ -3120,10 +3122,9 @@ function mergeDeep(target, ...sources)
return mergeDeep(target, ...sources);
}
function tooltip(cont=null)
{
function tooltip(cont=null) {
d.querySelectorAll((cont?cont+" ":"")+"[title]").forEach((element)=>{
element.addEventListener("mouseover", ()=>{
element.addEventListener("pointerover", ()=>{
// save title
element.setAttribute("data-title", element.getAttribute("title"));
const tooltip = d.createElement("span");
@ -3148,7 +3149,7 @@ function tooltip(cont=null)
tooltip.classList.add("visible");
});
element.addEventListener("mouseout", ()=>{
element.addEventListener("pointerout", ()=>{
d.querySelectorAll('.tooltip').forEach((tooltip)=>{
tooltip.classList.remove("visible");
d.body.removeChild(tooltip);

View File

@ -6,7 +6,7 @@
<title>DMX Settings</title>
<script src="common.js" async type="text/javascript"></script>
<script>
function HW(){window.open("https://github.com/Aircoookie/WLED/wiki/DMX");}
function HW(){window.open("https://kno.wled.ge/interfaces/dmx-output/");}
function GCH(num) {
gId('dmxchannels').innerHTML += "";
for (i=0;i<num;i++) {

View File

@ -42,10 +42,10 @@
if (loc) d.Sf.action = getURL('/settings/leds');
}
function bLimits(b,v,p,m,l,o=5,d=2,a=6) {
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S)
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S)
maxA = a; // maxA - max analog channels
maxV = v; // maxV - min virtual buses
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 19 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 16 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266
maxA = a; // maxA - max analog channels: 16 - ESP32, 8 - S3/S2, 6 - C3, 5 - 8266
maxV = v; // maxV - min virtual buses: 4 - ESP32/S3, 3 - S2/C3, 2 - ESP8266
maxPB = p; // maxPB - max LEDs per bus
maxM = m; // maxM - max LED memory
maxL = l; // maxL - max LEDs (will serve to determine ESP >1664 == ESP32)
@ -250,6 +250,7 @@
}
// enable/disable LED fields
let dC = 0; // count of digital buses (for parallel I2S)
let LTs = d.Sf.querySelectorAll("#mLC select[name^=LT]");
LTs.forEach((s,i)=>{
if (i < LTs.length-1) s.disabled = true; // prevent changing type (as we can't update options)
@ -257,6 +258,7 @@
var n = s.name.substring(2);
var t = parseInt(s.value);
memu += getMem(t, n); // calc memory
dC += (isDig(t) && !isD2P(t));
setPinConfig(n,t);
gId("abl"+n).style.display = (!abl || !isDig(t)) ? "none" : "inline"; // show/hide individual ABL settings
if (change) { // did we change LED type?
@ -295,8 +297,7 @@
// do we have a led count field
if (nm=="LC") {
let c = parseInt(LC.value,10); //get LED count
if (c > 300 && i < 8) maxB = oMaxB - Math.max(maxD-7,0); //TODO: hard limit for buses when using ESP32 parallel I2S
if (!customStarts || !startsDirty[n]) gId("ls"+n).value=sLC; //update start value
if (!customStarts || !startsDirty[n]) gId("ls"+n).value = sLC; //update start value
gId("ls"+n).disabled = !customStarts; //enable/disable field editing
if (c) {
let s = parseInt(gId("ls"+n).value); //start value
@ -350,6 +351,17 @@
else LC.style.color = d.ro_gpio.some((e)=>e==parseInt(LC.value)) ? "orange" : "#fff";
}
});
const S2 = (oMaxB == 14) && (maxV == 4);
const S3 = (oMaxB == 14) && (maxV == 6);
if (oMaxB == 19 || S2 || S3) { // TODO: crude ESP32 & S2/S3 detection
if (maxLC > 300 || dC <= 2) {
d.Sf["PR"].checked = false;
gId("prl").classList.add("hide");
} else
gId("prl").classList.remove("hide");
maxD = (S2 || S3 ? 4 : 8) + (d.Sf["PR"].checked ? 8 : S2); // TODO: use bLimits() : 4/8RMT + (x1/x8 parallel) I2S1
maxB = oMaxB - (d.Sf["PR"].checked ? 0 : 7 + S3); // S2 (maxV==3) does support single I2S
}
// distribute ABL current if not using PPL
enPPL(sDI);
@ -470,14 +482,13 @@ mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
}
}
});
enLA(d.Sf["LAsel"+s],s); // update LED mA
// disable inappropriate LED types
let sel = d.getElementsByName("LT"+s)[0]
if (i >= maxB || digitalB >= maxD) disable(sel,'option[data-type="D"]'); // NOTE: see isDig()
if (i >= maxB || twopinB >= 1) disable(sel,'option[data-type="2P"]'); // NOTE: see isD2P()
disable(sel,`option[data-type^="${'A'.repeat(maxA-analogB+1)}"]`); // NOTE: see isPWM()
sel.selectedIndex = sel.querySelector('option:not(:disabled)').index;
// initialize current limiter
enLA(d.Sf["LAsel"+s],s);
}
if (n==-1) {
o[--i].remove();--i;
@ -789,6 +800,7 @@ Swap: <select id="xw${s}" name="XW${s}">
Use less than <span id="wreason">800 LEDs per output</span> for the best experience!<br>
</div>
<hr class="sml">
<div id="prl" class="hide">Use parallel I2S: <input type="checkbox" name="PR"><br></div>
Make a segment for each output: <input type="checkbox" name="MS"><br>
Custom bus start indices: <input type="checkbox" onchange="tglSi(this.checked)" id="si"><br>
Use global LED buffer: <input type="checkbox" name="LD" onchange="UI()"><br>

View File

@ -68,11 +68,11 @@
<div>Restore configuration<br><input type="file" name="data2" accept=".json"> <button type="button" onclick="uploadFile(d.Sf.data2,'/cfg.json');">Upload</button><br></div>
<hr>
<h3>About</h3>
<a href="https://github.com/Aircoookie/WLED/" target="_blank">WLED</a>&#32;version ##VERSION##<!-- Autoreplaced from package.json --><br><br>
<a href="https://github.com/Aircoookie/WLED/wiki/Contributors-and-credits" target="_blank">Contributors, dependencies and special thanks</a><br>
<a href="https://github.com/wled-dev/WLED/" target="_blank">WLED</a>&#32;version ##VERSION##<!-- Autoreplaced from package.json --><br><br>
<a href="https://kno.wled.ge/about/contributors/" target="_blank">Contributors, dependencies and special thanks</a><br>
A huge thank you to everyone who helped me create WLED!<br><br>
(c) 2016-2024 Christian Schwinne <br>
<i>Licensed under the <a href="https://github.com/Aircoookie/WLED/blob/master/LICENSE" target="_blank">EUPL v1.2 license</a></i><br><br>
<i>Licensed under the <a href="https://github.com/wled-dev/WLED/blob/main/LICENSE" target="_blank">EUPL v1.2 license</a></i><br><br>
Server message: <span class="sip"> Response error! </span><hr>
<div id="toast"></div>
<button type="button" onclick="B()">Back</button><button type="submit">Save</button>

View File

@ -17,9 +17,9 @@
<h2>WLED Software Update</h2>
<form method='POST' action='./update' id='uf' enctype='multipart/form-data' onsubmit="U()">
Installed version: <span class="sip">##VERSION##</span><br>
Download the latest binary: <a href="https://github.com/Aircoookie/WLED/releases" target="_blank"
Download the latest binary: <a href="https://github.com/wled-dev/WLED/releases" target="_blank"
style="vertical-align: text-bottom; display: inline-flex;">
<img src="https://img.shields.io/github/release/Aircoookie/WLED.svg?style=flat-square"></a><br>
<img src="https://img.shields.io/github/release/wled-dev/WLED.svg?style=flat-square"></a><br>
<input type='file' name='update' required><br> <!--should have accept='.bin', but it prevents file upload from android app-->
<button type="submit">Update!</button><br>
<button type="button" onclick="B()">Back</button>

View File

@ -1,3 +1,4 @@
#pragma once
#ifndef WLED_FCN_DECLARE_H
#define WLED_FCN_DECLARE_H

View File

@ -530,7 +530,7 @@ static void decodeIR9(uint32_t code)
/*
This allows users to customize IR actions without the need to edit C code and compile.
From the https://github.com/Aircoookie/WLED/wiki/Infrared-Control page, download the starter
From the https://github.com/wled-dev/WLED/wiki/Infrared-Control page, download the starter
ir.json file that corresponds to the number of buttons on your remote.
Many of the remotes with the same number of buttons emit the same codes, but will have
different labels or colors. Once you edit the ir.json file, upload it to your controller
@ -611,9 +611,15 @@ static void decodeIRJson(uint32_t code)
handleSet(nullptr, cmdStr, false); // no stateUpdated() call here
}
} else {
// command is JSON object (TODO: currently will not handle irApplyToAllSelected correctly)
if (jsonCmdObj[F("psave")].isNull()) deserializeState(jsonCmdObj, CALL_MODE_BUTTON_PRESET);
else {
// command is JSON object
if (jsonCmdObj[F("psave")].isNull()) {
if (irApplyToAllSelected && jsonCmdObj["seg"].is<JsonArray>()) {
JsonObject seg = jsonCmdObj["seg"][0]; // take 1st segment from array and use it to apply to all selected segments
seg.remove("id"); // remove segment ID if it exists
jsonCmdObj["seg"] = seg; // replace array with object
}
deserializeState(jsonCmdObj, CALL_MODE_BUTTON_PRESET); // **will call stateUpdated() with correct CALL_MODE**
} else {
uint8_t psave = jsonCmdObj[F("psave")].as<int>();
char pname[33];
sprintf_P(pname, PSTR("IR Preset %d"), psave);
@ -628,6 +634,7 @@ static void applyRepeatActions()
{
if (irEnabled == 8) {
decodeIRJson(lastValidCode);
stateUpdated(CALL_MODE_BUTTON_PRESET);
return;
} else switch (lastRepeatableAction) {
case ACTION_BRIGHT_UP : incBrightness(); stateUpdated(CALL_MODE_BUTTON); return;
@ -664,7 +671,7 @@ static void decodeIR(uint32_t code)
if (irEnabled == 8) { // any remote configurable with ir.json file
decodeIRJson(code);
stateUpdated(CALL_MODE_BUTTON);
stateUpdated(CALL_MODE_BUTTON_PRESET);
return;
}
if (code > 0xFFFFFF) return; //invalid code

View File

@ -338,7 +338,7 @@ bool deserializeState(JsonObject root, byte callMode, byte presetId)
#ifndef WLED_DISABLE_MODE_BLEND
blendingStyle = root[F("bs")] | blendingStyle;
blendingStyle = constrain(blendingStyle, 0, BLEND_STYLE_COUNT-1);
blendingStyle &= 0x1F;
#endif
// temporary transition (applies only once)

View File

@ -134,11 +134,13 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
strip.correctWB = request->hasArg(F("CCT"));
strip.cctFromRgb = request->hasArg(F("CR"));
cctICused = request->hasArg(F("IC"));
uint8_t cctBlending = request->arg(F("CB")).toInt();
Bus::setCCTBlend(cctBlending);
Bus::setCCTBlend(request->arg(F("CB")).toInt());
Bus::setGlobalAWMode(request->arg(F("AW")).toInt());
strip.setTargetFps(request->arg(F("FR")).toInt());
useGlobalLedBuffer = request->hasArg(F("LD"));
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
useParallelI2S = request->hasArg(F("PR"));
#endif
bool busesChanged = false;
for (int s = 0; s < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; s++) {
@ -208,8 +210,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
type |= request->hasArg(rf) << 7; // off refresh override
// actual finalization is done in WLED::loop() (removing old busses and adding new)
// this may happen even before this loop is finished so we do "doInitBusses" after the loop
if (busConfigs[s] != nullptr) delete busConfigs[s];
busConfigs[s] = new(std::nothrow) BusConfig(type, pins, start, length, colorOrder | (channelSwap<<4), request->hasArg(cv), skip, awmode, freq, useGlobalLedBuffer, maPerLed, maMax);
busConfigs.push_back(std::move(BusConfig(type, pins, start, length, colorOrder | (channelSwap<<4), request->hasArg(cv), skip, awmode, freq, useGlobalLedBuffer, maPerLed, maMax)));
busesChanged = true;
}
//doInitBusses = busesChanged; // we will do that below to ensure all input data is processed

View File

@ -1,7 +1,7 @@
#include "wled.h"
/*
* This v1 usermod file allows you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
* See: https://github.com/wled-dev/WLED/wiki/Add-own-functionality
* EEPROM bytes 2750+ are reserved for your custom use case. (if you extend #define EEPSIZE in const.h)
* If you just need 8 bytes, use 2551-2559 (you do not need to increase EEPSIZE)
*

View File

@ -150,7 +150,7 @@ bool isAsterisksOnly(const char* str, byte maxLen)
}
//threading/network callback details: https://github.com/Aircoookie/WLED/pull/2336#discussion_r762276994
//threading/network callback details: https://github.com/wled-dev/WLED/pull/2336#discussion_r762276994
bool requestJSONBufferLock(uint8_t moduleID)
{
if (pDoc == nullptr) {

View File

@ -185,46 +185,7 @@ void WLED::loop()
DEBUG_PRINTLN(F("Re-init busses."));
bool aligned = strip.checkSegmentAlignment(); //see if old segments match old bus(ses)
BusManager::removeAll();
unsigned mem = 0;
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
bool useParallel = false;
#if defined(ARDUINO_ARCH_ESP32) && !defined(ARDUINO_ARCH_ESP32S2) && !defined(ARDUINO_ARCH_ESP32S3) && !defined(ARDUINO_ARCH_ESP32C3)
unsigned digitalCount = 0;
unsigned maxLedsOnBus = 0;
unsigned maxChannels = 0;
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
if (busConfigs[i] == nullptr) break;
if (!Bus::isDigital(busConfigs[i]->type)) continue;
if (!Bus::is2Pin(busConfigs[i]->type)) {
digitalCount++;
unsigned channels = Bus::getNumberOfChannels(busConfigs[i]->type);
if (busConfigs[i]->count > maxLedsOnBus) maxLedsOnBus = busConfigs[i]->count;
if (channels > maxChannels) maxChannels = channels;
}
}
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
if (maxLedsOnBus <= 300 && digitalCount > 5) {
DEBUG_PRINTF_P(PSTR("Switching to parallel I2S."));
useParallel = true;
BusManager::useParallelOutput();
mem = BusManager::memUsage(maxChannels, maxLedsOnBus, 8); // use alternate memory calculation (hse to be used *after* useParallelOutput())
}
#endif
// create buses/outputs
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
if (busConfigs[i] == nullptr || (!useParallel && i > 10)) break;
if (useParallel && i < 8) {
// if for some unexplained reason the above pre-calculation was wrong, update
unsigned memT = BusManager::memUsage(*busConfigs[i]); // includes x8 memory allocation for parallel I2S
if (memT > mem) mem = memT; // if we have unequal LED count use the largest
} else
mem += BusManager::memUsage(*busConfigs[i]); // includes global buffer
if (mem <= MAX_LED_MEMORY) BusManager::add(*busConfigs[i]);
delete busConfigs[i];
busConfigs[i] = nullptr;
}
strip.finalizeInit(); // also loads default ledmap if present
strip.finalizeInit(); // will create buses and also load default ledmap if present
BusManager::setBrightness(bri); // fix re-initialised bus' brightness #4005
if (aligned) strip.makeAutoSegments();
else strip.fixInvalidSegments();
@ -570,6 +531,7 @@ void WLED::beginStrip()
strip.makeAutoSegments();
strip.setBrightness(0);
strip.setShowCallback(handleOverlayDraw);
doInitBusses = false;
if (turnOnAtBoot) {
if (briS > 0) bri = briS;
@ -795,6 +757,7 @@ void WLED::initConnection()
#endif
WiFi.disconnect(true); // close old connections
delay(5); // wait for hardware to be ready
#ifdef ESP8266
WiFi.setPhyMode(force802_3g ? WIFI_PHY_MODE_11G : WIFI_PHY_MODE_11N);
#endif

View File

@ -15,7 +15,7 @@
// ESP8266-01 (blue) got too little storage space to work with WLED. 0.10.2 is the last release supporting this unit.
// ESP8266-01 (black) has 1MB flash and can thus fit the whole program, although OTA update is not possible. Use 1M(128K SPIFFS).
// 2-step OTA may still be possible: https://github.com/Aircoookie/WLED/issues/2040#issuecomment-981111096
// 2-step OTA may still be possible: https://github.com/wled-dev/WLED/issues/2040#issuecomment-981111096
// Uncomment some of the following lines to disable features:
// Alternatively, with platformio pass your chosen flags to your custom build target in platformio_override.ini
@ -371,7 +371,7 @@ WLED_GLOBAL bool noWifiSleep _INIT(false);
WLED_GLOBAL bool force802_3g _INIT(false);
#endif // WLED_SAVE_RAM
#ifdef ARDUINO_ARCH_ESP32
#if defined(LOLIN_WIFI_FIX) && (defined(ARDUINO_ARCH_ESP32C3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32S3))
#if defined(LOLIN_WIFI_FIX) && (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3))
WLED_GLOBAL uint8_t txPower _INIT(WIFI_POWER_8_5dBm);
#else
WLED_GLOBAL uint8_t txPower _INIT(WIFI_POWER_19_5dBm);
@ -398,6 +398,9 @@ WLED_GLOBAL byte bootPreset _INIT(0); // save preset to load
WLED_GLOBAL bool useGlobalLedBuffer _INIT(false); // double buffering disabled on ESP8266
#else
WLED_GLOBAL bool useGlobalLedBuffer _INIT(true); // double buffering enabled on ESP32
#ifndef CONFIG_IDF_TARGET_ESP32C3
WLED_GLOBAL bool useParallelI2S _INIT(false); // parallel I2S for ESP32
#endif
#endif
#ifdef WLED_USE_IC_CCT
WLED_GLOBAL bool cctICused _INIT(true); // CCT IC used (Athom 15W bulbs)
@ -893,7 +896,7 @@ WLED_GLOBAL bool e131NewData _INIT(false);
// led fx library object
WLED_GLOBAL BusManager busses _INIT(BusManager());
WLED_GLOBAL WS2812FX strip _INIT(WS2812FX());
WLED_GLOBAL BusConfig* busConfigs[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES] _INIT({nullptr}); //temporary, to remember values from network callback until after
WLED_GLOBAL std::vector<BusConfig> busConfigs; //temporary, to remember values from network callback until after
WLED_GLOBAL bool doInitBusses _INIT(false);
WLED_GLOBAL int8_t loadLedmap _INIT(-1);
WLED_GLOBAL uint8_t currentLedmap _INIT(0);

View File

@ -11,7 +11,7 @@
* Only used to restore config from pre-0.11 installations using the deEEP() methods
*
* Methods to handle saving and loading to non-volatile memory
* EEPROM Map: https://github.com/Aircoookie/WLED/wiki/EEPROM-Map
* EEPROM Map: https://github.com/wled-dev/WLED/wiki/EEPROM-Map
*/
//eeprom Version code, enables default settings instead of 0 init on update

View File

@ -289,6 +289,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
printSetFormValue(settingsScript,PSTR("FR"),strip.getTargetFps());
printSetFormValue(settingsScript,PSTR("AW"),Bus::getGlobalAWMode());
printSetFormCheckbox(settingsScript,PSTR("LD"),useGlobalLedBuffer);
printSetFormCheckbox(settingsScript,PSTR("PR"),BusManager::hasParallelOutput()); // get it from bus manager not global variable
unsigned sumMa = 0;
for (int s = 0; s < BusManager::getNumBusses(); s++) {