updated scaling, improved hashing, updated rotozoomer to not use a buffer

This commit is contained in:
Damian Schneider 2025-03-08 12:48:27 +01:00
parent 5e8073022b
commit 4ecc531998
4 changed files with 113 additions and 84 deletions

View File

@ -6221,22 +6221,12 @@ uint16_t mode_2Dplasmarotozoom() {
const int cols = SEG_W;
const int rows = SEG_H;
unsigned dataSize = SEGMENT.length() + sizeof(float);
unsigned dataSize = sizeof(float);
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
float *a = reinterpret_cast<float*>(SEGENV.data);
byte *plasma = reinterpret_cast<byte*>(SEGENV.data+sizeof(float));
unsigned ms = strip.now/15;
// plasma
for (int j = 0; j < rows; j++) {
int index = j*cols;
for (int i = 0; i < cols; i++) {
if (SEGMENT.check1) plasma[index+i] = (i * 4 ^ j * 4) + ms / 6;
else plasma[index+i] = perlin8(i * 40, j * 40, ms);
}
}
// rotozoom
float f = (sin_t(*a/2)+((128-SEGMENT.intensity)/128.0f)+1.1f)/1.5f; // scale factor
float kosinus = cos_t(*a) * f;
@ -6245,9 +6235,14 @@ uint16_t mode_2Dplasmarotozoom() {
float u1 = i * kosinus;
float v1 = i * sinus;
for (int j = 0; j < rows; j++) {
byte u = abs8(u1 - j * sinus) % cols;
byte v = abs8(v1 + j * kosinus) % rows;
SEGMENT.setPixelColorXY(i, j, SEGMENT.color_from_palette(plasma[v*cols+u], false, PALETTE_SOLID_WRAP, 255));
unsigned u = abs8(u1 - j * sinus) % cols;
unsigned v = abs8(v1 + j * kosinus) % rows;
byte plasma;
if (SEGMENT.check1) plasma = (u * 4 ^ v * 4) + ms / 6;
else plasma = perlin8(u * 40, v * 40, ms);
//else plasma = inoise8(u * SEGMENT.intensity, v * SEGMENT.intensity, ms);
//SEGMENT.setPixelColorXY(i, j, SEGMENT.color_from_palette(plasma[v*cols+u], false, PALETTE_SOLID_WRAP, 255));
SEGMENT.setPixelColorXY(i, j, SEGMENT.color_from_palette(plasma, false, PALETTE_SOLID_WRAP, 255));
}
}
*a -= 0.03f + float(SEGENV.speed-128)*0.0002f; // rotation speed

View File

@ -516,9 +516,9 @@ void enumerateLedmaps();
[[gnu::hot]] uint8_t get_random_wheel_index(uint8_t pos);
[[gnu::hot, gnu::pure]] float mapf(float x, float in_min, float in_max, float out_min, float out_max);
uint32_t hashInt(uint32_t s);
int32_t perlin1D_raw(uint32_t x);
int32_t perlin2D_raw(uint32_t x, uint32_t y);
int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z);
int32_t perlin1D_raw(uint32_t x, bool is16bit = false);
int32_t perlin2D_raw(uint32_t x, uint32_t y, bool is16bit = false);
int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z, bool is16bit = false);
uint8_t perlin8(uint16_t x);
uint8_t perlin8(uint16_t x, uint16_t y);
uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z);

View File

@ -623,64 +623,63 @@ int32_t hw_random(int32_t lowerlimit, int32_t upperlimit) {
* Fixed point integer based Perlin noise functions by @dedehai
* Note: optimized for speed and to mimic fastled inoise functions, not for accuracy or best randomness
*/
#define PERLIN_SHIFT 1
// calculate gradient for corner from hash value
static inline __attribute__((always_inline)) int32_t hashToGradient(uint32_t h) {
// using more steps yields more "detailed" perlin noise but looks less like the original fastled version (adjust PERLIN_SHIFT to compensate)
//return (h & 0xFF) - 128; // use PERLIN_SHIFT 7
//return (h & 0x0F) - 8; // use PERLIN_SHIFT 3
//return (h & 0x07) - 4; // use PERLIN_SHIFT 2
return (h & 0x03) - 2; // use PERLIN_SHIFT 1
}
// Gradient functions for 1D, 2D and 3D Perlin noise note: forcing inline produces smaller code and makes it 3x faster!
static inline __attribute__((always_inline)) int32_t gradient1D(uint32_t x0, int32_t dx) {
//uint32_t hash ^= hash >> 16;
//hash *= 0x7feb352d;
//hash ^= hash >> 15;
//hash *= 0x846ca68b;
//hash ^= hash >> 16;
uint32_t hash = (x0 * 73856093);
hash ^= hash >> 15;
hash *= 0x92C3412B;
hash ^= hash >> 13;
int32_t gradx = (hash & 0xFF) - 128; // +127 to -128
return (gradx * dx) >> 7;
uint32_t h = x0 * 0x27D4EB2D;
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
h ^= h >> 7;
return (hashToGradient(h) * dx) >> PERLIN_SHIFT;
}
static inline __attribute__((always_inline)) int32_t gradient2D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy) {
//uint32_t hash = perlinHash(x0 ^ perlinHash(y0));
// much faster and still decent entropy
uint32_t hash = (x0 * 73856093) ^ (y0 * 19349663);
hash ^= hash >> 15;
hash *= 0x92C3412B;
hash ^= hash >> 13;
// calculate gradients for each corner from hash value
int32_t gradx = (hash & 0xFF) - 128; // +127 to -128
int32_t grady = ((hash>>7) & 0xFF) - 128;
return (gradx * dx + grady * dy) >> 9;
uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D);
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
return (hashToGradient(h) * dx + hashToGradient(h>>PERLIN_SHIFT) * dy) >> (1 + PERLIN_SHIFT);
}
static inline __attribute__((always_inline)) int32_t gradient3D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy, uint32_t z0, int32_t dz) {
// fast and good entropy hash from corner coordinates
uint32_t h = (x0 * 0x68E31DA4) ^ (y0 * 0xB5297A4D) ^ (z0 * 0x1B56C4E9);
// fast and good entropy hash from corner coordinates
uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D) ^ (z0 * 0x1B56C4E9);
h ^= h >> 15;
h = h * 0x92C3412B + (h >> 13);
int32_t gradx = (h & 0xFF) - 128; // +127 to -128
int32_t grady = ((h>>7) & 0xFF) - 128;
int32_t gradz = ((h>>14) & 0xFF) - 128;
return (gradx * dx + grady * dy + gradz * dz) >> 8; // 25bit >> 8bit -> result is signed 17bit max
h *= 0x92C3412B;
h ^= h >> 13;
return ((hashToGradient(h) * dx + hashToGradient(h>>(1+PERLIN_SHIFT)) * dy + hashToGradient(h>>(1 + 2*PERLIN_SHIFT)) * dz) * 85) >> (8 + PERLIN_SHIFT); // scale to 16bit, x*85 >> 8 = x/3
}
// fast cubic smoothstep: t*(3 - 2t²), optimized for fixed point, scaled to avoid overflows
static uint32_t smoothstep(const uint32_t t) {
uint32_t t_squared = (t * t) >> 16;
uint32_t factor = (3 << 16) - ((t << 1));
return (t_squared * factor) >> 19;
return (t_squared * factor) >> 18; // scale to avoid overflows
}
// simple linear interpolation for fixed-point values, scaled for perlin noise use
static inline int32_t lerpPerlin(int32_t a, int32_t b, int32_t t) {
return a + (((b - a) * t) >> 13);
return a + (((b - a) * t) >> 14); // match scaling with smoothstep to yield 16.16bit values
}
// 1D Perlin noise function that returns a value in range of approximately -32768 to +32768
int32_t perlin1D_raw(uint32_t x) {
int32_t perlin1D_raw(uint32_t x, bool is16bit) {
// integer and fractional part coordinates
int32_t x0 = x >> 16;
int32_t x1 = x0 + 1;
if(is16bit) x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
int32_t dx0 = x & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
// gradient values for the two corners
@ -693,11 +692,17 @@ int32_t perlin1D_raw(uint32_t x) {
}
// 2D Perlin noise function that returns a value in range of approximately -32768 to +32768
int32_t perlin2D_raw(uint32_t x, uint32_t y) {
int32_t perlin2D_raw(uint32_t x, uint32_t y, bool is16bit) {
int32_t x0 = x >> 16;
int32_t y0 = y >> 16;
int32_t x1 = x0 + 1;
int32_t y1 = y0 + 1;
if(is16bit) {
x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
y1 = y1 & 0xFF;
}
int32_t dx0 = x & 0xFFFF;
int32_t dy0 = y & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
@ -718,8 +723,7 @@ int32_t perlin2D_raw(uint32_t x, uint32_t y) {
return noise;
}
// 2D Perlin noise function that returns a value in range of approximately -40000 to +40000
int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z) {
int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z, bool is16bit) {
int32_t x0 = x >> 16;
int32_t y0 = y >> 16;
int32_t z0 = z >> 16;
@ -727,6 +731,12 @@ int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z) {
int32_t y1 = y0 + 1;
int32_t z1 = z0 + 1;
if(is16bit) {
x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
y1 = y1 & 0xFF;
z1 = z1 & 0xFF;
}
int32_t dx0 = x & 0xFFFF;
int32_t dy0 = y & 0xFFFF;
int32_t dz0 = z & 0xFFFF;
@ -758,26 +768,28 @@ int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z) {
return noise;
}
// scaling functions for fastled replacement
uint8_t perlin8(uint16_t x) {
return (perlin1D_raw(uint32_t(x) << 8) >> 8) + 0x7F;
}
uint8_t perlin8(uint16_t x, uint16_t y) {
return uint8_t((perlin2D_raw(uint32_t(x)<<8, uint32_t(y)<<8) >> 8) + 0x7F);
}
uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z) {
return ((perlin3D_raw(uint32_t(x)<<8, uint32_t(y)<<8, uint32_t(z)<<8) * 85) >> 15) + 0x7F;
}
uint16_t perlin16(uint32_t x) {
return perlin1D_raw(x) + 0x7FFF;
//return ((perlin1D_raw(x) * 1168) >> 10) + 0x7FFF; //scale to 16bit and offset (full range)
return ((perlin1D_raw(x) * 895) >> 10) + 34616; //scale to 16bit and offset (fastled range)
}
uint16_t perlin16(uint32_t x, uint32_t y) {
return perlin2D_raw(x, y) + 0x7FFF;
return ((perlin2D_raw(x, y) * 1359) >> 10) + 31508; //scale to 16bit and offset (empirical values with some overflow safety margin)
}
uint16_t perlin16(uint32_t x, uint32_t y, uint32_t z) {
return perlin3D_raw(x, y, z) + 0x7FFF; // scale to signed 16bit range and offset
return ((perlin3D_raw(x, y, z) * 1923) >> 10) + 31290; //scale to 16bit and offset (empirical values with some overflow safety margin)
}
uint8_t perlin8(uint16_t x) {
return (((perlin1D_raw((uint32_t)x << 8, true) * 1168) >> 10) + 0x7FFF) >> 8;
}
uint8_t perlin8(uint16_t x, uint16_t y) {
return (((perlin2D_raw((uint32_t)x << 8, (uint32_t)y << 8, true) * 1359) >> 10) + 31508) >> 8;
}
uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z) {
return (((perlin3D_raw((uint32_t)x << 8, (uint32_t)y << 8, (uint32_t)z << 8, true) * 1923) >> 10) + 31290) >> 8; //scale to 8bit
}

View File

@ -344,19 +344,41 @@ void WLED::setup()
uint32_t start;
uint32_t end;
uint32_t time;
uint8_t offset = hw_random();
uint8_t offset = hw_random()+hw_random();
delay(2000);
/*
//online serial plotter: https://sekigon-gonnoc.github.io/web-serial-plotter/ format is "valueA:213423, ValueB:123123, \n"
for(int i = 0; i < 0xFFFFFFF; i+=10) {
//Serial.print(inoise16(i, offset, (offset >> 3))); Serial.print(" "); //x
//Serial.print(inoise16(offset, i, (offset >> 3))); Serial.print(" "); //y
//Serial.print(inoise16(offset, (offset >> 3), i)); Serial.print(" "); //z
//Serial.print(perlin16(i, offset, (offset >> 3))); Serial.print(" "); //x
//Serial.print(perlin16(offset, i, (offset >> 3))); Serial.print(" "); //y
//Serial.print(perlin16(offset, (offset >> 3), i)); Serial.print(" "); //z
//Serial.print("Fastled:");Serial.print(inoise16(i, offset+i/2, i + (offset >> 3))); Serial.print(", "); //mixed mode
//Serial.print("New:");Serial.println(perlin16(i, offset+i/2, i + (offset >> 3)));// Serial.println(", ");
//Serial.print("Fastled:");Serial.print(inoise16(i, offset+i/2)); Serial.print(", "); //mixed mode
//Serial.print("New:");Serial.println(perlin16(i, offset+i/2));// Serial.println(", ");
for(int i = 0; i < 0xFFFFF; i+=500) {
Serial.print(inoise16(i, offset, (offset >> 3))); Serial.print(","); //x
Serial.print(inoise16(offset, i, (offset >> 3))); Serial.print(","); //y
Serial.print(inoise16(offset, (offset >> 3), i)); Serial.print(","); //z
Serial.print(perlin16(i, offset, (offset >> 3))); Serial.print(","); //x
Serial.print(perlin16(offset, i, (offset >> 3))); Serial.print(","); //y
Serial.print(perlin16(offset, (offset >> 3), i)); Serial.print(","); //z
Serial.print(inoise16(i, offset+i/2, i + (offset >> 3))); Serial.print(","); //mixed mode
Serial.print(perlin16(i, offset+i/2, i + (offset >> 3))); Serial.print(",");
Serial.println(perlin3D_raw(i, offset+i/4, i*2 + (offset >> 3))); //raw
}
//Serial.print("Fastled:");Serial.print(inoise16(i)); Serial.print(", "); //mixed mode
//Serial.print("New:");Serial.println(perlin16(i));// Serial.println(", ");
Serial.print("Fastled3D:");Serial.print(inoise8(i, offset+i/2, i + (offset >> 3))); Serial.print(", "); //mixed mode
Serial.print("New3D:");Serial.print(perlin8(i, offset+i/2, i + (offset >> 3)));// Serial.println(", ");
Serial.print(", ");
Serial.print("Fastled2D:");Serial.print(inoise8(i, offset+i/2)); Serial.print(", "); //mixed mode
Serial.print("New2D:");Serial.print(perlin8(i, offset+i/2));// Serial.println(", ");
Serial.print(", ");
Serial.print("Fastled1D:");Serial.print(inoise8(i)); Serial.print(", "); //mixed mode
Serial.print("New1D:");Serial.println(perlin8(i));// Serial.println(", ");
//Serial.print(inoise16(i, offset+i/2, i + (offset >> 3))); Serial.print(","); //mixed mode
//Serial.println(perlin16(i, offset+i/2, i + (offset >> 3)));// Serial.println(", ");
//delay(10);
// Serial.println(perlin3D_raw(i, offset+i/4, i*2 + (offset >> 3))); //raw
}*/
/*
for(int i = 0; i < 0x2FFFF; i+=100) {
@ -419,10 +441,10 @@ void WLED::setup()
minval=0xFFFFF;
maxval=0;
start = micros();
for(int i = 0; i < 0xFFFFFFF; i+=50) {
for(int i = 0; i < 0xFFFFFF; i+=50) {
uint32_t pos = i + offset;
//int32_t noiseval = perlin16(hw_random());
int32_t noiseval = perlin1D_raw(hw_random());
int32_t noiseval = perlin1D_raw(hw_random(),false);
if(noiseval < minval) minval = noiseval;
if(noiseval > maxval) maxval = noiseval;
}
@ -433,7 +455,7 @@ Serial.print(" perlin1D raw min: "); Serial.print(minval); Serial.print(" max: "
minval=0xFFFFF;
maxval=0;
start = micros();
for(int i = 0; i < 0xFFFFFFF; i+=50) {
for(int i = 0; i < 0xFFFFFF; i+=50) {
uint32_t pos = i + offset;
//int32_t noiseval = perlin16( hw_random(), hw_random());
int32_t noiseval = perlin2D_raw( hw_random(), hw_random());
@ -448,7 +470,7 @@ Serial.print(" perlin1D raw min: "); Serial.print(minval); Serial.print(" max: "
minval=0xFFFFF;
maxval=0;
for(int i = 0; i < 0xFFFFFFF; i+=50) {
for(int i = 0; i < 0xFFFFFF; i+=50) {
uint32_t pos = i + offset;
//int32_t noiseval = perlin3D_raw(pos, pos+46845, pos+654684);
//int32_t noiseval = perlin3D_raw(hw_random(), hw_random(), hw_random());
@ -463,10 +485,10 @@ Serial.print(" perlin1D raw min: "); Serial.print(minval); Serial.print(" max: "
minval=0xFFFFF;
maxval=0;
for(int i = 0; i < 0xFFFFFFF; i+=50) {
for(int i = 0; i < 0xFFFFFF; i+=50) {
uint32_t pos = i + offset;
//int32_t noiseval = perlin3D_raw(pos, pos+46845, pos+654684);
int32_t noiseval = perlin3D_raw(hw_random(), hw_random(), hw_random());
int32_t noiseval = perlin3D_raw(hw_random(), hw_random(), hw_random(),false);
//int32_t noiseval = perlin16(hw_random(), hw_random(), hw_random());
if(noiseval < minval) minval = noiseval;
if(noiseval > maxval) maxval = noiseval;