Merge branch 'master' into multifix

This commit is contained in:
Blaž Kristan 2025-03-08 12:59:15 +01:00
commit 2b666ab9f7
22 changed files with 657 additions and 479 deletions

View File

@ -39,8 +39,9 @@ jobs:
files: |
*.bin
*.bin.gz
# - name: Repository Dispatch
# uses: peter-evans/repository-dispatch@v3
# with:
# repository: wled-dev/WLED-WebInstaller
# event-type: release-nightly
- name: Repository Dispatch
uses: peter-evans/repository-dispatch@v3
with:
repository: wled/WLED-WebInstaller
event-type: release-nightly
token: ${{ secrets.PAT_PUBLIC }}

13
.github/workflows/pr-merge.yaml vendored Normal file
View File

@ -0,0 +1,13 @@
name: Notify Discord on PR Merge
on:
pull_request:
types: [closed]
jobs:
notify:
runs-on: ubuntu-latest
steps:
- name: Send Discord notification
if: github.event.pull_request.merged == true
run: |
curl -H "Content-Type: application/json" -d '{"content": "Pull Request #{{ github.event.pull_request.number }} merged by {{ github.actor }}"}' ${{ secrets.DISCORD_WEBHOOK_BETA_TESTERS }}

View File

@ -18,9 +18,16 @@ jobs:
- uses: actions/download-artifact@v4
with:
merge-multiple: true
- name: "✏️ Generate release changelog"
id: changelog
uses: janheinrichmerker/action-github-changelog-generator@v2.3
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
- name: Create draft release
uses: softprops/action-gh-release@v1
with:
body: ${{ steps.changelog.outputs.changelog }}
draft: True
files: |
*.bin

13
.github/workflows/test.yaml vendored Normal file
View File

@ -0,0 +1,13 @@
on:
workflow_dispatch:
jobs:
dispatch:
runs-on: ubuntu-latest
steps:
- name: Repository Dispatch
uses: peter-evans/repository-dispatch@v3
with:
repository: wled/WLED-WebInstaller
event-type: release-nightly
token: ${{ secrets.PAT_PUBLIC }}

View File

@ -10,7 +10,7 @@ if node_ex is None:
else:
# Install the necessary node packages for the pre-build asset bundling script
print('\x1b[6;33;42m' + 'Installing node packages' + '\x1b[0m')
env.Execute("npm install")
env.Execute("npm ci")
# Call the bundling script
exitCode = env.Execute("npm run build")
@ -18,4 +18,4 @@ else:
# If it failed, abort the build
if (exitCode):
print('\x1b[0;31;43m' + 'npm run build fails check https://kno.wled.ge/advanced/compiling-wled/' + '\x1b[0m')
exit(exitCode)
exit(exitCode)

View File

@ -7467,42 +7467,86 @@ static const char _data_FX_MODE_2DDISTORTIONWAVES[] PROGMEM = "Distortion Waves@
//Soap
//@Stepko
//Idea from https://www.youtube.com/watch?v=DiHBgITrZck&ab_channel=StefanPetrick
// adapted for WLED by @blazoncek
// adapted for WLED by @blazoncek, optimization by @dedehai
static void soapPixels(bool isRow, uint8_t *noise3d, CRGB *pixels) {
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return x + y * cols; };
const auto abs = [](int x) { return x<0 ? -x : x; };
const int tRC = isRow ? rows : cols; // transpose if isRow
const int tCR = isRow ? cols : rows; // transpose if isRow
const int amplitude = max(1, (tCR - 8) >> 3) * (1 + (SEGMENT.custom1 >> 5));
const int shift = 0; //(128 - SEGMENT.custom2)*2;
CRGB ledsbuff[tCR];
for (int i = 0; i < tRC; i++) {
int amount = ((int)noise3d[isRow ? i*cols : i] - 128) * amplitude + shift; // use first row/column: XY(0,i)/XY(i,0)
int delta = abs(amount) >> 8;
int fraction = abs(amount) & 255;
for (int j = 0; j < tCR; j++) {
int zD, zF;
if (amount < 0) {
zD = j - delta;
zF = zD - 1;
} else {
zD = j + delta;
zF = zD + 1;
}
int yA = abs(zD)%tCR;
int yB = abs(zF)%tCR;
int xA = i;
int xB = i;
if (isRow) {
std::swap(xA,yA);
std::swap(xB,yB);
}
const int indxA = XY(xA,yA);
const int indxB = XY(xB,yB);
CRGB PixelA;
CRGB PixelB;
if ((zD >= 0) && (zD < tCR)) PixelA = pixels[indxA];
else PixelA = ColorFromPalette(SEGPALETTE, ~noise3d[indxA]*3);
if ((zF >= 0) && (zF < tCR)) PixelB = pixels[indxB];
else PixelB = ColorFromPalette(SEGPALETTE, ~noise3d[indxB]*3);
ledsbuff[j] = (PixelA.nscale8(ease8InOutApprox(255 - fraction))) + (PixelB.nscale8(ease8InOutApprox(fraction)));
}
for (int j = 0; j < tCR; j++) {
CRGB c = ledsbuff[j];
if (isRow) std::swap(j,i);
SEGMENT.setPixelColorXY(i, j, pixels[XY(i,j)] = c);
if (isRow) std::swap(j,i);
}
}
}
uint16_t mode_2Dsoap() {
if (!strip.isMatrix || !SEGMENT.is2D()) return mode_static(); // not a 2D set-up
const int cols = SEG_W;
const int rows = SEG_H;
const auto XY = [&](int x, int y) { return (x%cols) + (y%rows) * cols; };
const auto XY = [&](int x, int y) { return x + y * cols; };
const size_t dataSize = SEGMENT.width() * SEGMENT.height() * sizeof(uint8_t); // prevent reallocation if mirrored or grouped
const size_t segSize = SEGMENT.width() * SEGMENT.height(); // prevent reallocation if mirrored or grouped
const size_t dataSize = segSize * (sizeof(uint8_t) + sizeof(CRGB)); // pixels and noise
if (!SEGENV.allocateData(dataSize + sizeof(uint32_t)*3)) return mode_static(); //allocation failed
uint8_t *noise3d = reinterpret_cast<uint8_t*>(SEGENV.data);
uint32_t *noise32_x = reinterpret_cast<uint32_t*>(SEGENV.data + dataSize);
uint32_t *noise32_y = reinterpret_cast<uint32_t*>(SEGENV.data + dataSize + sizeof(uint32_t));
uint32_t *noise32_z = reinterpret_cast<uint32_t*>(SEGENV.data + dataSize + sizeof(uint32_t)*2);
uint8_t *noise3d = reinterpret_cast<uint8_t*>(SEGENV.data);
CRGB *pixels = reinterpret_cast<CRGB*>(SEGENV.data + segSize * sizeof(uint8_t));
uint32_t *noisecoord = reinterpret_cast<uint32_t*>(SEGENV.data + dataSize); // x, y, z coordinates
const uint32_t scale32_x = 160000U/cols;
const uint32_t scale32_y = 160000U/rows;
const uint32_t mov = MIN(cols,rows)*(SEGMENT.speed+2)/2;
const uint8_t smoothness = MIN(250,SEGMENT.intensity); // limit as >250 produces very little changes
// init
if (SEGENV.call == 0) {
*noise32_x = hw_random();
*noise32_y = hw_random();
*noise32_z = hw_random();
} else {
*noise32_x += mov;
*noise32_y += mov;
*noise32_z += mov;
}
if (SEGENV.call == 0) for (int i = 0; i < 3; i++) noisecoord[i] = hw_random(); // init
else for (int i = 0; i < 3; i++) noisecoord[i] += mov;
for (int i = 0; i < cols; i++) {
int32_t ioffset = scale32_x * (i - cols / 2);
for (int j = 0; j < rows; j++) {
int32_t joffset = scale32_y * (j - rows / 2);
uint8_t data = inoise16(*noise32_x + ioffset, *noise32_y + joffset, *noise32_z) >> 8;
uint8_t data = inoise16(noisecoord[0] + ioffset, noisecoord[1] + joffset, noisecoord[2]) >> 8;
noise3d[XY(i,j)] = scale8(noise3d[XY(i,j)], smoothness) + scale8(data, 255 - smoothness);
}
}
@ -7517,64 +7561,12 @@ uint16_t mode_2Dsoap() {
}
}
int zD;
int zF;
int amplitude;
int shiftX = 0; //(SEGMENT.custom1 - 128) / 4;
int shiftY = 0; //(SEGMENT.custom2 - 128) / 4;
CRGB ledsbuff[MAX(cols,rows)];
amplitude = (cols >= 16) ? (cols-8)/8 : 1;
for (int y = 0; y < rows; y++) {
int amount = ((int)noise3d[XY(0,y)] - 128) * 2 * amplitude + 256*shiftX;
int delta = abs(amount) >> 8;
int fraction = abs(amount) & 255;
for (int x = 0; x < cols; x++) {
if (amount < 0) {
zD = x - delta;
zF = zD - 1;
} else {
zD = x + delta;
zF = zD + 1;
}
CRGB PixelA = CRGB::Black;
if ((zD >= 0) && (zD < cols)) PixelA = SEGMENT.getPixelColorXY(zD, y);
else PixelA = ColorFromPalette(SEGPALETTE, ~noise3d[XY(abs(zD),y)]*3);
CRGB PixelB = CRGB::Black;
if ((zF >= 0) && (zF < cols)) PixelB = SEGMENT.getPixelColorXY(zF, y);
else PixelB = ColorFromPalette(SEGPALETTE, ~noise3d[XY(abs(zF),y)]*3);
ledsbuff[x] = (PixelA.nscale8(ease8InOutApprox(255 - fraction))) + (PixelB.nscale8(ease8InOutApprox(fraction)));
}
for (int x = 0; x < cols; x++) SEGMENT.setPixelColorXY(x, y, ledsbuff[x]);
}
amplitude = (rows >= 16) ? (rows-8)/8 : 1;
for (int x = 0; x < cols; x++) {
int amount = ((int)noise3d[XY(x,0)] - 128) * 2 * amplitude + 256*shiftY;
int delta = abs(amount) >> 8;
int fraction = abs(amount) & 255;
for (int y = 0; y < rows; y++) {
if (amount < 0) {
zD = y - delta;
zF = zD - 1;
} else {
zD = y + delta;
zF = zD + 1;
}
CRGB PixelA = CRGB::Black;
if ((zD >= 0) && (zD < rows)) PixelA = SEGMENT.getPixelColorXY(x, zD);
else PixelA = ColorFromPalette(SEGPALETTE, ~noise3d[XY(x,abs(zD))]*3);
CRGB PixelB = CRGB::Black;
if ((zF >= 0) && (zF < rows)) PixelB = SEGMENT.getPixelColorXY(x, zF);
else PixelB = ColorFromPalette(SEGPALETTE, ~noise3d[XY(x,abs(zF))]*3);
ledsbuff[y] = (PixelA.nscale8(ease8InOutApprox(255 - fraction))) + (PixelB.nscale8(ease8InOutApprox(fraction)));
}
for (int y = 0; y < rows; y++) SEGMENT.setPixelColorXY(x, y, ledsbuff[y]);
}
soapPixels(true, noise3d, pixels); // rows
soapPixels(false, noise3d, pixels); // cols
return FRAMETIME;
}
static const char _data_FX_MODE_2DSOAP[] PROGMEM = "Soap@!,Smoothness;;!;2;pal=11";
static const char _data_FX_MODE_2DSOAP[] PROGMEM = "Soap@!,Smoothness,Density;;!;2;pal=11";
//Idea from https://www.youtube.com/watch?v=HsA-6KIbgto&ab_channel=GreatScott%21

View File

@ -1138,12 +1138,9 @@ void Segment::refreshLightCapabilities() {
}
for (unsigned b = 0; b < BusManager::getNumBusses(); b++) {
Bus *bus = BusManager::getBus(b);
if (bus == nullptr || bus->getLength()==0) break;
if (!bus->isOk()) continue;
if (bus->getStart() >= segStopIdx) continue;
if (bus->getStart() + bus->getLength() <= segStartIdx) continue;
const Bus *bus = BusManager::getBus(b);
if (!bus || !bus->isOk()) break;
if (bus->getStart() >= segStopIdx || bus->getStart() + bus->getLength() <= segStartIdx) continue;
if (bus->hasRGB() || (strip.cctFromRgb && bus->hasCCT())) capabilities |= SEG_CAPABILITY_RGB;
if (!strip.cctFromRgb && bus->hasCCT()) capabilities |= SEG_CAPABILITY_CCT;
if (strip.correctWB && (bus->hasRGB() || bus->hasCCT())) capabilities |= SEG_CAPABILITY_CCT; //white balance correction (CCT slider)
@ -1478,8 +1475,7 @@ void WS2812FX::finalizeInit() {
_length = 0;
for (int i=0; i<BusManager::getNumBusses(); i++) {
Bus *bus = BusManager::getBus(i);
if (bus == nullptr) continue;
if (bus->getStart() + bus->getLength() > MAX_LEDS) break;
if (!bus || !bus->isOk() || bus->getStart() + bus->getLength() > MAX_LEDS) break;
//RGBW mode is enabled if at least one of the strips is RGBW
_hasWhiteChannel |= bus->hasWhite();
//refresh is required to remain off if at least one of the strips requires the refresh.
@ -1489,6 +1485,7 @@ void WS2812FX::finalizeInit() {
// This must be done after all buses have been created, as some kinds (parallel I2S) interact
bus->begin();
bus->setBrightness(bri);
}
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
@ -1794,8 +1791,8 @@ uint16_t WS2812FX::getLengthPhysical() const {
//not influenced by auto-white mode, also true if white slider does not affect output white channel
bool WS2812FX::hasRGBWBus() const {
for (size_t b = 0; b < BusManager::getNumBusses(); b++) {
Bus *bus = BusManager::getBus(b);
if (bus == nullptr || bus->getLength()==0) break;
const Bus *bus = BusManager::getBus(b);
if (!bus || !bus->isOk()) break;
if (bus->hasRGB() && bus->hasWhite()) return true;
}
return false;
@ -1804,8 +1801,8 @@ bool WS2812FX::hasRGBWBus() const {
bool WS2812FX::hasCCTBus() const {
if (cctFromRgb && !correctWB) return false;
for (size_t b = 0; b < BusManager::getNumBusses(); b++) {
Bus *bus = BusManager::getBus(b);
if (bus == nullptr || bus->getLength()==0) break;
const Bus *bus = BusManager::getBus(b);
if (!bus || !bus->isOk()) break;
if (bus->hasCCT()) return true;
}
return false;
@ -1858,10 +1855,11 @@ void WS2812FX::makeAutoSegments(bool forceReset) {
#endif
for (size_t i = s; i < BusManager::getNumBusses(); i++) {
Bus* b = BusManager::getBus(i);
const Bus *bus = BusManager::getBus(i);
if (!bus || !bus->isOk()) break;
segStarts[s] = b->getStart();
segStops[s] = segStarts[s] + b->getLength();
segStarts[s] = bus->getStart();
segStops[s] = segStarts[s] + bus->getLength();
#ifndef WLED_DISABLE_2D
if (isMatrix && segStops[s] <= Segment::maxWidth*Segment::maxHeight) continue; // ignore buses comprising matrix
@ -1951,7 +1949,8 @@ bool WS2812FX::checkSegmentAlignment() const {
bool aligned = false;
for (const segment &seg : _segments) {
for (unsigned b = 0; b<BusManager::getNumBusses(); b++) {
Bus *bus = BusManager::getBus(b);
const Bus *bus = BusManager::getBus(b);
if (!bus || !bus->isOk()) break;
if (seg.start == bus->getStart() && seg.stop == bus->getStart() + bus->getLength()) aligned = true;
}
if (seg.start == 0 && seg.stop == _length) aligned = true;
@ -2048,12 +2047,17 @@ bool WS2812FX::deserializeMap(unsigned n) {
if (!isFile || !requestJSONBufferLock(7)) return false;
if (!readObjectFromFile(fileName, nullptr, pDoc)) {
StaticJsonDocument<64> filter;
filter[F("width")] = true;
filter[F("height")] = true;
if (!readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
DEBUG_PRINT(F("ERROR Invalid ledmap in ")); DEBUG_PRINTLN(fileName);
releaseJSONBufferLock();
return false; // if file does not load properly then exit
}
suspend();
JsonObject root = pDoc->as<JsonObject>();
// if we are loading default ledmap (at boot) set matrix width and height from the ledmap (compatible with WLED MM ledmaps)
if (isMatrix && n == 0 && (!root[F("width")].isNull() || !root[F("height")].isNull())) {
@ -2066,16 +2070,52 @@ bool WS2812FX::deserializeMap(unsigned n) {
if (customMappingTable) {
DEBUG_PRINT(F("Reading LED map from ")); DEBUG_PRINTLN(fileName);
File f = WLED_FS.open(fileName, "r");
f.find("\"map\":[");
while (f.available()) { // f.position() < f.size() - 1
char number[32];
size_t numRead = f.readBytesUntil(',', number, sizeof(number)-1); // read a single number (may include array terminating "]" but not number separator ',')
number[numRead] = 0;
if (numRead > 0) {
char *end = strchr(number,']'); // we encountered end of array so stop processing if no digit found
bool foundDigit = (end == nullptr);
int i = 0;
if (end != nullptr) do {
if (number[i] >= '0' && number[i] <= '9') foundDigit = true;
if (foundDigit || &number[i++] == end) break;
} while (i < 32);
if (!foundDigit) break;
int index = atoi(number);
if (index < 0 || index > 16384) index = 0xFFFF;
customMappingTable[customMappingSize++] = index;
if (customMappingSize > getLengthTotal()) break;
} else break; // there was nothing to read, stop
}
currentLedmap = n;
f.close();
#ifdef WLED_DEBUG
DEBUG_PRINT(F("Loaded ledmap:"));
for (unsigned i=0; i<customMappingSize; i++) {
if (!(i%Segment::maxWidth)) DEBUG_PRINTLN();
DEBUG_PRINTF_P(PSTR("%4d,"), customMappingTable[i]);
}
DEBUG_PRINTLN();
#endif
/*
JsonArray map = root[F("map")];
if (!map.isNull() && map.size()) { // not an empty map
customMappingSize = min((unsigned)map.size(), (unsigned)getLengthTotal());
for (unsigned i=0; i<customMappingSize; i++) customMappingTable[i] = (uint16_t) (map[i]<0 ? 0xFFFFU : map[i]);
currentLedmap = n;
}
*/
} else {
DEBUG_PRINTLN(F("ERROR LED map allocation error."));
}
resume();
releaseJSONBufferLock();
return (customMappingSize > 0);
}

View File

@ -43,6 +43,8 @@ uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const
#define W(c) (byte((c) >> 24))
static ColorOrderMap _colorOrderMap = {};
bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
if (count() >= WLED_MAX_COLOR_ORDER_MAPPINGS || len == 0 || (colorOrder & 0x0F) > COL_ORDER_MAX) return false; // upper nibble contains W swap information
_mappings.push_back({start,len,colorOrder});
@ -53,10 +55,8 @@ bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
// upper nibble contains W swap information
// when ColorOrderMap's upper nibble contains value >0 then swap information is used from it, otherwise global swap is used
for (unsigned i = 0; i < count(); i++) {
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
return _mappings[i].colorOrder | ((_mappings[i].colorOrder >> 4) ? 0 : (defaultColorOrder & 0xF0));
}
for (const auto& map : _mappings) {
if (pix >= map.start && pix < (map.start + map.len)) return map.colorOrder | ((map.colorOrder >> 4) ? 0 : (defaultColorOrder & 0xF0));
}
return defaultColorOrder;
}
@ -72,7 +72,7 @@ void Bus::calculateCCT(uint32_t c, uint8_t &ww, uint8_t &cw) {
} else {
cct = (approximateKelvinFromRGB(c) - 1900) >> 5; // convert K (from RGB value) to relative format
}
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
if (cct < _cctBlend) ww = 255;
else ww = ((255-cct) * 255) / (255 - _cctBlend);
@ -99,23 +99,14 @@ uint32_t Bus::autoWhiteCalc(uint32_t c) const {
return RGBW32(r, g, b, w);
}
uint8_t *Bus::allocateData(size_t size) {
freeData(); // should not happen, but for safety
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
}
void Bus::freeData() {
if (_data) free(_data);
_data = nullptr;
}
BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
BusDigital::BusDigital(const BusConfig &bc, uint8_t nr)
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
, _skip(bc.skipAmount) //sacrificial pixels
, _colorOrder(bc.colorOrder)
, _milliAmpsPerLed(bc.milliAmpsPerLed)
, _milliAmpsMax(bc.milliAmpsMax)
, _colorOrderMap(com)
, _data(nullptr)
{
DEBUGBUS_PRINTLN(F("Bus: Creating digital bus."));
if (!isDigital(bc.type) || !bc.count) { DEBUGBUS_PRINTLN(F("Not digial or empty bus!")); return; }
@ -136,12 +127,14 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com
_hasRgb = hasRGB(bc.type);
_hasWhite = hasWhite(bc.type);
_hasCCT = hasCCT(bc.type);
if (bc.doubleBuffer && !allocateData(bc.count * Bus::getNumberOfChannels(bc.type))) { DEBUGBUS_PRINTLN(F("Buffer allocation failed!")); return; }
//_buffering = bc.doubleBuffer;
if (bc.doubleBuffer) {
_data = (uint8_t*)calloc(_len, Bus::getNumberOfChannels(_type));
if (!_data) DEBUGBUS_PRINTLN(F("Bus: Buffer allocation failed!"));
}
uint16_t lenToCreate = bc.count;
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr);
_valid = (_busPtr != nullptr);
_valid = (_busPtr != nullptr) && bc.count > 0;
DEBUGBUS_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
_valid?"S":"Uns",
(int)nr,
@ -268,7 +261,7 @@ void BusDigital::show() {
}
}
}
PolyBus::show(_busPtr, _iType, !_data); // faster if buffer consistency is not important (use !_buffering this causes 20% FPS drop)
PolyBus::show(_busPtr, _iType, !_data); // faster if buffer consistency is not important
// restore bus brightness to its original value
// this is done right after show, so this is only OK if LED updates are completed before show() returns
// or async show has a separate buffer (ESP32 RMT and I2S are ok)
@ -421,11 +414,11 @@ void BusDigital::begin() {
void BusDigital::cleanup() {
DEBUGBUS_PRINTLN(F("Digital Cleanup."));
PolyBus::cleanup(_busPtr, _iType);
free(_data);
_data = nullptr;
_iType = I_NONE;
_valid = false;
_busPtr = nullptr;
freeData();
//PinManager::deallocateMultiplePins(_pins, 2, PinOwner::BusDigital);
PinManager::deallocatePin(_pins[1], PinOwner::BusDigital);
PinManager::deallocatePin(_pins[0], PinOwner::BusDigital);
}
@ -449,7 +442,7 @@ void BusDigital::cleanup() {
#else
#ifdef SOC_LEDC_TIMER_BIT_WIDE_NUM
// C6/H2/P4: 20 bit, S2/S3/C2/C3: 14 bit
#define MAX_BIT_WIDTH SOC_LEDC_TIMER_BIT_WIDE_NUM
#define MAX_BIT_WIDTH SOC_LEDC_TIMER_BIT_WIDE_NUM
#else
// ESP32: 20 bit (but in reality we would never go beyond 16 bit as the frequency would be to low)
#define MAX_BIT_WIDTH 14
@ -497,7 +490,6 @@ BusPwm::BusPwm(const BusConfig &bc)
_hasRgb = hasRGB(bc.type);
_hasWhite = hasWhite(bc.type);
_hasCCT = hasCCT(bc.type);
_data = _pwmdata; // avoid malloc() and use already allocated memory
_valid = true;
DEBUGBUS_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
}
@ -561,7 +553,7 @@ uint32_t BusPwm::getPixelColor(unsigned pix) const {
void BusPwm::show() {
if (!_valid) return;
const unsigned numPins = getPins();
const size_t numPins = getPins();
#ifdef ESP8266
const unsigned analogPeriod = F_CPU / _frequency;
const unsigned maxBri = analogPeriod; // compute to clock cycle accuracy
@ -571,7 +563,7 @@ void BusPwm::show() {
// if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
// https://github.com/wled-dev/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
const bool dithering = _needsRefresh; // avoid working with bitfield
const unsigned maxBri = (1<<_depth); // possible values: 16384 (14), 8192 (13), 4096 (12), 2048 (11), 1024 (10), 512 (9) and 256 (8)
const unsigned maxBri = (1<<_depth); // possible values: 16384 (14), 8192 (13), 4096 (12), 2048 (11), 1024 (10), 512 (9) and 256 (8)
const unsigned bitShift = dithering * 4; // if dithering, _depth is 12 bit but LEDC channel is set to 8 bit (using 4 fractional bits)
#endif
// use CIE brightness formula (linear + cubic) to approximate human eye perceived brightness
@ -587,7 +579,7 @@ void BusPwm::show() {
[[maybe_unused]] unsigned hPoint = 0; // phase shift (0 - maxBri)
// we will be phase shifting every channel by previous pulse length (plus dead time if required)
// phase shifting is only mandatory when using H-bridge to drive reverse-polarity PWM CCT (2 wire) LED type
// phase shifting is only mandatory when using H-bridge to drive reverse-polarity PWM CCT (2 wire) LED type
// CCT additive blending must be 0 (WW & CW will not overlap) otherwise signals *will* overlap
// for all other cases it will just try to "spread" the load on PSU
// Phase shifting requires that LEDC timers are synchronised (see setup()). For PWM CCT (and H-bridge) it is
@ -648,7 +640,7 @@ std::vector<LEDType> BusPwm::getLEDTypes() {
}
void BusPwm::deallocatePins() {
unsigned numPins = getPins();
size_t numPins = getPins();
for (unsigned i = 0; i < numPins; i++) {
PinManager::deallocatePin(_pins[i], PinOwner::BusPwm);
if (!PinManager::isPinOk(_pins[i])) continue;
@ -666,7 +658,7 @@ void BusPwm::deallocatePins() {
BusOnOff::BusOnOff(const BusConfig &bc)
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
, _onoffdata(0)
, _data(0)
{
if (!Bus::isOnOff(bc.type)) return;
@ -679,7 +671,6 @@ BusOnOff::BusOnOff(const BusConfig &bc)
_hasRgb = false;
_hasWhite = false;
_hasCCT = false;
_data = &_onoffdata; // avoid malloc() and use stack
_valid = true;
DEBUGBUS_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
}
@ -691,17 +682,17 @@ void BusOnOff::setPixelColor(unsigned pix, uint32_t c) {
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
_data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
_data = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
}
uint32_t BusOnOff::getPixelColor(unsigned pix) const {
if (!_valid) return 0;
return RGBW32(_data[0], _data[0], _data[0], _data[0]);
return RGBW32(_data, _data, _data, _data);
}
void BusOnOff::show() {
if (!_valid) return;
digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
digitalWrite(_pin, _reversed ? !(bool)_data : (bool)_data);
}
unsigned BusOnOff::getPins(uint8_t* pinArray) const {
@ -740,7 +731,8 @@ BusNetwork::BusNetwork(const BusConfig &bc)
_hasCCT = false;
_UDPchannels = _hasWhite + 3;
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_valid = (allocateData(_len * _UDPchannels) != nullptr);
_data = (uint8_t*)calloc(_len, _UDPchannels);
_valid = (_data != nullptr);
DEBUGBUS_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
}
@ -790,9 +782,10 @@ std::vector<LEDType> BusNetwork::getLEDTypes() {
void BusNetwork::cleanup() {
DEBUGBUS_PRINTLN(F("Virtual Cleanup."));
free(_data);
_data = nullptr;
_type = I_NONE;
_valid = false;
freeData();
}
@ -844,17 +837,17 @@ int BusManager::add(const BusConfig &bc) {
unsigned numDigital = 0;
for (const auto &bus : busses) if (bus->isDigital() && !bus->is2Pin()) numDigital++;
if (Bus::isVirtual(bc.type)) {
//busses.push_back(std::make_unique<BusNetwork>(bc)); // when C++ >11
busses.push_back(new BusNetwork(bc));
busses.push_back(make_unique<BusNetwork>(bc));
//busses.push_back(new BusNetwork(bc));
} else if (Bus::isDigital(bc.type)) {
//busses.push_back(std::make_unique<BusDigital>(bc, numDigital, colorOrderMap));
busses.push_back(new BusDigital(bc, numDigital, colorOrderMap));
busses.push_back(make_unique<BusDigital>(bc, numDigital));
//busses.push_back(new BusDigital(bc, numDigital));
} else if (Bus::isOnOff(bc.type)) {
//busses.push_back(std::make_unique<BusOnOff>(bc));
busses.push_back(new BusOnOff(bc));
busses.push_back(make_unique<BusOnOff>(bc));
//busses.push_back(new BusOnOff(bc));
} else {
//busses.push_back(std::make_unique<BusPwm>(bc));
busses.push_back(new BusPwm(bc));
busses.push_back(make_unique<BusPwm>(bc));
//busses.push_back(new BusPwm(bc));
}
return busses.size();
}
@ -898,7 +891,7 @@ void BusManager::removeAll() {
DEBUGBUS_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
for (auto &bus : busses) delete bus; // needed when not using std::unique_ptr C++ >11
//for (auto &bus : busses) delete bus; // needed when not using std::unique_ptr C++ >11
busses.clear();
PolyBus::setParallelI2S1Output(false);
}
@ -949,8 +942,8 @@ void BusManager::on() {
uint8_t pins[2] = {255,255};
if (bus->isDigital() && bus->getPins(pins)) {
if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
BusDigital *b = static_cast<BusDigital*>(bus);
b->begin();
BusDigital &b = static_cast<BusDigital&>(*bus);
b.begin();
break;
}
}
@ -978,17 +971,13 @@ void BusManager::off() {
}
void BusManager::show() {
_milliAmpsUsed = 0;
_gMilliAmpsUsed = 0;
for (auto &bus : busses) {
bus->show();
_milliAmpsUsed += bus->getUsedCurrent();
_gMilliAmpsUsed += bus->getUsedCurrent();
}
}
void BusManager::setStatusPixel(uint32_t c) {
for (auto &bus : busses) bus->setStatusPixel(c);
}
void IRAM_ATTR BusManager::setPixelColor(unsigned pix, uint32_t c) {
for (auto &bus : busses) {
unsigned bstart = bus->getStart();
@ -997,10 +986,6 @@ void IRAM_ATTR BusManager::setPixelColor(unsigned pix, uint32_t c) {
}
}
void BusManager::setBrightness(uint8_t b) {
for (auto &bus : busses) bus->setBrightness(b);
}
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
if (cct > 255) cct = 255;
if (cct >= 0) {
@ -1024,17 +1009,8 @@ bool BusManager::canAllShow() {
return true;
}
Bus* BusManager::getBus(uint8_t busNr) {
if (busNr >= busses.size()) return nullptr;
return busses[busNr];
}
ColorOrderMap& BusManager::getColorOrderMap() { return _colorOrderMap; }
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
uint16_t BusManager::getTotalLength() {
unsigned len = 0;
for (const auto &bus : busses) len += bus->getLength();
return len;
}
bool PolyBus::_useParallelI2S = false;
@ -1045,8 +1021,7 @@ uint8_t Bus::_gAWM = 255;
uint16_t BusDigital::_milliAmpsTotal = 0;
//std::vector<std::unique_ptr<Bus>> BusManager::busses;
std::vector<Bus*> BusManager::busses;
ColorOrderMap BusManager::colorOrderMap = {};
uint16_t BusManager::_milliAmpsUsed = 0;
uint16_t BusManager::_milliAmpsMax = ABL_MILLIAMPS_DEFAULT;
std::vector<std::unique_ptr<Bus>> BusManager::busses;
//std::vector<Bus*> BusManager::busses;
uint16_t BusManager::_gMilliAmpsUsed = 0;
uint16_t BusManager::_gMilliAmpsMax = ABL_MILLIAMPS_DEFAULT;

View File

@ -11,6 +11,18 @@
#include <vector>
#include <memory>
#if __cplusplus >= 201402L
using std::make_unique;
#else
// Really simple C++11 shim for non-array case; implementation from cppreference.com
template<class T, class... Args>
std::unique_ptr<T>
make_unique(Args&&... args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
#endif
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
@ -94,11 +106,10 @@ class Bus {
: _type(type)
, _bri(255)
, _start(start)
, _len(len)
, _len(std::max(len,(uint16_t)1))
, _reversed(reversed)
, _valid(false)
, _needsRefresh(refresh)
, _data(nullptr) // keep data access consistent across all types of buses
{
_autoWhiteMode = Bus::hasWhite(type) ? aw : RGBW_MODE_MANUAL_ONLY;
};
@ -202,7 +213,6 @@ class Bus {
bool _hasCCT;// : 1;
//} __attribute__ ((packed));
uint8_t _autoWhiteMode;
uint8_t *_data;
// global Auto White Calculation override
static uint8_t _gAWM;
// _cct has the following menaings (see calculateCCT() & BusManager::setSegmentCCT()):
@ -217,14 +227,12 @@ class Bus {
static uint8_t _cctBlend;
uint32_t autoWhiteCalc(uint32_t c) const;
uint8_t *allocateData(size_t size = 1);
void freeData();
};
class BusDigital : public Bus {
public:
BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com);
BusDigital(const BusConfig &bc, uint8_t nr);
~BusDigital() { cleanup(); }
void show() override;
@ -248,15 +256,15 @@ class BusDigital : public Bus {
static std::vector<LEDType> getLEDTypes();
private:
uint8_t _skip;
uint8_t _colorOrder;
uint8_t _pins[2];
uint8_t _iType;
uint8_t _skip;
uint8_t _colorOrder;
uint8_t _pins[2];
uint8_t _iType;
uint16_t _frequencykHz;
uint8_t _milliAmpsPerLed;
uint8_t _milliAmpsPerLed;
uint16_t _milliAmpsMax;
void * _busPtr;
const ColorOrderMap &_colorOrderMap;
uint8_t *_data;
void *_busPtr;
static uint16_t _milliAmpsTotal; // is overwitten/recalculated on each show()
@ -286,13 +294,13 @@ class BusPwm : public Bus {
uint16_t getFrequency() const override { return _frequency; }
unsigned getBusSize() const override { return sizeof(BusPwm); }
void show() override;
inline void cleanup() { deallocatePins(); _data = nullptr; }
inline void cleanup() { deallocatePins(); }
static std::vector<LEDType> getLEDTypes();
private:
uint8_t _pins[OUTPUT_MAX_PINS];
uint8_t _pwmdata[OUTPUT_MAX_PINS];
uint8_t _data[OUTPUT_MAX_PINS];
#ifdef ARDUINO_ARCH_ESP32
uint8_t _ledcStart;
#endif
@ -313,13 +321,13 @@ class BusOnOff : public Bus {
unsigned getPins(uint8_t* pinArray) const override;
unsigned getBusSize() const override { return sizeof(BusOnOff); }
void show() override;
inline void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); _data = nullptr; }
inline void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); }
static std::vector<LEDType> getLEDTypes();
private:
uint8_t _pin;
uint8_t _onoffdata;
uint8_t _data;
};
@ -343,6 +351,7 @@ class BusNetwork : public Bus {
uint8_t _UDPtype;
uint8_t _UDPchannels;
bool _broadcastLock;
uint8_t *_data;
};
@ -363,7 +372,7 @@ struct BusConfig {
uint16_t milliAmpsMax;
BusConfig(uint8_t busType, uint8_t* ppins, uint16_t pstart, uint16_t len = 1, uint8_t pcolorOrder = COL_ORDER_GRB, bool rev = false, uint8_t skip = 0, byte aw=RGBW_MODE_MANUAL_ONLY, uint16_t clock_kHz=0U, bool dblBfr=false, uint8_t maPerLed=LED_MILLIAMPS_DEFAULT, uint16_t maMax=ABL_MILLIAMPS_DEFAULT)
: count(len)
: count(std::max(len,(uint16_t)1))
, start(pstart)
, colorOrder(pcolorOrder)
, reversed(rev)
@ -416,59 +425,58 @@ struct BusConfig {
#endif
#endif
class BusManager {
public:
BusManager() {};
namespace BusManager {
static unsigned memUsage();
static uint16_t currentMilliamps() { return _milliAmpsUsed + MA_FOR_ESP; }
static uint16_t ablMilliampsMax() { return _milliAmpsMax; }
extern std::vector<std::unique_ptr<Bus>> busses;
//extern std::vector<Bus*> busses;
extern uint16_t _gMilliAmpsUsed;
extern uint16_t _gMilliAmpsMax;
static int add(const BusConfig &bc);
static void useParallelOutput(); // workaround for inaccessible PolyBus
static bool hasParallelOutput(); // workaround for inaccessible PolyBus
#ifdef ESP32_DATA_IDLE_HIGH
void esp32RMTInvertIdle() ;
#endif
inline size_t getNumVirtualBusses() {
size_t j = 0;
for (const auto &bus : busses) j += bus->isVirtual();
return j;
}
//do not call this method from system context (network callback)
static void removeAll();
size_t memUsage();
inline uint16_t currentMilliamps() { return _gMilliAmpsUsed + MA_FOR_ESP; }
//inline uint16_t ablMilliampsMax() { unsigned sum = 0; for (auto &bus : busses) sum += bus->getMaxCurrent(); return sum; }
inline uint16_t ablMilliampsMax() { return _gMilliAmpsMax; } // used for compatibility reasons (and enabling virtual global ABL)
inline void setMilliampsMax(uint16_t max) { _gMilliAmpsMax = max;}
static void on();
static void off();
void useParallelOutput(); // workaround for inaccessible PolyBus
bool hasParallelOutput(); // workaround for inaccessible PolyBus
static void show();
static bool canAllShow();
static void setStatusPixel(uint32_t c);
[[gnu::hot]] static void setPixelColor(unsigned pix, uint32_t c);
static void setBrightness(uint8_t b);
// for setSegmentCCT(), cct can only be in [-1,255] range; allowWBCorrection will convert it to K
// WARNING: setSegmentCCT() is a misleading name!!! much better would be setGlobalCCT() or just setCCT()
static void setSegmentCCT(int16_t cct, bool allowWBCorrection = false);
static inline void setMilliampsMax(uint16_t max) { _milliAmpsMax = max;}
[[gnu::hot]] static uint32_t getPixelColor(unsigned pix);
static inline int16_t getSegmentCCT() { return Bus::getCCT(); }
//do not call this method from system context (network callback)
void removeAll();
int add(const BusConfig &bc);
static Bus* getBus(uint8_t busNr);
void on();
void off();
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
static uint16_t getTotalLength();
static inline uint8_t getNumBusses() { return busses.size(); }
static String getLEDTypesJSONString();
[[gnu::hot]] void setPixelColor(unsigned pix, uint32_t c);
[[gnu::hot]] uint32_t getPixelColor(unsigned pix);
void show();
bool canAllShow();
inline void setStatusPixel(uint32_t c) { for (auto &bus : busses) bus->setStatusPixel(c);}
inline void setBrightness(uint8_t b) { for (auto &bus : busses) bus->setBrightness(b); }
// for setSegmentCCT(), cct can only be in [-1,255] range; allowWBCorrection will convert it to K
// WARNING: setSegmentCCT() is a misleading name!!! much better would be setGlobalCCT() or just setCCT()
void setSegmentCCT(int16_t cct, bool allowWBCorrection = false);
inline int16_t getSegmentCCT() { return Bus::getCCT(); }
inline Bus* getBus(size_t busNr) { return busNr < busses.size() ? busses[busNr].get() : nullptr; }
inline size_t getNumBusses() { return busses.size(); }
static inline ColorOrderMap& getColorOrderMap() { return colorOrderMap; }
private:
//static std::vector<std::unique_ptr<Bus>> busses; // we'd need C++ >11
static std::vector<Bus*> busses;
static ColorOrderMap colorOrderMap;
static uint16_t _milliAmpsUsed;
static uint16_t _milliAmpsMax;
#ifdef ESP32_DATA_IDLE_HIGH
static void esp32RMTInvertIdle() ;
#endif
static uint8_t getNumVirtualBusses() {
int j = 0;
for (const auto &bus : busses) j += bus->isVirtual();
return j;
}
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
inline uint16_t getTotalLength(bool onlyPhysical = false) {
unsigned len = 0;
for (const auto &bus : busses) if (!(bus->isVirtual() && onlyPhysical)) len += bus->getLength();
return len;
}
String getLEDTypesJSONString();
ColorOrderMap& getColorOrderMap();
};
#endif

View File

@ -20,11 +20,11 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
//long vid = doc[F("vid")]; // 2010020
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
JsonObject ethernet = doc[F("eth")];
CJSON(ethernetType, ethernet["type"]);
// NOTE: Ethernet configuration takes priority over other use of pins
WLED::instance().initEthernet();
initEthernet();
#endif
JsonObject id = doc["id"];
@ -53,9 +53,11 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
JsonArray sn = wifi["sn"];
char ssid[33] = "";
char pass[65] = "";
char bssid[13] = "";
IPAddress nIP = (uint32_t)0U, nGW = (uint32_t)0U, nSN = (uint32_t)0x00FFFFFF; // little endian
getStringFromJson(ssid, wifi[F("ssid")], 33);
getStringFromJson(pass, wifi["psk"], 65); // password is not normally present but if it is, use it
getStringFromJson(bssid, wifi[F("bssid")], 13);
for (size_t i = 0; i < 4; i++) {
CJSON(nIP[i], ip[i]);
CJSON(nGW[i], gw[i]);
@ -63,6 +65,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
}
if (strlen(ssid) > 0) strlcpy(multiWiFi[n].clientSSID, ssid, 33); // this will keep old SSID intact if not present in JSON
if (strlen(pass) > 0) strlcpy(multiWiFi[n].clientPass, pass, 65); // this will keep old password intact if not present in JSON
if (strlen(bssid) > 0) fillStr2MAC(multiWiFi[n].bssid, bssid);
multiWiFi[n].staticIP = nIP;
multiWiFi[n].staticGW = nGW;
multiWiFi[n].staticSN = nSN;
@ -167,7 +170,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
if (fromFS) BusManager::removeAll(); // can't safely manipulate busses directly in network callback
for (JsonObject elm : ins) {
if (s >= WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES) break;
if (s >= WLED_MAX_BUSSES) break;
uint8_t pins[5] = {255, 255, 255, 255, 255};
JsonArray pinArr = elm["pin"];
if (pinArr.size() == 0) continue;
@ -196,12 +199,13 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
}
ledType |= refresh << 7; // hack bit 7 to indicate strip requires off refresh
busConfigs.push_back(std::move(BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax)));
//busConfigs.push_back(std::move(BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax)));
busConfigs.emplace_back(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax);
doInitBusses = true; // finalization done in beginStrip()
s++;
if (!Bus::isVirtual(ledType)) s++; // have as many virtual buses as you want
}
}
if (hw_led["rev"]) BusManager::getBus(0)->setReversed(true); //set 0.11 global reversed setting for first bus
if (hw_led["rev"] && BusManager::getNumBusses()) BusManager::getBus(0)->setReversed(true); //set 0.11 global reversed setting for first bus
// read color order map configuration
JsonArray hw_com = hw[F("com")];
@ -669,8 +673,8 @@ void deserializeConfigFromFS() {
UsermodManager::readFromConfig(empty);
serializeConfig();
// init Ethernet (in case default type is set at compile time)
#ifdef WLED_USE_ETHERNET
WLED::instance().initEthernet();
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
initEthernet();
#endif
return;
}
@ -718,6 +722,9 @@ void serializeConfig() {
JsonObject wifi = nw_ins.createNestedObject();
wifi[F("ssid")] = multiWiFi[n].clientSSID;
wifi[F("pskl")] = strlen(multiWiFi[n].clientPass);
char bssid[13];
fillMAC2Str(bssid, multiWiFi[n].bssid);
wifi[F("bssid")] = bssid;
JsonArray wifi_ip = wifi.createNestedArray("ip");
JsonArray wifi_gw = wifi.createNestedArray("gw");
JsonArray wifi_sn = wifi.createNestedArray("sn");
@ -753,7 +760,7 @@ void serializeConfig() {
wifi[F("txpwr")] = txPower;
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
JsonObject ethernet = root.createNestedObject("eth");
ethernet["type"] = ethernetType;
if (ethernetType != WLED_ETH_NONE && ethernetType < WLED_NUM_ETH_TYPES) {
@ -818,8 +825,8 @@ void serializeConfig() {
for (size_t s = 0; s < BusManager::getNumBusses(); s++) {
DEBUG_PRINTF_P(PSTR("Cfg: Saving bus #%u\n"), s);
Bus *bus = BusManager::getBus(s);
if (!bus || bus->getLength()==0) break;
const Bus *bus = BusManager::getBus(s);
if (!bus || !bus->isOk()) break;
DEBUG_PRINTF_P(PSTR(" (%d-%d, type:%d, CO:%d, rev:%d, skip:%d, AW:%d kHz:%d, mA:%d/%d)\n"),
(int)bus->getStart(), (int)(bus->getStart()+bus->getLength()),
(int)(bus->getType() & 0x7F),
@ -832,28 +839,27 @@ void serializeConfig() {
);
JsonObject ins = hw_led_ins.createNestedObject();
ins["start"] = bus->getStart();
ins["len"] = bus->getLength();
ins["len"] = bus->getLength();
JsonArray ins_pin = ins.createNestedArray("pin");
uint8_t pins[5];
uint8_t nPins = bus->getPins(pins);
for (int i = 0; i < nPins; i++) ins_pin.add(pins[i]);
ins[F("order")] = bus->getColorOrder();
ins["rev"] = bus->isReversed();
ins[F("skip")] = bus->skippedLeds();
ins["type"] = bus->getType() & 0x7F;
ins["ref"] = bus->isOffRefreshRequired();
ins[F("rgbwm")] = bus->getAutoWhiteMode();
ins[F("freq")] = bus->getFrequency();
ins[F("order")] = bus->getColorOrder();
ins["rev"] = bus->isReversed();
ins[F("skip")] = bus->skippedLeds();
ins["type"] = bus->getType() & 0x7F;
ins["ref"] = bus->isOffRefreshRequired();
ins[F("rgbwm")] = bus->getAutoWhiteMode();
ins[F("freq")] = bus->getFrequency();
ins[F("maxpwr")] = bus->getMaxCurrent();
ins[F("ledma")] = bus->getLEDCurrent();
ins[F("ledma")] = bus->getLEDCurrent();
}
JsonArray hw_com = hw.createNestedArray(F("com"));
const ColorOrderMap& com = BusManager::getColorOrderMap();
for (size_t s = 0; s < com.count(); s++) {
const ColorOrderMapEntry *entry = com.get(s);
if (!entry) break;
if (!entry || !entry->len) break;
JsonObject co = hw_com.createNestedObject();
co["start"] = entry->start;
co["len"] = entry->len;

View File

@ -49,31 +49,31 @@
#define WLED_MAX_DIGITAL_CHANNELS 3
#define WLED_MAX_ANALOG_CHANNELS 5
#define WLED_MAX_BUSSES 4 // will allow 3 digital & 1 analog RGB
#define WLED_MIN_VIRTUAL_BUSSES 3
#define WLED_MIN_VIRTUAL_BUSSES 3 // no longer used for bus creation but used to distinguish S2/S3 in UI
#else
#define WLED_MAX_ANALOG_CHANNELS (LEDC_CHANNEL_MAX*LEDC_SPEED_MODE_MAX)
#if defined(CONFIG_IDF_TARGET_ESP32C3) // 2 RMT, 6 LEDC, only has 1 I2S but NPB does not support it ATM
#define WLED_MAX_BUSSES 6 // will allow 2 digital & 2 analog RGB or 6 PWM white
#define WLED_MAX_DIGITAL_CHANNELS 2
//#define WLED_MAX_ANALOG_CHANNELS 6
#define WLED_MIN_VIRTUAL_BUSSES 4
#define WLED_MIN_VIRTUAL_BUSSES 4 // no longer used for bus creation but used to distinguish S2/S3 in UI
#elif defined(CONFIG_IDF_TARGET_ESP32S2) // 4 RMT, 8 LEDC, only has 1 I2S bus, supported in NPB
// the 5th bus (I2S) will prevent Audioreactive usermod from functioning (it is last used though)
#define WLED_MAX_BUSSES 14 // will allow 12 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 12 // x4 RMT + x1/x8 I2S0
#define WLED_MAX_BUSSES 7 // will allow 5 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 5
//#define WLED_MAX_ANALOG_CHANNELS 8
#define WLED_MIN_VIRTUAL_BUSSES 4
#define WLED_MIN_VIRTUAL_BUSSES 4 // no longer used for bus creation but used to distinguish S2/S3 in UI
#elif defined(CONFIG_IDF_TARGET_ESP32S3) // 4 RMT, 8 LEDC, has 2 I2S but NPB supports parallel x8 LCD on I2S1
#define WLED_MAX_BUSSES 14 // will allow 12 digital & 2 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 12 // x4 RMT + x8 I2S-LCD
//#define WLED_MAX_ANALOG_CHANNELS 8
#define WLED_MIN_VIRTUAL_BUSSES 6
#define WLED_MIN_VIRTUAL_BUSSES 6 // no longer used for bus creation but used to distinguish S2/S3 in UI
#else
// the last digital bus (I2S0) will prevent Audioreactive usermod from functioning
#define WLED_MAX_BUSSES 19 // will allow 16 digital & 3 analog RGB
#define WLED_MAX_DIGITAL_CHANNELS 16 // x1/x8 I2S1 + x8 RMT
//#define WLED_MAX_ANALOG_CHANNELS 16
#define WLED_MIN_VIRTUAL_BUSSES 6
#define WLED_MIN_VIRTUAL_BUSSES 6 // no longer used for bus creation but used to distinguish S2/S3 in UI
#endif
#endif
#else
@ -87,7 +87,7 @@
#ifndef WLED_MAX_DIGITAL_CHANNELS
#error You must also define WLED_MAX_DIGITAL_CHANNELS.
#endif
#define WLED_MIN_VIRTUAL_BUSSES (5-WLED_MAX_BUSSES)
#define WLED_MIN_VIRTUAL_BUSSES 3
#else
#if WLED_MAX_BUSSES > 20
#error Maximum number of buses is 20.
@ -98,7 +98,11 @@
#ifndef WLED_MAX_DIGITAL_CHANNELS
#error You must also define WLED_MAX_DIGITAL_CHANNELS.
#endif
#define WLED_MIN_VIRTUAL_BUSSES (20-WLED_MAX_BUSSES)
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3)
#define WLED_MIN_VIRTUAL_BUSSES 4
#else
#define WLED_MIN_VIRTUAL_BUSSES 6
#endif
#endif
#endif

View File

@ -43,10 +43,10 @@
if (loc) d.Sf.action = getURL('/settings/leds');
}
function bLimits(b,v,p,m,l,o=5,d=2,a=6) {
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 19 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 16 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 20 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 17 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266
maxA = a; // maxA - max analog channels: 16 - ESP32, 8 - S3/S2, 6 - C3, 5 - 8266
maxV = v; // maxV - min virtual buses: 4 - ESP32/S3, 3 - S2/C3, 2 - ESP8266
maxV = v; // maxV - min virtual buses: 6 - ESP32/S3, 4 - S2/C3, 3 - ESP8266 (only used to distinguish S2/S3)
maxPB = p; // maxPB - max LEDs per bus
maxM = m; // maxM - max LED memory
maxL = l; // maxL - max LEDs (will serve to determine ESP >1664 == ESP32)
@ -360,8 +360,9 @@
gId("prl").classList.add("hide");
} else
gId("prl").classList.remove("hide");
// S2 supports mono I2S as well as parallel so we need to take that into account; S3 only supports parallel
maxD = (S2 || S3 ? 4 : 8) + (d.Sf["PR"].checked ? 8 : S2); // TODO: use bLimits() : 4/8RMT + (x1/x8 parallel) I2S1
maxB = oMaxB - (d.Sf["PR"].checked ? 0 : 7 + S3); // S2 (maxV==3) does support single I2S
maxB = oMaxB - (d.Sf["PR"].checked ? 0 : 7 + S3); // S2 (maxV==4) does support mono I2S
}
// distribute ABL current if not using PPL
enPPL(sDI);
@ -422,7 +423,7 @@
if (isVir(t)) virtB++;
});
if ((n==1 && i>=maxB+maxV) || (n==-1 && i==0)) return;
if ((n==1 && i>=36) || (n==-1 && i==0)) return; // used to be i>=maxB+maxV when virtual buses were limited (now :"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")
var s = chrID(i);
if (n==1) {
@ -496,7 +497,7 @@ mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
o[i].querySelector("[name^=LT]").disabled = false;
}
gId("+").style.display = (i<maxB+maxV-1) ? "inline":"none";
gId("+").style.display = (i<35) ? "inline":"none"; // was maxB+maxV-1 when virtual buses were limited (now :"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")
gId("-").style.display = (i>0) ? "inline":"none";
if (!init) {
@ -617,22 +618,32 @@ Swap: <select id="xw${s}" name="XW${s}">
function receivedText(e) {
let lines = e.target.result;
var c = JSON.parse(lines);
let c = JSON.parse(lines);
if (c.hw) {
if (c.hw.led) {
for (var i=0; i<oMaxB+maxV; i++) addLEDs(-1);
var l = c.hw.led;
// remove all existing outputs
for (const i=0; i<36; i++) addLEDs(-1); // was i<maxb+maxV when number of virtual buses was limited (now :"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")
let l = c.hw.led;
l.ins.forEach((v,i,a)=>{
addLEDs(1);
for (var j=0; j<v.pin.length; j++) d.getElementsByName(`L${j}${i}`)[0].value = v.pin[j];
d.getElementsByName("LT"+i)[0].value = v.type;
d.getElementsByName("LS"+i)[0].value = v.start;
d.getElementsByName("LC"+i)[0].value = v.len;
d.getElementsByName("CO"+i)[0].value = v.order;
d.getElementsByName("SL"+i)[0].value = v.skip;
d.getElementsByName("LT"+i)[0].value = v.type;
d.getElementsByName("LS"+i)[0].value = v.start;
d.getElementsByName("LC"+i)[0].value = v.len;
d.getElementsByName("CO"+i)[0].value = v.order & 0x0F;
d.getElementsByName("SL"+i)[0].value = v.skip;
d.getElementsByName("RF"+i)[0].checked = v.ref;
d.getElementsByName("CV"+i)[0].checked = v.rev;
d.getElementsByName("AW"+i)[0].value = v.rgbwm;
d.getElementsByName("WO"+i)[0].value = (v.order>>4) & 0x0F;
d.getElementsByName("SP"+i)[0].value = v.freq;
d.getElementsByName("LA"+i)[0].value = v.ledma;
d.getElementsByName("MA"+i)[0].value = v.maxpwr;
});
d.getElementsByName("PR")[0].checked = l.prl | 0;
d.getElementsByName("LD")[0].checked = l.ld;
d.getElementsByName("MA")[0].value = l.maxpwr;
d.getElementsByName("ABL")[0].checked = l.maxpwr > 0;
}
if(c.hw.com) {
resetCOM();
@ -640,22 +651,28 @@ Swap: <select id="xw${s}" name="XW${s}">
addCOM(e.start, e.len, e.order);
});
}
if (c.hw.btn) {
var b = c.hw.btn;
let b = c.hw.btn;
if (b) {
if (Array.isArray(b.ins)) gId("btns").innerHTML = "";
b.ins.forEach((v,i,a)=>{
addBtn(i,v.pin[0],v.type);
});
d.getElementsByName("TT")[0].value = b.tt;
}
if (c.hw.ir) {
d.getElementsByName("IR")[0].value = c.hw.ir.pin;
d.getElementsByName("IT")[0].value = c.hw.ir.type;
let ir = c.hw.ir;
if (ir) {
d.getElementsByName("IR")[0].value = ir.pin;
d.getElementsByName("IT")[0].value = ir.type;
}
if (c.hw.relay) {
d.getElementsByName("RL")[0].value = c.hw.relay.pin;
d.getElementsByName("RM")[0].checked = c.hw.relay.rev;
d.getElementsByName("RO")[0].checked = c.hw.relay.odrain;
let rl = c.hw.relay;
if (rl) {
d.getElementsByName("RL")[0].value = rl.pin;
d.getElementsByName("RM")[0].checked = rl.rev;
d.getElementsByName("RO")[0].checked = rl.odrain;
}
let li = c.light;
if (li) {
d.getElementsByName("MS")[0].checked = li.aseg;
}
UI();
}

View File

@ -47,7 +47,7 @@
scanLoops = 0;
if (networks.length > 0) {
let cs = d.querySelectorAll("#wifi_entries input[type=text]");
let cs = d.querySelectorAll("#wifi_entries input[type=text][name^=CS]");
for (let input of (cs||[])) {
let found = false;
let select = cE("select");
@ -64,7 +64,7 @@
const option = cE("option");
option.setAttribute("value", networks[i].ssid);
option.textContent = `${networks[i].ssid} (${networks[i].rssi} dBm)`;
option.textContent = `${networks[i].ssid} (${networks[i].rssi} dBm)`; // [${networks[i].bssid.replaceAll(':','')}]
if (networks[i].ssid === input.value) {
option.setAttribute("selected", "selected");
@ -109,12 +109,13 @@
gId("wifi_add").style.display = (i<maxNetworks) ? "inline":"none";
gId("wifi_rem").style.display = (i>1) ? "inline":"none";
}
function addWiFi(ssid="",pass="",ip=0,gw=0,sn=0x00ffffff) { // little endian
function addWiFi(ssid="",pass="",bssid="",ip=0,gw=0,sn=0x00ffffff) { // little endian
var i = gId("wifi_entries").childNodes.length;
if (i >= maxNetworks) return;
var b = `<div id="net${i}"><hr class="sml">
Network name (SSID${i==0?", empty to not connect":""}):<br><input type="text" id="CS${i}" name="CS${i}" maxlength="32" value="${ssid}" ${i>0?"required":""}><br>
Network password:<br><input type="password" name="PW${i}" maxlength="64" value="${pass}"><br>
BSSID (optional):<br><input type="text" id="BS${i}" name="BS${i}" maxlength="12" value="${bssid}"><br>
Static IP (leave at 0.0.0.0 for DHCP)${i==0?"<br>Also used by Ethernet":""}:<br>
<input name="IP${i}0" type="number" class="s" min="0" max="255" value="${ip&0xFF}" required>.<input name="IP${i}1" type="number" class="s" min="0" max="255" value="${(ip>>8)&0xFF}" required>.<input name="IP${i}2" type="number" class="s" min="0" max="255" value="${(ip>>16)&0xFF}" required>.<input name="IP${i}3" type="number" class="s" min="0" max="255" value="${(ip>>24)&0xFF}" required><br>
Static gateway:<br>

View File

@ -53,6 +53,7 @@ bool getJsonValue(const JsonVariant& element, DestType& destination, const Defau
typedef struct WiFiConfig {
char clientSSID[33];
char clientPass[65];
uint8_t bssid[6];
IPAddress staticIP;
IPAddress staticGW;
IPAddress staticSN;
@ -63,6 +64,7 @@ typedef struct WiFiConfig {
{
strncpy(clientSSID, ssid, 32); clientSSID[32] = 0;
strncpy(clientPass, pass, 64); clientPass[64] = 0;
memset(bssid, 0, sizeof(bssid));
}
} wifi_config;
@ -203,14 +205,14 @@ void sendArtnetPollReply(ArtPollReply* reply, IPAddress ipAddress, uint16_t port
bool handleFileRead(AsyncWebServerRequest*, String path);
bool writeObjectToFileUsingId(const char* file, uint16_t id, const JsonDocument* content);
bool writeObjectToFile(const char* file, const char* key, const JsonDocument* content);
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest);
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest);
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest, const JsonDocument* filter = nullptr);
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest, const JsonDocument* filter = nullptr);
void updateFSInfo();
void closeFile();
inline bool writeObjectToFileUsingId(const String &file, uint16_t id, const JsonDocument* content) { return writeObjectToFileUsingId(file.c_str(), id, content); };
inline bool writeObjectToFile(const String &file, const char* key, const JsonDocument* content) { return writeObjectToFile(file.c_str(), key, content); };
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest) { return readObjectFromFile(file.c_str(), key, dest); };
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest, const JsonDocument* filter = nullptr) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest, const JsonDocument* filter = nullptr) { return readObjectFromFile(file.c_str(), key, dest); };
//hue.cpp
void handleHue();
@ -361,7 +363,12 @@ void espNowReceiveCB(uint8_t* address, uint8_t* data, uint8_t len, signed int rs
#endif
//network.cpp
int getSignalQuality(int rssi);
bool initEthernet(); // result is informational
int getSignalQuality(int rssi);
void fillMAC2Str(char *str, const uint8_t *mac);
void fillStr2MAC(uint8_t *mac, const char *str);
int findWiFi(bool doScan = false);
bool isWiFiConfigured();
void WiFiEvent(WiFiEvent_t event);
//um_manager.cpp
@ -482,6 +489,7 @@ void userLoop();
#include "soc/wdev_reg.h"
#define HW_RND_REGISTER REG_READ(WDEV_RND_REG)
#endif
#define hex2int(a) (((a)>='0' && (a)<='9') ? (a)-'0' : ((a)>='A' && (a)<='F') ? (a)-'A'+10 : ((a)>='a' && (a)<='f') ? (a)-'a'+10 : 0)
[[gnu::pure]] int getNumVal(const String* req, uint16_t pos);
void parseNumber(const char* str, byte* val, byte minv=0, byte maxv=255);
bool getVal(JsonVariant elem, byte* val, byte vmin=0, byte vmax=255); // getVal supports inc/decrementing and random ("X~Y(r|[w]~[-][Z])" form)

View File

@ -325,15 +325,15 @@ bool writeObjectToFile(const char* file, const char* key, const JsonDocument* co
return true;
}
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest)
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest, const JsonDocument* filter)
{
char objKey[10];
sprintf(objKey, "\"%d\":", id);
return readObjectFromFile(file, objKey, dest);
return readObjectFromFile(file, objKey, dest, filter);
}
//if the key is a nullptr, deserialize entire object
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest)
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest, const JsonDocument* filter)
{
if (doCloseFile) closeFile();
#ifdef WLED_DEBUG_FS
@ -352,7 +352,8 @@ bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest)
return false;
}
deserializeJson(*dest, f);
if (filter) deserializeJson(*dest, f, DeserializationOption::Filter(*filter));
else deserializeJson(*dest, f);
f.close();
DEBUGFS_PRINTF("Read, took %d ms\n", millis() - s);

View File

@ -3,7 +3,7 @@
#include "wled_ethernet.h"
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
// The following six pins are neither configurable nor
// can they be re-assigned through IOMUX / GPIO matrix.
// See https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit-v1.1.html#ip101gri-phy-interface
@ -146,6 +146,101 @@ const ethernet_settings ethernetBoards[] = {
ETH_CLOCK_GPIO0_OUT // eth_clk_mode
}
};
bool initEthernet()
{
static bool successfullyConfiguredEthernet = false;
if (successfullyConfiguredEthernet) {
// DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring"));
return false;
}
if (ethernetType == WLED_ETH_NONE) {
return false;
}
if (ethernetType >= WLED_NUM_ETH_TYPES) {
DEBUG_PRINTF_P(PSTR("initE: Ignoring attempt for invalid ethernetType (%d)\n"), ethernetType);
return false;
}
DEBUG_PRINTF_P(PSTR("initE: Attempting ETH config: %d\n"), ethernetType);
// Ethernet initialization should only succeed once -- else reboot required
ethernet_settings es = ethernetBoards[ethernetType];
managed_pin_type pinsToAllocate[10] = {
// first six pins are non-configurable
esp32_nonconfigurable_ethernet_pins[0],
esp32_nonconfigurable_ethernet_pins[1],
esp32_nonconfigurable_ethernet_pins[2],
esp32_nonconfigurable_ethernet_pins[3],
esp32_nonconfigurable_ethernet_pins[4],
esp32_nonconfigurable_ethernet_pins[5],
{ (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory
{ (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory
{ (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use
{ ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory
};
// update the clock pin....
if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = false;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) {
pinsToAllocate[9].pin = 16;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) {
pinsToAllocate[9].pin = 17;
pinsToAllocate[9].isOutput = true;
} else {
DEBUG_PRINTF_P(PSTR("initE: Failing due to invalid eth_clk_mode (%d)\n"), es.eth_clk_mode);
return false;
}
if (!PinManager::allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) {
DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins"));
return false;
}
/*
For LAN8720 the most correct way is to perform clean reset each time before init
applying LOW to power or nRST pin for at least 100 us (please refer to datasheet, page 59)
ESP_IDF > V4 implements it (150 us, lan87xx_reset_hw(esp_eth_phy_t *phy) function in
/components/esp_eth/src/esp_eth_phy_lan87xx.c, line 280)
but ESP_IDF < V4 does not. Lets do it:
[not always needed, might be relevant in some EMI situations at startup and for hot resets]
*/
#if ESP_IDF_VERSION_MAJOR==3
if(es.eth_power>0 && es.eth_type==ETH_PHY_LAN8720) {
pinMode(es.eth_power, OUTPUT);
digitalWrite(es.eth_power, 0);
delayMicroseconds(150);
digitalWrite(es.eth_power, 1);
delayMicroseconds(10);
}
#endif
if (!ETH.begin(
(uint8_t) es.eth_address,
(int) es.eth_power,
(int) es.eth_mdc,
(int) es.eth_mdio,
(eth_phy_type_t) es.eth_type,
(eth_clock_mode_t) es.eth_clk_mode
)) {
DEBUG_PRINTLN(F("initC: ETH.begin() failed"));
// de-allocate the allocated pins
for (managed_pin_type mpt : pinsToAllocate) {
PinManager::deallocatePin(mpt.pin, PinOwner::Ethernet);
}
return false;
}
successfullyConfiguredEthernet = true;
DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***"));
return true;
}
#endif
@ -170,19 +265,136 @@ int getSignalQuality(int rssi)
}
void fillMAC2Str(char *str, const uint8_t *mac) {
sprintf_P(str, PSTR("%02x%02x%02x%02x%02x%02x"), MAC2STR(mac));
byte nul = 0;
for (int i = 0; i < 6; i++) nul |= *mac++; // do we have 0
if (!nul) str[0] = '\0'; // empty string
}
void fillStr2MAC(uint8_t *mac, const char *str) {
for (int i = 0; i < 6; i++) *mac++ = 0; // clear
if (!str) return; // null string
uint64_t MAC = strtoull(str, nullptr, 16);
for (int i = 0; i < 6; i++) { *--mac = MAC & 0xFF; MAC >>= 8; }
}
// performs asynchronous scan for available networks (which may take couple of seconds to finish)
// returns configured WiFi ID with the strongest signal (or default if no configured networks available)
int findWiFi(bool doScan) {
if (multiWiFi.size() <= 1) {
DEBUG_PRINTF_P(PSTR("WiFi: Defaulf SSID (%s) used.\n"), multiWiFi[0].clientSSID);
return 0;
}
int status = WiFi.scanComplete(); // complete scan may take as much as several seconds (usually <6s with not very crowded air)
if (doScan || status == WIFI_SCAN_FAILED) {
DEBUG_PRINTF_P(PSTR("WiFi: Scan started. @ %lus\n"), millis()/1000);
WiFi.scanNetworks(true); // start scanning in asynchronous mode (will delete old scan)
} else if (status >= 0) { // status contains number of found networks (including duplicate SSIDs with different BSSID)
DEBUG_PRINTF_P(PSTR("WiFi: Found %d SSIDs. @ %lus\n"), status, millis()/1000);
int rssi = -9999;
int selected = selectedWiFi;
for (int o = 0; o < status; o++) {
DEBUG_PRINTF_P(PSTR(" SSID: %s (BSSID: %s) RSSI: %ddB\n"), WiFi.SSID(o).c_str(), WiFi.BSSIDstr(o).c_str(), WiFi.RSSI(o));
for (unsigned n = 0; n < multiWiFi.size(); n++)
if (!strcmp(WiFi.SSID(o).c_str(), multiWiFi[n].clientSSID)) {
bool foundBSSID = memcmp(multiWiFi[n].bssid, WiFi.BSSID(o), 6) == 0;
// find the WiFi with the strongest signal (but keep priority of entry if signal difference is not big)
if (foundBSSID || (n < selected && WiFi.RSSI(o) > rssi-10) || WiFi.RSSI(o) > rssi) {
rssi = foundBSSID ? 0 : WiFi.RSSI(o); // RSSI is only ever negative
selected = n;
}
break;
}
}
DEBUG_PRINTF_P(PSTR("WiFi: Selected SSID: %s RSSI: %ddB\n"), multiWiFi[selected].clientSSID, rssi);
return selected;
}
//DEBUG_PRINT(F("WiFi scan running."));
return status; // scan is still running or there was an error
}
bool isWiFiConfigured() {
return multiWiFi.size() > 1 || (strlen(multiWiFi[0].clientSSID) >= 1 && strcmp_P(multiWiFi[0].clientSSID, PSTR(DEFAULT_CLIENT_SSID)) != 0);
}
#if defined(ESP8266)
#define ARDUINO_EVENT_WIFI_AP_STADISCONNECTED WIFI_EVENT_SOFTAPMODE_STADISCONNECTED
#define ARDUINO_EVENT_WIFI_AP_STACONNECTED WIFI_EVENT_SOFTAPMODE_STACONNECTED
#define ARDUINO_EVENT_WIFI_STA_GOT_IP WIFI_EVENT_STAMODE_GOT_IP
#define ARDUINO_EVENT_WIFI_STA_CONNECTED WIFI_EVENT_STAMODE_CONNECTED
#define ARDUINO_EVENT_WIFI_STA_DISCONNECTED WIFI_EVENT_STAMODE_DISCONNECTED
#elif defined(ARDUINO_ARCH_ESP32) && !defined(ESP_ARDUINO_VERSION_MAJOR) //ESP_IDF_VERSION_MAJOR==3
// not strictly IDF v3 but Arduino core related
#define ARDUINO_EVENT_WIFI_AP_STADISCONNECTED SYSTEM_EVENT_AP_STADISCONNECTED
#define ARDUINO_EVENT_WIFI_AP_STACONNECTED SYSTEM_EVENT_AP_STACONNECTED
#define ARDUINO_EVENT_WIFI_STA_GOT_IP SYSTEM_EVENT_STA_GOT_IP
#define ARDUINO_EVENT_WIFI_STA_CONNECTED SYSTEM_EVENT_STA_CONNECTED
#define ARDUINO_EVENT_WIFI_STA_DISCONNECTED SYSTEM_EVENT_STA_DISCONNECTED
#define ARDUINO_EVENT_WIFI_AP_START SYSTEM_EVENT_AP_START
#define ARDUINO_EVENT_WIFI_AP_STOP SYSTEM_EVENT_AP_STOP
#define ARDUINO_EVENT_WIFI_SCAN_DONE SYSTEM_EVENT_SCAN_DONE
#define ARDUINO_EVENT_ETH_START SYSTEM_EVENT_ETH_START
#define ARDUINO_EVENT_ETH_CONNECTED SYSTEM_EVENT_ETH_CONNECTED
#define ARDUINO_EVENT_ETH_DISCONNECTED SYSTEM_EVENT_ETH_DISCONNECTED
#endif
//handle Ethernet connection event
void WiFiEvent(WiFiEvent_t event)
{
switch (event) {
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
case SYSTEM_EVENT_ETH_START:
DEBUG_PRINTLN(F("ETH Started"));
case ARDUINO_EVENT_WIFI_AP_STADISCONNECTED:
// AP client disconnected
if (--apClients == 0 && isWiFiConfigured()) forceReconnect = true; // no clients reconnect WiFi if awailable
DEBUG_PRINTF_P(PSTR("WiFi-E: AP Client Disconnected (%d) @ %lus.\n"), (int)apClients, millis()/1000);
break;
case SYSTEM_EVENT_ETH_CONNECTED:
case ARDUINO_EVENT_WIFI_AP_STACONNECTED:
// AP client connected
apClients++;
DEBUG_PRINTF_P(PSTR("WiFi-E: AP Client Connected (%d) @ %lus.\n"), (int)apClients, millis()/1000);
break;
case ARDUINO_EVENT_WIFI_STA_GOT_IP:
DEBUG_PRINT(F("WiFi-E: IP address: ")); DEBUG_PRINTLN(Network.localIP());
break;
case ARDUINO_EVENT_WIFI_STA_CONNECTED:
// followed by IDLE and SCAN_DONE
DEBUG_PRINTF_P(PSTR("WiFi-E: Connected! @ %lus\n"), millis()/1000);
wasConnected = true;
break;
case ARDUINO_EVENT_WIFI_STA_DISCONNECTED:
if (wasConnected && interfacesInited) {
DEBUG_PRINTF_P(PSTR("WiFi-E: Disconnected! @ %lus\n"), millis()/1000);
if (interfacesInited && multiWiFi.size() > 1 && WiFi.scanComplete() >= 0) {
findWiFi(true); // reinit WiFi scan
forceReconnect = true;
}
interfacesInited = false;
}
break;
#ifdef ARDUINO_ARCH_ESP32
case ARDUINO_EVENT_WIFI_SCAN_DONE:
// also triggered when connected to selected SSID
DEBUG_PRINTLN(F("WiFi-E: SSID scan completed."));
break;
case ARDUINO_EVENT_WIFI_AP_START:
DEBUG_PRINTLN(F("WiFi-E: AP Started"));
break;
case ARDUINO_EVENT_WIFI_AP_STOP:
DEBUG_PRINTLN(F("WiFi-E: AP Stopped"));
break;
#if defined(WLED_USE_ETHERNET)
case ARDUINO_EVENT_ETH_START:
DEBUG_PRINTLN(F("ETH-E: Started"));
break;
case ARDUINO_EVENT_ETH_CONNECTED:
{
DEBUG_PRINTLN(F("ETH Connected"));
DEBUG_PRINTLN(F("ETH-E: Connected"));
if (!apActive) {
WiFi.disconnect(true);
WiFi.disconnect(true); // disable WiFi entirely
}
if (multiWiFi[0].staticIP != (uint32_t)0x00000000 && multiWiFi[0].staticGW != (uint32_t)0x00000000) {
ETH.config(multiWiFi[0].staticIP, multiWiFi[0].staticGW, multiWiFi[0].staticSN, dnsAddress);
@ -196,18 +408,20 @@ void WiFiEvent(WiFiEvent_t event)
showWelcomePage = false;
break;
}
case SYSTEM_EVENT_ETH_DISCONNECTED:
DEBUG_PRINTLN(F("ETH Disconnected"));
case ARDUINO_EVENT_ETH_DISCONNECTED:
DEBUG_PRINTLN(F("ETH-E: Disconnected"));
// This doesn't really affect ethernet per se,
// as it's only configured once. Rather, it
// may be necessary to reconnect the WiFi when
// ethernet disconnects, as a way to provide
// alternative access to the device.
if (interfacesInited && WiFi.scanComplete() >= 0) findWiFi(true); // reinit WiFi scan
forceReconnect = true;
break;
#endif
#endif
#endif
default:
DEBUG_PRINTF_P(PSTR("Network event: %d\n"), (int)event);
DEBUG_PRINTF_P(PSTR("WiFi-E: Event %d\n"), (int)event);
break;
}
}

View File

@ -23,6 +23,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
for (size_t n = 0; n < WLED_MAX_WIFI_COUNT; n++) {
char cs[4] = "CS"; cs[2] = 48+n; cs[3] = 0; //client SSID
char pw[4] = "PW"; pw[2] = 48+n; pw[3] = 0; //client password
char bs[4] = "BS"; bs[2] = 48+n; bs[3] = 0; //BSSID
char ip[5] = "IP"; ip[2] = 48+n; ip[4] = 0; //IP address
char gw[5] = "GW"; gw[2] = 48+n; gw[4] = 0; //GW address
char sn[5] = "SN"; sn[2] = 48+n; sn[4] = 0; //subnet mask
@ -39,6 +40,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
strlcpy(multiWiFi[n].clientPass, request->arg(pw).c_str(), 65);
forceReconnect = true;
}
fillStr2MAC(multiWiFi[n].bssid, request->arg(bs).c_str());
for (size_t i = 0; i < 4; i++) {
ip[3] = 48+i;
gw[3] = 48+i;
@ -93,9 +95,9 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
strlwr(linked_remote); //Normalize MAC format to lowercase
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
ethernetType = request->arg(F("ETH")).toInt();
WLED::instance().initEthernet();
initEthernet();
#endif
}
@ -143,7 +145,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
#endif
bool busesChanged = false;
for (int s = 0; s < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; s++) {
for (int s = 0; s < 36; s++) { // theoretical limit is 36 : "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
int offset = s < 10 ? '0' : 'A';
char lp[4] = "L0"; lp[2] = offset+s; lp[3] = 0; //ascii 0-9 //strip data pin
char lc[4] = "LC"; lc[2] = offset+s; lc[3] = 0; //strip length
@ -159,7 +161,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
char la[4] = "LA"; la[2] = offset+s; la[3] = 0; //LED mA
char ma[4] = "MA"; ma[2] = offset+s; ma[3] = 0; //max mA
if (!request->hasArg(lp)) {
DEBUG_PRINTF_P(PSTR("No data for %d\n"), s);
DEBUG_PRINTF_P(PSTR("# of buses: %d\n"), s+1);
break;
}
for (int i = 0; i < 5; i++) {
@ -210,7 +212,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
type |= request->hasArg(rf) << 7; // off refresh override
// actual finalization is done in WLED::loop() (removing old busses and adding new)
// this may happen even before this loop is finished so we do "doInitBusses" after the loop
busConfigs.push_back(std::move(BusConfig(type, pins, start, length, colorOrder | (channelSwap<<4), request->hasArg(cv), skip, awmode, freq, useGlobalLedBuffer, maPerLed, maMax)));
busConfigs.emplace_back(type, pins, start, length, colorOrder | (channelSwap<<4), request->hasArg(cv), skip, awmode, freq, useGlobalLedBuffer, maPerLed, maMax);
busesChanged = true;
}
//doInitBusses = busesChanged; // we will do that below to ensure all input data is processed

View File

@ -530,6 +530,8 @@ um_data_t* simulateSound(uint8_t simulationId)
static const char s_ledmap_tmpl[] PROGMEM = "ledmap%d.json";
// enumerate all ledmapX.json files on FS and extract ledmap names if existing
void enumerateLedmaps() {
StaticJsonDocument<64> filter;
filter["n"] = true;
ledMaps = 1;
for (size_t i=1; i<WLED_MAX_LEDMAPS; i++) {
char fileName[33] = "/";
@ -548,7 +550,7 @@ void enumerateLedmaps() {
#ifndef ESP8266
if (requestJSONBufferLock(21)) {
if (readObjectFromFile(fileName, nullptr, pDoc)) {
if (readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
size_t len = 0;
JsonObject root = pDoc->as<JsonObject>();
if (!root["n"].isNull()) {

View File

@ -607,146 +607,6 @@ void WLED::initAP(bool resetAP)
apActive = true;
}
bool WLED::initEthernet()
{
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
static bool successfullyConfiguredEthernet = false;
if (successfullyConfiguredEthernet) {
// DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring"));
return false;
}
if (ethernetType == WLED_ETH_NONE) {
return false;
}
if (ethernetType >= WLED_NUM_ETH_TYPES) {
DEBUG_PRINTF_P(PSTR("initE: Ignoring attempt for invalid ethernetType (%d)\n"), ethernetType);
return false;
}
DEBUG_PRINTF_P(PSTR("initE: Attempting ETH config: %d\n"), ethernetType);
// Ethernet initialization should only succeed once -- else reboot required
ethernet_settings es = ethernetBoards[ethernetType];
managed_pin_type pinsToAllocate[10] = {
// first six pins are non-configurable
esp32_nonconfigurable_ethernet_pins[0],
esp32_nonconfigurable_ethernet_pins[1],
esp32_nonconfigurable_ethernet_pins[2],
esp32_nonconfigurable_ethernet_pins[3],
esp32_nonconfigurable_ethernet_pins[4],
esp32_nonconfigurable_ethernet_pins[5],
{ (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory
{ (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory
{ (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use
{ ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory
};
// update the clock pin....
if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = false;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) {
pinsToAllocate[9].pin = 16;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) {
pinsToAllocate[9].pin = 17;
pinsToAllocate[9].isOutput = true;
} else {
DEBUG_PRINTF_P(PSTR("initE: Failing due to invalid eth_clk_mode (%d)\n"), es.eth_clk_mode);
return false;
}
if (!PinManager::allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) {
DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins"));
return false;
}
/*
For LAN8720 the most correct way is to perform clean reset each time before init
applying LOW to power or nRST pin for at least 100 us (please refer to datasheet, page 59)
ESP_IDF > V4 implements it (150 us, lan87xx_reset_hw(esp_eth_phy_t *phy) function in
/components/esp_eth/src/esp_eth_phy_lan87xx.c, line 280)
but ESP_IDF < V4 does not. Lets do it:
[not always needed, might be relevant in some EMI situations at startup and for hot resets]
*/
#if ESP_IDF_VERSION_MAJOR==3
if(es.eth_power>0 && es.eth_type==ETH_PHY_LAN8720) {
pinMode(es.eth_power, OUTPUT);
digitalWrite(es.eth_power, 0);
delayMicroseconds(150);
digitalWrite(es.eth_power, 1);
delayMicroseconds(10);
}
#endif
if (!ETH.begin(
(uint8_t) es.eth_address,
(int) es.eth_power,
(int) es.eth_mdc,
(int) es.eth_mdio,
(eth_phy_type_t) es.eth_type,
(eth_clock_mode_t) es.eth_clk_mode
)) {
DEBUG_PRINTLN(F("initC: ETH.begin() failed"));
// de-allocate the allocated pins
for (managed_pin_type mpt : pinsToAllocate) {
PinManager::deallocatePin(mpt.pin, PinOwner::Ethernet);
}
return false;
}
successfullyConfiguredEthernet = true;
DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***"));
return true;
#else
return false; // Ethernet not enabled for build
#endif
}
// performs asynchronous scan for available networks (which may take couple of seconds to finish)
// returns configured WiFi ID with the strongest signal (or default if no configured networks available)
int8_t WLED::findWiFi(bool doScan) {
if (multiWiFi.size() <= 1) {
DEBUG_PRINTLN(F("Defaulf WiFi used."));
return 0;
}
if (doScan) WiFi.scanDelete(); // restart scan
int status = WiFi.scanComplete(); // complete scan may take as much as several seconds (usually <3s with not very crowded air)
if (status == WIFI_SCAN_FAILED) {
DEBUG_PRINTLN(F("WiFi scan started."));
WiFi.scanNetworks(true); // start scanning in asynchronous mode
} else if (status >= 0) { // status contains number of found networks
DEBUG_PRINT(F("WiFi scan completed: ")); DEBUG_PRINTLN(status);
int rssi = -9999;
unsigned selected = selectedWiFi;
for (int o = 0; o < status; o++) {
DEBUG_PRINT(F(" WiFi available: ")); DEBUG_PRINT(WiFi.SSID(o));
DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(WiFi.RSSI(o)); DEBUG_PRINTLN(F("dB"));
for (unsigned n = 0; n < multiWiFi.size(); n++)
if (!strcmp(WiFi.SSID(o).c_str(), multiWiFi[n].clientSSID)) {
// find the WiFi with the strongest signal (but keep priority of entry if signal difference is not big)
if ((n < selected && WiFi.RSSI(o) > rssi-10) || WiFi.RSSI(o) > rssi) {
rssi = WiFi.RSSI(o);
selected = n;
}
break;
}
}
DEBUG_PRINT(F("Selected: ")); DEBUG_PRINT(multiWiFi[selected].clientSSID);
DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(rssi); DEBUG_PRINTLN(F("dB"));
return selected;
}
//DEBUG_PRINT(F("WiFi scan running."));
return status; // scan is still running or there was an error
}
void WLED::initConnection()
{
DEBUG_PRINTF_P(PSTR("initConnection() called @ %lus.\n"), millis()/1000);

View File

@ -217,6 +217,10 @@ using PSRAMDynamicJsonDocument = BasicJsonDocument<PSRAM_Allocator>;
#define WLED_AP_PASS DEFAULT_AP_PASS
#endif
#ifndef WLED_PIN
#define WLED_PIN ""
#endif
#ifndef SPIFFS_EDITOR_AIRCOOOKIE
#error You are not using the Aircoookie fork of the ESPAsyncWebserver library.\
Using upstream puts your WiFi password at risk of being served by the filesystem.\
@ -277,7 +281,11 @@ WLED_GLOBAL char releaseString[] _INIT(WLED_RELEASE_NAME); // must include the q
// AP and OTA default passwords (for maximum security change them!)
WLED_GLOBAL char apPass[65] _INIT(WLED_AP_PASS);
#ifdef WLED_OTA_PASS
WLED_GLOBAL char otaPass[33] _INIT(WLED_OTA_PASS);
#else
WLED_GLOBAL char otaPass[33] _INIT(DEFAULT_OTA_PASS);
#endif
// Hardware and pin config
#ifndef BTNPIN
@ -359,7 +367,7 @@ WLED_GLOBAL wifi_options_t wifiOpt _INIT_N(({0, 1, false, AP_BEHAVIOR_BOOT_NO_CO
#define noWifiSleep wifiOpt.noWifiSleep
#define force802_3g wifiOpt.force802_3g
#else
WLED_GLOBAL uint8_t selectedWiFi _INIT(0);
WLED_GLOBAL int8_t selectedWiFi _INIT(0);
WLED_GLOBAL byte apChannel _INIT(1); // 2.4GHz WiFi AP channel (1-13)
WLED_GLOBAL byte apHide _INIT(0); // hidden AP SSID
WLED_GLOBAL byte apBehavior _INIT(AP_BEHAVIOR_BOOT_NO_CONN); // access point opens when no connection after boot by default
@ -377,9 +385,9 @@ WLED_GLOBAL uint8_t txPower _INIT(WIFI_POWER_8_5dBm);
WLED_GLOBAL uint8_t txPower _INIT(WIFI_POWER_19_5dBm);
#endif
#endif
#define WLED_WIFI_CONFIGURED (strlen(multiWiFi[0].clientSSID) >= 1 && strcmp(multiWiFi[0].clientSSID, DEFAULT_CLIENT_SSID) != 0)
#define WLED_WIFI_CONFIGURED isWiFiConfigured()
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
#ifdef WLED_ETH_DEFAULT // default ethernet board type if specified
WLED_GLOBAL int ethernetType _INIT(WLED_ETH_DEFAULT); // ethernet board type
#else
@ -570,11 +578,15 @@ WLED_GLOBAL byte macroLongPress[WLED_MAX_BUTTONS] _INIT({0});
WLED_GLOBAL byte macroDoublePress[WLED_MAX_BUTTONS] _INIT({0});
// Security CONFIG
WLED_GLOBAL bool otaLock _INIT(false); // prevents OTA firmware updates without password. ALWAYS enable if system exposed to any public networks
WLED_GLOBAL bool wifiLock _INIT(false); // prevents access to WiFi settings when OTA lock is enabled
WLED_GLOBAL bool aOtaEnabled _INIT(true); // ArduinoOTA allows easy updates directly from the IDE. Careful, it does not auto-disable when OTA lock is on
WLED_GLOBAL char settingsPIN[5] _INIT(""); // PIN for settings pages
WLED_GLOBAL bool correctPIN _INIT(true);
#ifdef WLED_OTA_PASS
WLED_GLOBAL bool otaLock _INIT(true); // prevents OTA firmware updates without password. ALWAYS enable if system exposed to any public networks
#else
WLED_GLOBAL bool otaLock _INIT(false); // prevents OTA firmware updates without password. ALWAYS enable if system exposed to any public networks
#endif
WLED_GLOBAL bool wifiLock _INIT(false); // prevents access to WiFi settings when OTA lock is enabled
WLED_GLOBAL bool aOtaEnabled _INIT(true); // ArduinoOTA allows easy updates directly from the IDE. Careful, it does not auto-disable when OTA lock is on
WLED_GLOBAL char settingsPIN[5] _INIT(WLED_PIN); // PIN for settings pages
WLED_GLOBAL bool correctPIN _INIT(!strlen(settingsPIN));
WLED_GLOBAL unsigned long lastEditTime _INIT(0);
WLED_GLOBAL uint16_t userVar0 _INIT(0), userVar1 _INIT(0); //available for use in usermod
@ -582,6 +594,7 @@ WLED_GLOBAL uint16_t userVar0 _INIT(0), userVar1 _INIT(0); //available for use i
// internal global variable declarations
// wifi
WLED_GLOBAL bool apActive _INIT(false);
WLED_GLOBAL byte apClients _INIT(0);
WLED_GLOBAL bool forceReconnect _INIT(false);
WLED_GLOBAL unsigned long lastReconnectAttempt _INIT(0);
WLED_GLOBAL bool interfacesInited _INIT(false);
@ -894,12 +907,11 @@ WLED_GLOBAL ESPAsyncE131 ddp _INIT_N(((handleE131Packet)));
WLED_GLOBAL bool e131NewData _INIT(false);
// led fx library object
WLED_GLOBAL BusManager busses _INIT(BusManager());
WLED_GLOBAL WS2812FX strip _INIT(WS2812FX());
WLED_GLOBAL std::vector<BusConfig> busConfigs; //temporary, to remember values from network callback until after
WLED_GLOBAL bool doInitBusses _INIT(false);
WLED_GLOBAL int8_t loadLedmap _INIT(-1);
WLED_GLOBAL uint8_t currentLedmap _INIT(0);
WLED_GLOBAL WS2812FX strip _INIT(WS2812FX());
WLED_GLOBAL std::vector<BusConfig> busConfigs; //temporary, to remember values from network callback until after
WLED_GLOBAL bool doInitBusses _INIT(false);
WLED_GLOBAL int8_t loadLedmap _INIT(-1);
WLED_GLOBAL uint8_t currentLedmap _INIT(0);
#ifndef ESP8266
WLED_GLOBAL char *ledmapNames[WLED_MAX_LEDMAPS-1] _INIT_N(({nullptr}));
#endif
@ -1049,11 +1061,9 @@ public:
void beginStrip();
void handleConnection();
bool initEthernet(); // result is informational
void initAP(bool resetAP = false);
void initConnection();
void initInterfaces();
int8_t findWiFi(bool doScan = false);
#if defined(STATUSLED)
void handleStatusLED();
#endif

View File

@ -567,13 +567,14 @@ void serveSettings(AsyncWebServerRequest* request, bool post) {
//else if (url.indexOf("/edit") >= 0) subPage = 10;
else subPage = SUBPAGE_WELCOME;
if (!correctPIN && strlen(settingsPIN) > 0 && (subPage > 0 && subPage < 11)) {
bool pinRequired = !correctPIN && strlen(settingsPIN) > 0 && (subPage > (WLED_WIFI_CONFIGURED ? SUBPAGE_MENU : SUBPAGE_WIFI) && subPage < SUBPAGE_LOCK);
if (pinRequired) {
originalSubPage = subPage;
subPage = SUBPAGE_PINREQ; // require PIN
}
// if OTA locked or too frequent PIN entry requests fail hard
if ((subPage == SUBPAGE_WIFI && wifiLock && otaLock) || (post && !correctPIN && millis()-lastEditTime < PIN_RETRY_COOLDOWN))
if ((subPage == SUBPAGE_WIFI && wifiLock && otaLock) || (post && pinRequired && millis()-lastEditTime < PIN_RETRY_COOLDOWN))
{
serveMessage(request, 401, FPSTR(s_accessdenied), FPSTR(s_unlock_ota), 254); return;
}
@ -609,7 +610,7 @@ void serveSettings(AsyncWebServerRequest* request, bool post) {
if (!s2[0]) strcpy_P(s2, s_redirecting);
bool redirectAfter9s = (subPage == SUBPAGE_WIFI || ((subPage == SUBPAGE_SEC || subPage == SUBPAGE_UM) && doReboot));
serveMessage(request, (correctPIN ? 200 : 401), s, s2, redirectAfter9s ? 129 : (correctPIN ? 1 : 3));
serveMessage(request, (!pinRequired ? 200 : 401), s, s2, redirectAfter9s ? 129 : (!pinRequired ? 1 : 3));
return;
}
}

View File

@ -110,7 +110,7 @@ void appendGPIOinfo(Print& settingsScript) {
settingsScript.print(hardwareTX); // debug output (TX) pin
firstPin = false;
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
if (ethernetType != WLED_ETH_NONE && ethernetType < WLED_NUM_ETH_TYPES) {
if (!firstPin) settingsScript.print(',');
for (unsigned p=0; p<WLED_ETH_RSVD_PINS_COUNT; p++) { settingsScript.printf("%d,",esp32_nonconfigurable_ethernet_pins[p].pin); }
@ -178,9 +178,12 @@ void getSettingsJS(byte subPage, Print& settingsScript)
char fpass[l+1]; //fill password field with ***
fpass[l] = 0;
memset(fpass,'*',l);
settingsScript.printf_P(PSTR("addWiFi(\"%s\",\"%s\",0x%X,0x%X,0x%X);"),
char bssid[13];
fillMAC2Str(bssid, multiWiFi[n].bssid);
settingsScript.printf_P(PSTR("addWiFi(\"%s\",\"%s\",\"%s\",0x%X,0x%X,0x%X);"),
multiWiFi[n].clientSSID,
fpass,
bssid,
(uint32_t) multiWiFi[n].staticIP, // explicit cast required as this is a struct
(uint32_t) multiWiFi[n].staticGW,
(uint32_t) multiWiFi[n].staticSN);
@ -219,7 +222,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
settingsScript.print(F("toggle('ESPNOW');")); // hide ESP-NOW setting
#endif
#ifdef WLED_USE_ETHERNET
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
printSetFormValue(settingsScript,PSTR("ETH"),ethernetType);
#else
//hide ethernet setting if not compiled in
@ -272,7 +275,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
// set limits
settingsScript.printf_P(PSTR("bLimits(%d,%d,%d,%d,%d,%d,%d,%d);"),
WLED_MAX_BUSSES,
WLED_MIN_VIRTUAL_BUSSES,
WLED_MIN_VIRTUAL_BUSSES, // irrelevant, but kept to distinguish S2/S3 in UI
MAX_LEDS_PER_BUS,
MAX_LED_MEMORY,
MAX_LEDS,
@ -358,7 +361,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
const ColorOrderMap& com = BusManager::getColorOrderMap();
for (int s = 0; s < com.count(); s++) {
const ColorOrderMapEntry* entry = com.get(s);
if (entry == nullptr) break;
if (!entry || !entry->len) break;
settingsScript.printf_P(PSTR("addCOM(%d,%d,%d);"), entry->start, entry->len, entry->colorOrder);
}