Variable button count (up to 32)

- adds ability to configure variable number of buttons during runtime
- fixes #4692
This commit is contained in:
Blaž Kristan 2025-07-04 13:56:45 +02:00
parent e2800d75f7
commit 5c0ec6750a
12 changed files with 306 additions and 265 deletions

View File

@ -313,11 +313,11 @@ class MyExampleUsermod : public Usermod {
yield(); yield();
// ignore certain button types as they may have other consequences // ignore certain button types as they may have other consequences
if (!enabled if (!enabled
|| buttonType[b] == BTN_TYPE_NONE || buttons[b].type == BTN_TYPE_NONE
|| buttonType[b] == BTN_TYPE_RESERVED || buttons[b].type == BTN_TYPE_RESERVED
|| buttonType[b] == BTN_TYPE_PIR_SENSOR || buttons[b].type == BTN_TYPE_PIR_SENSOR
|| buttonType[b] == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG
|| buttonType[b] == BTN_TYPE_ANALOG_INVERTED) { || buttons[b].type == BTN_TYPE_ANALOG_INVERTED) {
return false; return false;
} }

View File

@ -1530,7 +1530,7 @@ class AudioReactive : public Usermod {
// better would be for AudioSource to implement getType() // better would be for AudioSource to implement getType()
if (enabled if (enabled
&& dmType == 0 && audioPin>=0 && dmType == 0 && audioPin>=0
&& (buttonType[b] == BTN_TYPE_ANALOG || buttonType[b] == BTN_TYPE_ANALOG_INVERTED) && (buttons[b].type == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG_INVERTED)
) { ) {
return true; return true;
} }

View File

@ -562,11 +562,11 @@ void MultiRelay::loop() {
bool MultiRelay::handleButton(uint8_t b) { bool MultiRelay::handleButton(uint8_t b) {
yield(); yield();
if (!enabled if (!enabled
|| buttonType[b] == BTN_TYPE_NONE || buttons[b].type == BTN_TYPE_NONE
|| buttonType[b] == BTN_TYPE_RESERVED || buttons[b].type == BTN_TYPE_RESERVED
|| buttonType[b] == BTN_TYPE_PIR_SENSOR || buttons[b].type == BTN_TYPE_PIR_SENSOR
|| buttonType[b] == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG
|| buttonType[b] == BTN_TYPE_ANALOG_INVERTED) { || buttons[b].type == BTN_TYPE_ANALOG_INVERTED) {
return false; return false;
} }
@ -581,20 +581,20 @@ bool MultiRelay::handleButton(uint8_t b) {
unsigned long now = millis(); unsigned long now = millis();
//button is not momentary, but switch. This is only suitable on pins whose on-boot state does not matter (NOT gpio0) //button is not momentary, but switch. This is only suitable on pins whose on-boot state does not matter (NOT gpio0)
if (buttonType[b] == BTN_TYPE_SWITCH) { if (buttons[b].type == BTN_TYPE_SWITCH) {
//handleSwitch(b); //handleSwitch(b);
if (buttonPressedBefore[b] != isButtonPressed(b)) { if (buttons[b].pressedBefore != isButtonPressed(b)) {
buttonPressedTime[b] = now; buttons[b].pressedTime = now;
buttonPressedBefore[b] = !buttonPressedBefore[b]; buttons[b].pressedBefore = !buttons[b].pressedBefore;
} }
if (buttonLongPressed[b] == buttonPressedBefore[b]) return handled; if (buttons[b].longPressed == buttons[b].pressedBefore) return handled;
if (now - buttonPressedTime[b] > WLED_DEBOUNCE_THRESHOLD) { //fire edge event only after 50ms without change (debounce) if (now - buttons[b].pressedTime > WLED_DEBOUNCE_THRESHOLD) { //fire edge event only after 50ms without change (debounce)
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) { for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].button == b) { if (_relay[i].button == b) {
switchRelay(i, buttonPressedBefore[b]); switchRelay(i, buttons[b].pressedBefore);
buttonLongPressed[b] = buttonPressedBefore[b]; //save the last "long term" switch state buttons[b].longPressed = buttons[b].pressedBefore; //save the last "long term" switch state
} }
} }
} }
@ -604,40 +604,40 @@ bool MultiRelay::handleButton(uint8_t b) {
//momentary button logic //momentary button logic
if (isButtonPressed(b)) { //pressed if (isButtonPressed(b)) { //pressed
if (!buttonPressedBefore[b]) buttonPressedTime[b] = now; if (!buttons[b].pressedBefore) buttons[b].pressedTime = now;
buttonPressedBefore[b] = true; buttons[b].pressedBefore = true;
if (now - buttonPressedTime[b] > 600) { //long press if (now - buttons[b].pressedTime > 600) { //long press
//longPressAction(b); //not exposed //longPressAction(b); //not exposed
//handled = false; //use if you want to pass to default behaviour //handled = false; //use if you want to pass to default behaviour
buttonLongPressed[b] = true; buttons[b].longPressed = true;
} }
} else if (!isButtonPressed(b) && buttonPressedBefore[b]) { //released } else if (!isButtonPressed(b) && buttons[b].pressedBefore) { //released
long dur = now - buttonPressedTime[b]; long dur = now - buttons[b].pressedTime;
if (dur < WLED_DEBOUNCE_THRESHOLD) { if (dur < WLED_DEBOUNCE_THRESHOLD) {
buttonPressedBefore[b] = false; buttons[b].pressedBefore = false;
return handled; return handled;
} //too short "press", debounce } //too short "press", debounce
bool doublePress = buttonWaitTime[b]; //did we have short press before? bool doublePress = buttons[b].waitTime; //did we have short press before?
buttonWaitTime[b] = 0; buttons[b].waitTime = 0;
if (!buttonLongPressed[b]) { //short press if (!buttons[b].longPressed) { //short press
// if this is second release within 350ms it is a double press (buttonWaitTime!=0) // if this is second release within 350ms it is a double press (buttonWaitTime!=0)
if (doublePress) { if (doublePress) {
//doublePressAction(b); //not exposed //doublePressAction(b); //not exposed
//handled = false; //use if you want to pass to default behaviour //handled = false; //use if you want to pass to default behaviour
} else { } else {
buttonWaitTime[b] = now; buttons[b].waitTime = now;
} }
} }
buttonPressedBefore[b] = false; buttons[b].pressedBefore = false;
buttonLongPressed[b] = false; buttons[b].longPressed = false;
} }
// if 350ms elapsed since last press/release it is a short press // if 350ms elapsed since last press/release it is a short press
if (buttonWaitTime[b] && now - buttonWaitTime[b] > 350 && !buttonPressedBefore[b]) { if (buttons[b].waitTime && now - buttons[b].waitTime > 350 && !buttons[b].pressedBefore) {
buttonWaitTime[b] = 0; buttons[b].waitTime = 0;
//shortPressAction(b); //not exposed //shortPressAction(b); //not exposed
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) { for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].button == b) { if (_relay[i].button == b) {

View File

@ -461,11 +461,11 @@ class PixelsDiceTrayUsermod : public Usermod {
#if USING_TFT_DISPLAY #if USING_TFT_DISPLAY
bool handleButton(uint8_t b) override { bool handleButton(uint8_t b) override {
if (!enabled || b > 1 // buttons 0,1 only if (!enabled || b > 1 // buttons 0,1 only
|| buttonType[b] == BTN_TYPE_SWITCH || buttonType[b] == BTN_TYPE_NONE || || buttons[b].type == BTN_TYPE_SWITCH || buttons[b].type == BTN_TYPE_NONE ||
buttonType[b] == BTN_TYPE_RESERVED || buttons[b].type == BTN_TYPE_RESERVED ||
buttonType[b] == BTN_TYPE_PIR_SENSOR || buttons[b].type == BTN_TYPE_PIR_SENSOR ||
buttonType[b] == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG ||
buttonType[b] == BTN_TYPE_ANALOG_INVERTED) { buttons[b].type == BTN_TYPE_ANALOG_INVERTED) {
return false; return false;
} }
@ -476,43 +476,43 @@ class PixelsDiceTrayUsermod : public Usermod {
static unsigned long buttonWaitTime[2] = {0}; static unsigned long buttonWaitTime[2] = {0};
//momentary button logic //momentary button logic
if (!buttonLongPressed[b] && isButtonPressed(b)) { //pressed if (!buttons[b].longPressed && isButtonPressed(b)) { //pressed
if (!buttonPressedBefore[b]) { if (!buttons[b].pressedBefore) {
buttonPressedTime[b] = now; buttons[b].pressedTime = now;
} }
buttonPressedBefore[b] = true; buttons[b].pressedBefore = true;
if (now - buttonPressedTime[b] > WLED_LONG_PRESS) { //long press if (now - buttons[b].pressedTime > WLED_LONG_PRESS) { //long press
menu_ctrl.HandleButton(ButtonType::LONG, b); menu_ctrl.HandleButton(ButtonType::LONG, b);
buttonLongPressed[b] = true; buttons[b].longPressed = true;
return true; return true;
} }
} else if (!isButtonPressed(b) && buttonPressedBefore[b]) { //released } else if (!isButtonPressed(b) && buttons[b].pressedBefore) { //released
long dur = now - buttonPressedTime[b]; long dur = now - buttons[b].pressedTime;
if (dur < WLED_DEBOUNCE_THRESHOLD) { if (dur < WLED_DEBOUNCE_THRESHOLD) {
buttonPressedBefore[b] = false; buttons[b].pressedBefore = false;
return true; return true;
} //too short "press", debounce } //too short "press", debounce
bool doublePress = buttonWaitTime[b]; //did we have short press before? bool doublePress = buttons[b].waitTime; //did we have short press before?
buttonWaitTime[b] = 0; buttons[b].waitTime = 0;
if (!buttonLongPressed[b]) { //short press if (!buttons[b].longPressed) { //short press
// if this is second release within 350ms it is a double press (buttonWaitTime!=0) // if this is second release within 350ms it is a double press (buttonWaitTime!=0)
if (doublePress) { if (doublePress) {
menu_ctrl.HandleButton(ButtonType::DOUBLE, b); menu_ctrl.HandleButton(ButtonType::DOUBLE, b);
} else { } else {
buttonWaitTime[b] = now; buttons[b].waitTime = now;
} }
} }
buttonPressedBefore[b] = false; buttons[b].pressedBefore = false;
buttonLongPressed[b] = false; buttons[b].longPressed = false;
} }
// if 350ms elapsed since last press/release it is a short press // if 350ms elapsed since last press/release it is a short press
if (buttonWaitTime[b] && now - buttonWaitTime[b] > WLED_DOUBLE_PRESS && if (buttons[b].waitTime && now - buttons[b].waitTime > WLED_DOUBLE_PRESS &&
!buttonPressedBefore[b]) { !buttons[b].pressedBefore) {
buttonWaitTime[b] = 0; buttons[b].waitTime = 0;
menu_ctrl.HandleButton(ButtonType::SINGLE, b); menu_ctrl.HandleButton(ButtonType::SINGLE, b);
} }

View File

@ -749,12 +749,12 @@ bool FourLineDisplayUsermod::handleButton(uint8_t b) {
yield(); yield();
if (!enabled if (!enabled
|| b // button 0 only || b // button 0 only
|| buttonType[b] == BTN_TYPE_SWITCH || buttons[b].type == BTN_TYPE_SWITCH
|| buttonType[b] == BTN_TYPE_NONE || buttons[b].type == BTN_TYPE_NONE
|| buttonType[b] == BTN_TYPE_RESERVED || buttons[b].type == BTN_TYPE_RESERVED
|| buttonType[b] == BTN_TYPE_PIR_SENSOR || buttons[b].type == BTN_TYPE_PIR_SENSOR
|| buttonType[b] == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG
|| buttonType[b] == BTN_TYPE_ANALOG_INVERTED) { || buttons[b].type == BTN_TYPE_ANALOG_INVERTED) {
return false; return false;
} }

View File

@ -17,13 +17,13 @@ static bool buttonBriDirection = false; // true: increase brightness, false: dec
void shortPressAction(uint8_t b) void shortPressAction(uint8_t b)
{ {
if (!macroButton[b]) { if (!buttons[b].macroButton) {
switch (b) { switch (b) {
case 0: toggleOnOff(); stateUpdated(CALL_MODE_BUTTON); break; case 0: toggleOnOff(); stateUpdated(CALL_MODE_BUTTON); break;
case 1: ++effectCurrent %= strip.getModeCount(); stateChanged = true; colorUpdated(CALL_MODE_BUTTON); break; case 1: ++effectCurrent %= strip.getModeCount(); stateChanged = true; colorUpdated(CALL_MODE_BUTTON); break;
} }
} else { } else {
applyPreset(macroButton[b], CALL_MODE_BUTTON_PRESET); applyPreset(buttons[b].macroButton, CALL_MODE_BUTTON_PRESET);
} }
#ifndef WLED_DISABLE_MQTT #ifndef WLED_DISABLE_MQTT
@ -38,7 +38,7 @@ void shortPressAction(uint8_t b)
void longPressAction(uint8_t b) void longPressAction(uint8_t b)
{ {
if (!macroLongPress[b]) { if (!buttons[b].macroLongPress) {
switch (b) { switch (b) {
case 0: setRandomColor(colPri); colorUpdated(CALL_MODE_BUTTON); break; case 0: setRandomColor(colPri); colorUpdated(CALL_MODE_BUTTON); break;
case 1: case 1:
@ -52,11 +52,11 @@ void longPressAction(uint8_t b)
else bri -= WLED_LONG_BRI_STEPS; else bri -= WLED_LONG_BRI_STEPS;
} }
stateUpdated(CALL_MODE_BUTTON); stateUpdated(CALL_MODE_BUTTON);
buttonPressedTime[b] = millis(); buttons[b].pressedTime = millis();
break; // repeatable action break; // repeatable action
} }
} else { } else {
applyPreset(macroLongPress[b], CALL_MODE_BUTTON_PRESET); applyPreset(buttons[b].macroLongPress, CALL_MODE_BUTTON_PRESET);
} }
#ifndef WLED_DISABLE_MQTT #ifndef WLED_DISABLE_MQTT
@ -71,13 +71,13 @@ void longPressAction(uint8_t b)
void doublePressAction(uint8_t b) void doublePressAction(uint8_t b)
{ {
if (!macroDoublePress[b]) { if (!buttons[b].macroDoublePress) {
switch (b) { switch (b) {
//case 0: toggleOnOff(); colorUpdated(CALL_MODE_BUTTON); break; //instant short press on button 0 if no macro set //case 0: toggleOnOff(); colorUpdated(CALL_MODE_BUTTON); break; //instant short press on button 0 if no macro set
case 1: ++effectPalette %= getPaletteCount(); colorUpdated(CALL_MODE_BUTTON); break; case 1: ++effectPalette %= getPaletteCount(); colorUpdated(CALL_MODE_BUTTON); break;
} }
} else { } else {
applyPreset(macroDoublePress[b], CALL_MODE_BUTTON_PRESET); applyPreset(buttons[b].macroDoublePress, CALL_MODE_BUTTON_PRESET);
} }
#ifndef WLED_DISABLE_MQTT #ifndef WLED_DISABLE_MQTT
@ -92,10 +92,10 @@ void doublePressAction(uint8_t b)
bool isButtonPressed(uint8_t b) bool isButtonPressed(uint8_t b)
{ {
if (btnPin[b]<0) return false; if (buttons[b].pin < 0) return false;
unsigned pin = btnPin[b]; unsigned pin = buttons[b].pin;
switch (buttonType[b]) { switch (buttons[b].type) {
case BTN_TYPE_NONE: case BTN_TYPE_NONE:
case BTN_TYPE_RESERVED: case BTN_TYPE_RESERVED:
break; break;
@ -113,7 +113,7 @@ bool isButtonPressed(uint8_t b)
#ifdef SOC_TOUCH_VERSION_2 //ESP32 S2 and S3 provide a function to check touch state (state is updated in interrupt) #ifdef SOC_TOUCH_VERSION_2 //ESP32 S2 and S3 provide a function to check touch state (state is updated in interrupt)
if (touchInterruptGetLastStatus(pin)) return true; if (touchInterruptGetLastStatus(pin)) return true;
#else #else
if (digitalPinToTouchChannel(btnPin[b]) >= 0 && touchRead(pin) <= touchThreshold) return true; if (digitalPinToTouchChannel(pin) >= 0 && touchRead(pin) <= touchThreshold) return true;
#endif #endif
#endif #endif
break; break;
@ -124,25 +124,25 @@ bool isButtonPressed(uint8_t b)
void handleSwitch(uint8_t b) void handleSwitch(uint8_t b)
{ {
// isButtonPressed() handles inverted/noninverted logic // isButtonPressed() handles inverted/noninverted logic
if (buttonPressedBefore[b] != isButtonPressed(b)) { if (buttons[b].pressedBefore != isButtonPressed(b)) {
DEBUG_PRINTF_P(PSTR("Switch: State changed %u\n"), b); DEBUG_PRINTF_P(PSTR("Switch: State changed %u\n"), b);
buttonPressedTime[b] = millis(); buttons[b].pressedTime = millis();
buttonPressedBefore[b] = !buttonPressedBefore[b]; buttons[b].pressedBefore = !buttons[b].pressedBefore; // toggle pressed state
} }
if (buttonLongPressed[b] == buttonPressedBefore[b]) return; if (buttons[b].longPressed == buttons[b].pressedBefore) return;
if (millis() - buttonPressedTime[b] > WLED_DEBOUNCE_THRESHOLD) { //fire edge event only after 50ms without change (debounce) if (millis() - buttons[b].pressedTime > WLED_DEBOUNCE_THRESHOLD) { //fire edge event only after 50ms without change (debounce)
DEBUG_PRINTF_P(PSTR("Switch: Activating %u\n"), b); DEBUG_PRINTF_P(PSTR("Switch: Activating %u\n"), b);
if (!buttonPressedBefore[b]) { // on -> off if (!buttons[b].pressedBefore) { // on -> off
DEBUG_PRINTF_P(PSTR("Switch: On -> Off (%u)\n"), b); DEBUG_PRINTF_P(PSTR("Switch: On -> Off (%u)\n"), b);
if (macroButton[b]) applyPreset(macroButton[b], CALL_MODE_BUTTON_PRESET); if (buttons[b].macroButton) applyPreset(buttons[b].macroButton, CALL_MODE_BUTTON_PRESET);
else { //turn on else { //turn on
if (!bri) {toggleOnOff(); stateUpdated(CALL_MODE_BUTTON);} if (!bri) {toggleOnOff(); stateUpdated(CALL_MODE_BUTTON);}
} }
} else { // off -> on } else { // off -> on
DEBUG_PRINTF_P(PSTR("Switch: Off -> On (%u)\n"), b); DEBUG_PRINTF_P(PSTR("Switch: Off -> On (%u)\n"), b);
if (macroLongPress[b]) applyPreset(macroLongPress[b], CALL_MODE_BUTTON_PRESET); if (buttons[b].macroLongPress) applyPreset(buttons[b].macroLongPress, CALL_MODE_BUTTON_PRESET);
else { //turn off else { //turn off
if (bri) {toggleOnOff(); stateUpdated(CALL_MODE_BUTTON);} if (bri) {toggleOnOff(); stateUpdated(CALL_MODE_BUTTON);}
} }
@ -152,13 +152,13 @@ void handleSwitch(uint8_t b)
// publish MQTT message // publish MQTT message
if (buttonPublishMqtt && WLED_MQTT_CONNECTED) { if (buttonPublishMqtt && WLED_MQTT_CONNECTED) {
char subuf[MQTT_MAX_TOPIC_LEN + 32]; char subuf[MQTT_MAX_TOPIC_LEN + 32];
if (buttonType[b] == BTN_TYPE_PIR_SENSOR) sprintf_P(subuf, PSTR("%s/motion/%d"), mqttDeviceTopic, (int)b); if (buttons[b].type == BTN_TYPE_PIR_SENSOR) sprintf_P(subuf, PSTR("%s/motion/%d"), mqttDeviceTopic, (int)b);
else sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b); else sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b);
mqtt->publish(subuf, 0, false, !buttonPressedBefore[b] ? "off" : "on"); mqtt->publish(subuf, 0, false, !buttons[b].pressedBefore ? "off" : "on");
} }
#endif #endif
buttonLongPressed[b] = buttonPressedBefore[b]; //save the last "long term" switch state buttons[b].longPressed = buttons[b].pressedBefore; //save the last "long term" switch state
} }
} }
@ -178,8 +178,8 @@ void handleAnalog(uint8_t b)
#ifdef ESP8266 #ifdef ESP8266
rawReading = analogRead(A0) << 2; // convert 10bit read to 12bit rawReading = analogRead(A0) << 2; // convert 10bit read to 12bit
#else #else
if ((btnPin[b] < 0) /*|| (digitalPinToAnalogChannel(btnPin[b]) < 0)*/) return; // pin must support analog ADC - newer esp32 frameworks throw lots of warnings otherwise if ((buttons[b].pin < 0) /*|| (digitalPinToAnalogChannel(buttons[b].pin) < 0)*/) return; // pin must support analog ADC - newer esp32 frameworks throw lots of warnings otherwise
rawReading = analogRead(btnPin[b]); // collect at full 12bit resolution rawReading = analogRead(buttons[b].pin); // collect at full 12bit resolution
#endif #endif
yield(); // keep WiFi task running - analog read may take several millis on ESP8266 yield(); // keep WiFi task running - analog read may take several millis on ESP8266
@ -188,7 +188,7 @@ void handleAnalog(uint8_t b)
if (aRead <= POT_SENSITIVITY) aRead = 0; // make sure that 0 and 255 are used if (aRead <= POT_SENSITIVITY) aRead = 0; // make sure that 0 and 255 are used
if (aRead >= 255-POT_SENSITIVITY) aRead = 255; if (aRead >= 255-POT_SENSITIVITY) aRead = 255;
if (buttonType[b] == BTN_TYPE_ANALOG_INVERTED) aRead = 255 - aRead; if (buttons[b].type == BTN_TYPE_ANALOG_INVERTED) aRead = 255 - aRead;
// remove noise & reduce frequency of UI updates // remove noise & reduce frequency of UI updates
if (abs(int(aRead) - int(oldRead[b])) <= POT_SENSITIVITY) return; // no significant change in reading if (abs(int(aRead) - int(oldRead[b])) <= POT_SENSITIVITY) return; // no significant change in reading
@ -206,10 +206,10 @@ void handleAnalog(uint8_t b)
oldRead[b] = aRead; oldRead[b] = aRead;
// if no macro for "short press" and "long press" is defined use brightness control // if no macro for "short press" and "long press" is defined use brightness control
if (!macroButton[b] && !macroLongPress[b]) { if (!buttons[b].macroButton && !buttons[b].macroLongPress) {
DEBUG_PRINTF_P(PSTR("Analog: Action = %u\n"), macroDoublePress[b]); DEBUG_PRINTF_P(PSTR("Analog: Action = %u\n"), buttons[b].macroDoublePress);
// if "double press" macro defines which option to change // if "double press" macro defines which option to change
if (macroDoublePress[b] >= 250) { if (buttons[b].macroDoublePress >= 250) {
// global brightness // global brightness
if (aRead == 0) { if (aRead == 0) {
briLast = bri; briLast = bri;
@ -218,27 +218,30 @@ void handleAnalog(uint8_t b)
if (bri == 0) strip.restartRuntime(); if (bri == 0) strip.restartRuntime();
bri = aRead; bri = aRead;
} }
} else if (macroDoublePress[b] == 249) { } else if (buttons[b].macroDoublePress == 249) {
// effect speed // effect speed
effectSpeed = aRead; effectSpeed = aRead;
} else if (macroDoublePress[b] == 248) { } else if (buttons[b].macroDoublePress == 248) {
// effect intensity // effect intensity
effectIntensity = aRead; effectIntensity = aRead;
} else if (macroDoublePress[b] == 247) { } else if (buttons[b].macroDoublePress == 247) {
// selected palette // selected palette
effectPalette = map(aRead, 0, 252, 0, getPaletteCount()-1); effectPalette = map(aRead, 0, 252, 0, getPaletteCount()-1);
effectPalette = constrain(effectPalette, 0, getPaletteCount()-1); // map is allowed to "overshoot", so we need to contrain the result effectPalette = constrain(effectPalette, 0, getPaletteCount()-1); // map is allowed to "overshoot", so we need to contrain the result
} else if (macroDoublePress[b] == 200) { } else if (buttons[b].macroDoublePress == 200) {
// primary color, hue, full saturation // primary color, hue, full saturation
colorHStoRGB(aRead*256, 255, colPri); colorHStoRGB(aRead*256, 255, colPri);
} else { } else {
// otherwise use "double press" for segment selection // otherwise use "double press" for segment selection
Segment& seg = strip.getSegment(macroDoublePress[b]); Segment& seg = strip.getSegment(buttons[b].macroDoublePress);
if (aRead == 0) { if (aRead == 0) {
seg.setOption(SEG_OPTION_ON, false); // off (use transition) seg.on = false; // do not use transition
//seg.setOption(SEG_OPTION_ON, false); // off (use transition)
} else { } else {
seg.setOpacity(aRead); seg.opacity = aRead; // set brightness (opacity) of segment
seg.setOption(SEG_OPTION_ON, true); // on (use transition) seg.on = true;
//seg.setOpacity(aRead);
//seg.setOption(SEG_OPTION_ON, true); // on (use transition)
} }
// this will notify clients of update (websockets,mqtt,etc) // this will notify clients of update (websockets,mqtt,etc)
updateInterfaces(CALL_MODE_BUTTON); updateInterfaces(CALL_MODE_BUTTON);
@ -261,16 +264,16 @@ void handleButton()
if (strip.isUpdating() && (now - lastRun < ANALOG_BTN_READ_CYCLE+1)) return; // don't interfere with strip update (unless strip is updating continuously, e.g. very long strips) if (strip.isUpdating() && (now - lastRun < ANALOG_BTN_READ_CYCLE+1)) return; // don't interfere with strip update (unless strip is updating continuously, e.g. very long strips)
lastRun = now; lastRun = now;
for (unsigned b=0; b<WLED_MAX_BUTTONS; b++) { for (unsigned b = 0; b < buttons.size(); b++) {
#ifdef ESP8266 #ifdef ESP8266
if ((btnPin[b]<0 && !(buttonType[b] == BTN_TYPE_ANALOG || buttonType[b] == BTN_TYPE_ANALOG_INVERTED)) || buttonType[b] == BTN_TYPE_NONE) continue; if ((buttons[b].pin < 0 && !(buttons[b].type == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG_INVERTED)) || buttons[b].type == BTN_TYPE_NONE) continue;
#else #else
if (btnPin[b]<0 || buttonType[b] == BTN_TYPE_NONE) continue; if (buttons[b].pin < 0 || buttons[b].type == BTN_TYPE_NONE) continue;
#endif #endif
if (UsermodManager::handleButton(b)) continue; // did usermod handle buttons if (UsermodManager::handleButton(b)) continue; // did usermod handle buttons
if (buttonType[b] == BTN_TYPE_ANALOG || buttonType[b] == BTN_TYPE_ANALOG_INVERTED) { // button is not a button but a potentiometer if (buttons[b].type == BTN_TYPE_ANALOG || buttons[b].type == BTN_TYPE_ANALOG_INVERTED) { // button is not a button but a potentiometer
if (now - lastAnalogRead > ANALOG_BTN_READ_CYCLE) { if (now - lastAnalogRead > ANALOG_BTN_READ_CYCLE) {
handleAnalog(b); handleAnalog(b);
} }
@ -278,7 +281,7 @@ void handleButton()
} }
// button is not momentary, but switch. This is only suitable on pins whose on-boot state does not matter (NOT gpio0) // button is not momentary, but switch. This is only suitable on pins whose on-boot state does not matter (NOT gpio0)
if (buttonType[b] == BTN_TYPE_SWITCH || buttonType[b] == BTN_TYPE_TOUCH_SWITCH || buttonType[b] == BTN_TYPE_PIR_SENSOR) { if (buttons[b].type == BTN_TYPE_SWITCH || buttons[b].type == BTN_TYPE_TOUCH_SWITCH || buttons[b].type == BTN_TYPE_PIR_SENSOR) {
handleSwitch(b); handleSwitch(b);
continue; continue;
} }
@ -287,40 +290,39 @@ void handleButton()
if (isButtonPressed(b)) { // pressed if (isButtonPressed(b)) { // pressed
// if all macros are the same, fire action immediately on rising edge // if all macros are the same, fire action immediately on rising edge
if (macroButton[b] && macroButton[b] == macroLongPress[b] && macroButton[b] == macroDoublePress[b]) { if (buttons[b].macroButton && buttons[b].macroButton == buttons[b].macroLongPress && buttons[b].macroButton == buttons[b].macroDoublePress) {
if (!buttonPressedBefore[b]) if (!buttons[b].pressedBefore) shortPressAction(b);
shortPressAction(b); buttons[b].pressedBefore = true;
buttonPressedBefore[b] = true; buttons[b].pressedTime = now; // continually update (for debouncing to work in release handler)
buttonPressedTime[b] = now; // continually update (for debouncing to work in release handler)
continue; continue;
} }
if (!buttonPressedBefore[b]) buttonPressedTime[b] = now; if (!buttons[b].pressedBefore) buttons[b].pressedTime = now;
buttonPressedBefore[b] = true; buttons[b].pressedBefore = true;
if (now - buttonPressedTime[b] > WLED_LONG_PRESS) { //long press if (now - buttons[b].pressedTime > WLED_LONG_PRESS) { //long press
if (!buttonLongPressed[b]) { if (!buttons[b].longPressed) {
buttonBriDirection = !buttonBriDirection; //toggle brightness direction on long press buttonBriDirection = !buttonBriDirection; //toggle brightness direction on long press
longPressAction(b); longPressAction(b);
} else if (b) { //repeatable action (~5 times per s) on button > 0 } else if (b) { //repeatable action (~5 times per s) on button > 0
longPressAction(b); longPressAction(b);
buttonPressedTime[b] = now - WLED_LONG_REPEATED_ACTION; //200ms buttons[b].pressedTime = now - WLED_LONG_REPEATED_ACTION; //200ms
} }
buttonLongPressed[b] = true; buttons[b].longPressed = true;
} }
} else if (buttonPressedBefore[b]) { //released } else if (buttons[b].pressedBefore) { //released
long dur = now - buttonPressedTime[b]; long dur = now - buttons[b].pressedTime;
// released after rising-edge short press action // released after rising-edge short press action
if (macroButton[b] && macroButton[b] == macroLongPress[b] && macroButton[b] == macroDoublePress[b]) { if (buttons[b].macroButton && buttons[b].macroButton == buttons[b].macroLongPress && buttons[b].macroButton == buttons[b].macroDoublePress) {
if (dur > WLED_DEBOUNCE_THRESHOLD) buttonPressedBefore[b] = false; // debounce, blocks button for 50 ms once it has been released if (dur > WLED_DEBOUNCE_THRESHOLD) buttons[b].pressedBefore = false; // debounce, blocks button for 50 ms once it has been released
continue; continue;
} }
if (dur < WLED_DEBOUNCE_THRESHOLD) {buttonPressedBefore[b] = false; continue;} // too short "press", debounce if (dur < WLED_DEBOUNCE_THRESHOLD) {buttons[b].pressedBefore = false; continue;} // too short "press", debounce
bool doublePress = buttonWaitTime[b]; //did we have a short press before? bool doublePress = buttons[b].waitTime; //did we have a short press before?
buttonWaitTime[b] = 0; buttons[b].waitTime = 0;
if (b == 0 && dur > WLED_LONG_AP) { // long press on button 0 (when released) if (b == 0 && dur > WLED_LONG_AP) { // long press on button 0 (when released)
if (dur > WLED_LONG_FACTORY_RESET) { // factory reset if pressed > 10 seconds if (dur > WLED_LONG_FACTORY_RESET) { // factory reset if pressed > 10 seconds
@ -332,25 +334,25 @@ void handleButton()
} else { } else {
WLED::instance().initAP(true); WLED::instance().initAP(true);
} }
} else if (!buttonLongPressed[b]) { //short press } else if (!buttons[b].longPressed) { //short press
//NOTE: this interferes with double click handling in usermods so usermod needs to implement full button handling //NOTE: this interferes with double click handling in usermods so usermod needs to implement full button handling
if (b != 1 && !macroDoublePress[b]) { //don't wait for double press on buttons without a default action if no double press macro set if (b != 1 && !buttons[b].macroDoublePress) { //don't wait for double press on buttons without a default action if no double press macro set
shortPressAction(b); shortPressAction(b);
} else { //double press if less than 350 ms between current press and previous short press release (buttonWaitTime!=0) } else { //double press if less than 350 ms between current press and previous short press release (buttonWaitTime!=0)
if (doublePress) { if (doublePress) {
doublePressAction(b); doublePressAction(b);
} else { } else {
buttonWaitTime[b] = now; buttons[b].waitTime = now;
} }
} }
} }
buttonPressedBefore[b] = false; buttons[b].pressedBefore = false;
buttonLongPressed[b] = false; buttons[b].longPressed = false;
} }
//if 350ms elapsed since last short press release it is a short press //if 350ms elapsed since last short press release it is a short press
if (buttonWaitTime[b] && now - buttonWaitTime[b] > WLED_DOUBLE_PRESS && !buttonPressedBefore[b]) { if (buttons[b].waitTime && now - buttons[b].waitTime > WLED_DOUBLE_PRESS && !buttons[b].pressedBefore) {
buttonWaitTime[b] = 0; buttons[b].waitTime = 0;
shortPressAction(b); shortPressAction(b);
} }
} }

View File

@ -353,93 +353,87 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
JsonArray hw_btn_ins = btn_obj["ins"]; JsonArray hw_btn_ins = btn_obj["ins"];
if (!hw_btn_ins.isNull()) { if (!hw_btn_ins.isNull()) {
// deallocate existing button pins // deallocate existing button pins
for (unsigned b = 0; b < WLED_MAX_BUTTONS; b++) PinManager::deallocatePin(btnPin[b], PinOwner::Button); // does nothing if trying to deallocate a pin with PinOwner != Button for (const auto &button : buttons) PinManager::deallocatePin(button.pin, PinOwner::Button); // does nothing if trying to deallocate a pin with PinOwner != Button
buttons.clear(); // clear existing buttons
unsigned s = 0; unsigned s = 0;
for (JsonObject btn : hw_btn_ins) { for (JsonObject btn : hw_btn_ins) {
CJSON(buttonType[s], btn["type"]); uint8_t type = btn["type"] | BTN_TYPE_NONE;
int8_t pin = btn["pin"][0] | -1; int8_t pin = btn["pin"][0] | -1;
if (pin > -1 && PinManager::allocatePin(pin, false, PinOwner::Button)) { if (pin > -1 && PinManager::allocatePin(pin, false, PinOwner::Button)) {
btnPin[s] = pin;
#ifdef ARDUINO_ARCH_ESP32 #ifdef ARDUINO_ARCH_ESP32
// ESP32 only: check that analog button pin is a valid ADC gpio // ESP32 only: check that analog button pin is a valid ADC gpio
if ((buttonType[s] == BTN_TYPE_ANALOG) || (buttonType[s] == BTN_TYPE_ANALOG_INVERTED)) { if ((type == BTN_TYPE_ANALOG) || (type == BTN_TYPE_ANALOG_INVERTED)) {
if (digitalPinToAnalogChannel(btnPin[s]) < 0) { if (digitalPinToAnalogChannel(pin) < 0) {
// not an ADC analog pin // not an ADC analog pin
DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for analog button #%d is not an analog pin!\n"), btnPin[s], s); DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for analog button #%d is not an analog pin!\n"), pin, s);
btnPin[s] = -1;
PinManager::deallocatePin(pin, PinOwner::Button); PinManager::deallocatePin(pin, PinOwner::Button);
pin = -1;
continue;
} else { } else {
analogReadResolution(12); // see #4040 analogReadResolution(12); // see #4040
} }
} } else if ((type == BTN_TYPE_TOUCH || type == BTN_TYPE_TOUCH_SWITCH)) {
else if ((buttonType[s] == BTN_TYPE_TOUCH || buttonType[s] == BTN_TYPE_TOUCH_SWITCH)) if (digitalPinToTouchChannel(pin) < 0) {
{
if (digitalPinToTouchChannel(btnPin[s]) < 0) {
// not a touch pin // not a touch pin
DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for touch button #%d is not a touch pin!\n"), btnPin[s], s); DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for touch button #%d is not a touch pin!\n"), pin, s);
btnPin[s] = -1;
PinManager::deallocatePin(pin, PinOwner::Button); PinManager::deallocatePin(pin, PinOwner::Button);
pin = -1;
continue;
} }
//if touch pin, enable the touch interrupt on ESP32 S2 & S3 //if touch pin, enable the touch interrupt on ESP32 S2 & S3
#ifdef SOC_TOUCH_VERSION_2 // ESP32 S2 and S3 have a function to check touch state but need to attach an interrupt to do so #ifdef SOC_TOUCH_VERSION_2 // ESP32 S2 and S3 have a function to check touch state but need to attach an interrupt to do so
else else touchAttachInterrupt(pin, touchButtonISR, touchThreshold << 4); // threshold on Touch V2 is much higher (1500 is a value given by Espressif example, I measured changes of over 5000)
{
touchAttachInterrupt(btnPin[s], touchButtonISR, touchThreshold << 4); // threshold on Touch V2 is much higher (1500 is a value given by Espressif example, I measured changes of over 5000)
}
#endif #endif
} } else
else
#endif #endif
{ {
// regular buttons and switches
if (disablePullUp) { if (disablePullUp) {
pinMode(btnPin[s], INPUT); pinMode(pin, INPUT);
} else { } else {
#ifdef ESP32 #ifdef ESP32
pinMode(btnPin[s], buttonType[s]==BTN_TYPE_PUSH_ACT_HIGH ? INPUT_PULLDOWN : INPUT_PULLUP); pinMode(pin, type==BTN_TYPE_PUSH_ACT_HIGH ? INPUT_PULLDOWN : INPUT_PULLUP);
#else #else
pinMode(btnPin[s], INPUT_PULLUP); pinMode(pin, INPUT_PULLUP);
#endif #endif
} }
} }
} else {
btnPin[s] = -1;
}
JsonArray hw_btn_ins_0_macros = btn["macros"]; JsonArray hw_btn_ins_0_macros = btn["macros"];
CJSON(macroButton[s], hw_btn_ins_0_macros[0]); uint8_t press = hw_btn_ins_0_macros[0] | 0;
CJSON(macroLongPress[s],hw_btn_ins_0_macros[1]); uint8_t longPress = hw_btn_ins_0_macros[1] | 0;
CJSON(macroDoublePress[s], hw_btn_ins_0_macros[2]); uint8_t doublePress = hw_btn_ins_0_macros[2] | 0;
if (++s >= WLED_MAX_BUTTONS) break; // max buttons reached buttons.emplace_back(pin, type, press, longPress, doublePress); // add button to vector
} }
// clear remaining buttons if (++s >= WLED_MAX_BUTTONS) break; // max buttons reached
for (; s<WLED_MAX_BUTTONS; s++) {
btnPin[s] = -1;
buttonType[s] = BTN_TYPE_NONE;
macroButton[s] = 0;
macroLongPress[s] = 0;
macroDoublePress[s] = 0;
} }
} else if (fromFS) { } else if (fromFS) {
// new install/missing configuration (button 0 has defaults) // new install/missing configuration (button 0 has defaults)
// relies upon only being called once with fromFS == true, which is currently true. // relies upon only being called once with fromFS == true, which is currently true.
for (size_t s = 0; s < WLED_MAX_BUTTONS; s++) { constexpr uint8_t defTypes[] = {BTNTYPE};
if (buttonType[s] == BTN_TYPE_NONE || btnPin[s] < 0 || !PinManager::allocatePin(btnPin[s], false, PinOwner::Button)) { constexpr int8_t defPins[] = {BTNPIN};
btnPin[s] = -1; constexpr unsigned numTypes = (sizeof(defTypes) / sizeof(defTypes[0]));
buttonType[s] = BTN_TYPE_NONE; constexpr unsigned numPins = (sizeof(defPins) / sizeof(defPins[0]));
// check if the number of pins and types are valid; count of pins must be greater than or equal to types
static_assert(numTypes <= numPins, "The default button pins defined in BTNPIN do not match the button types defined in BTNTYPE");
uint8_t type = BTN_TYPE_NONE;
buttons.clear(); // clear existing buttons (just in case)
for (size_t s = 0; s < WLED_MAX_BUTTONS && s < numPins; s++) {
type = defTypes[s < numTypes ? s : numTypes - 1]; // use last known type to set current type if types less than pins
if (type == BTN_TYPE_NONE || defPins[s] < 0 || !PinManager::allocatePin(defPins[s], false, PinOwner::Button)) {
//buttons.emplace_back(-1, BTN_TYPE_NONE); // add disabled button to vector
continue; // pin not available or invalid, skip configuring this GPIO
} }
if (btnPin[s] >= 0) {
if (disablePullUp) { if (disablePullUp) {
pinMode(btnPin[s], INPUT); pinMode(defPins[s], INPUT);
} else { } else {
#ifdef ESP32 #ifdef ESP32
pinMode(btnPin[s], buttonType[s]==BTN_TYPE_PUSH_ACT_HIGH ? INPUT_PULLDOWN : INPUT_PULLUP); pinMode(defPins[s], type==BTN_TYPE_PUSH_ACT_HIGH ? INPUT_PULLDOWN : INPUT_PULLUP);
#else #else
pinMode(btnPin[s], INPUT_PULLUP); pinMode(defPins[s], INPUT_PULLUP);
#endif #endif
} }
} buttons.emplace_back(defPins[s], type); // add button to vector
macroButton[s] = 0;
macroLongPress[s] = 0;
macroDoublePress[s] = 0;
} }
} }
@ -996,15 +990,15 @@ void serializeConfig(JsonObject root) {
JsonArray hw_btn_ins = hw_btn.createNestedArray("ins"); JsonArray hw_btn_ins = hw_btn.createNestedArray("ins");
// configuration for all buttons // configuration for all buttons
for (int i = 0; i < WLED_MAX_BUTTONS; i++) { for (const auto &button : buttons) {
JsonObject hw_btn_ins_0 = hw_btn_ins.createNestedObject(); JsonObject hw_btn_ins_0 = hw_btn_ins.createNestedObject();
hw_btn_ins_0["type"] = buttonType[i]; hw_btn_ins_0["type"] = button.type;
JsonArray hw_btn_ins_0_pin = hw_btn_ins_0.createNestedArray("pin"); JsonArray hw_btn_ins_0_pin = hw_btn_ins_0.createNestedArray("pin");
hw_btn_ins_0_pin.add(btnPin[i]); hw_btn_ins_0_pin.add(button.pin);
JsonArray hw_btn_ins_0_macros = hw_btn_ins_0.createNestedArray("macros"); JsonArray hw_btn_ins_0_macros = hw_btn_ins_0.createNestedArray("macros");
hw_btn_ins_0_macros.add(macroButton[i]); hw_btn_ins_0_macros.add(button.macroButton);
hw_btn_ins_0_macros.add(macroLongPress[i]); hw_btn_ins_0_macros.add(button.macroLongPress);
hw_btn_ins_0_macros.add(macroDoublePress[i]); hw_btn_ins_0_macros.add(button.macroDoublePress);
} }
hw_btn[F("tt")] = touchThreshold; hw_btn[F("tt")] = touchThreshold;

View File

@ -94,9 +94,9 @@ static_assert(WLED_MAX_BUSSES <= 32, "WLED_MAX_BUSSES exceeds hard limit");
#ifndef WLED_MAX_BUTTONS #ifndef WLED_MAX_BUTTONS
#ifdef ESP8266 #ifdef ESP8266
#define WLED_MAX_BUTTONS 2 #define WLED_MAX_BUTTONS 10
#else #else
#define WLED_MAX_BUTTONS 4 #define WLED_MAX_BUTTONS 32
#endif #endif
#else #else
#if WLED_MAX_BUTTONS < 2 #if WLED_MAX_BUTTONS < 2

View File

@ -6,7 +6,7 @@
<title>LED Settings</title> <title>LED Settings</title>
<script src="common.js" async type="text/javascript"></script> <script src="common.js" async type="text/javascript"></script>
<script> <script>
var maxB=1,maxD=1,maxA=1,maxV=0,maxM=4000,maxPB=2048,maxL=1664,maxCO=5; //maximum bytes for LED allocation: 4kB for 8266, 32kB for 32 var maxB=1,maxD=1,maxA=1,maxV=0,maxM=4000,maxPB=2048,maxL=1664,maxCO=5,maxBT=10; //maximum bytes for LED allocation: 4kB for 8266, 32kB for 32
var oMaxB=1; var oMaxB=1;
var customStarts=false,startsDirty=[]; var customStarts=false,startsDirty=[];
function off(n) { gN(n).value = -1;} function off(n) { gN(n).value = -1;}
@ -42,7 +42,7 @@
}); // If we set async false, file is loaded and executed, then next statement is processed }); // If we set async false, file is loaded and executed, then next statement is processed
if (loc) d.Sf.action = getURL('/settings/leds'); if (loc) d.Sf.action = getURL('/settings/leds');
} }
function bLimits(b,v,p,m,l,o=5,d=2,a=6) { function bLimits(b,v,p,m,l,o=5,d=2,a=6,n=10) {
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 20 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266 oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 20 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 17 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266 maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 17 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266
maxA = a; // maxA - max analog channels: 16 - ESP32, 8 - S3/S2, 6 - C3, 5 - 8266 maxA = a; // maxA - max analog channels: 16 - ESP32, 8 - S3/S2, 6 - C3, 5 - 8266
@ -51,6 +51,7 @@
maxM = m; // maxM - max LED memory maxM = m; // maxM - max LED memory
maxL = l; // maxL - max LEDs (will serve to determine ESP >1664 == ESP32) maxL = l; // maxL - max LEDs (will serve to determine ESP >1664 == ESP32)
maxCO = o; // maxCO - max Color Order mappings maxCO = o; // maxCO - max Color Order mappings
maxBT = n; // maxBT - max buttons
} }
function pinsOK() { function pinsOK() {
var ok = true; var ok = true;
@ -560,9 +561,10 @@ Swap: <select id="xw${s}" name="XW${s}">
} }
function addBtn(i,p,t) { function addBtn(i,p,t) {
var c = gId("btns").innerHTML; var b = gId("btns");
var c = b.innerHTML;
var s = chrID(i); var s = chrID(i);
c += `Button ${i} GPIO: <input type="number" name="BT${s}" onchange="UI()" class="xs" value="${p}">`; c += `<div id="btn${i}">#${i} GPIO: <input type="number" name="BT${s}" onchange="UI()" min="-1" max="${d.max_gpio}" class="xs" value="${p}">`;
c += `&nbsp;<select name="BE${s}">` c += `&nbsp;<select name="BE${s}">`
c += `<option value="0" ${t==0?"selected":""}>Disabled</option>`; c += `<option value="0" ${t==0?"selected":""}>Disabled</option>`;
c += `<option value="2" ${t==2?"selected":""}>Pushbutton</option>`; c += `<option value="2" ${t==2?"selected":""}>Pushbutton</option>`;
@ -574,8 +576,22 @@ Swap: <select id="xw${s}" name="XW${s}">
c += `<option value="8" ${t==8?"selected":""}>Analog inverted</option>`; c += `<option value="8" ${t==8?"selected":""}>Analog inverted</option>`;
c += `<option value="9" ${t==9?"selected":""}>Touch (switch)</option>`; c += `<option value="9" ${t==9?"selected":""}>Touch (switch)</option>`;
c += `</select>`; c += `</select>`;
c += `<span style="cursor: pointer;" onclick="off('BT${s}')">&nbsp;&#x2715;</span><br>`; c += `<span style="cursor: pointer;" onclick="off('BT${s}')">&nbsp;&#x2715;</span><br></div>`;
gId("btns").innerHTML = c; b.innerHTML = c;
btnBtn();
UI();
}
function remBtn() {
var b = gId("btns");
if (b.children.length <= 1) return;
b.lastElementChild.remove();
btnBtn();
UI();
}
function btnBtn() {
var b = gId("btns");
gId("btn_rem").style.display = (b.children.length > 1) ? "inline" : "none";
gId("btn_add").style.display = (b.children.length < maxBT) ? "inline" : "none";
} }
function tglSi(cs) { function tglSi(cs) {
customStarts = cs; customStarts = cs;
@ -827,10 +843,16 @@ Swap: <select id="xw${s}" name="XW${s}">
<div id="com_entries"></div> <div id="com_entries"></div>
<hr class="sml"> <hr class="sml">
<button type="button" id="com_add" onclick="addCOM()">+</button> <button type="button" id="com_add" onclick="addCOM()">+</button>
<button type="button" id="com_rem" onclick="remCOM()">-</button><br> <button type="button" id="com_rem" onclick="remCOM()">-</button>
</div> </div>
<hr class="sml"> <hr class="sml">
<div id="btn_wrap">
Buttons:
<div id="btns"></div> <div id="btns"></div>
<hr class="sml">
<button type="button" id="btn_add" onclick="addBtn(gId('btns').children.length,-1,0)">+</button>
<button type="button" id="btn_rem" onclick="remBtn()">-</button>
</div>
Disable internal pull-up/down: <input type="checkbox" name="IP"><br> Disable internal pull-up/down: <input type="checkbox" name="IP"><br>
Touch threshold: <input type="number" class="s" min="0" max="100" name="TT" required><br> Touch threshold: <input type="number" class="s" min="0" max="100" name="TT" required><br>
<hr class="sml"> <hr class="sml">

View File

@ -128,12 +128,12 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
PinManager::deallocatePin(irPin, PinOwner::IR); PinManager::deallocatePin(irPin, PinOwner::IR);
} }
#endif #endif
for (unsigned s=0; s<WLED_MAX_BUTTONS; s++) { for (const auto &button : buttons) {
if (btnPin[s]>=0 && PinManager::isPinAllocated(btnPin[s], PinOwner::Button)) { if (button.pin >= 0 && PinManager::isPinAllocated(button.pin, PinOwner::Button)) {
PinManager::deallocatePin(btnPin[s], PinOwner::Button); PinManager::deallocatePin(button.pin, PinOwner::Button);
#ifdef SOC_TOUCH_VERSION_2 // ESP32 S2 and S3 have a function to check touch state, detach interrupt #ifdef SOC_TOUCH_VERSION_2 // ESP32 S2 and S3 have a function to check touch state, detach interrupt
if (digitalPinToTouchChannel(btnPin[s]) >= 0) // if touch capable pin if (digitalPinToTouchChannel(button.pin) >= 0) // if touch capable pin
touchDetachInterrupt(btnPin[s]); // if not assigned previously, this will do nothing touchDetachInterrupt(button.pin); // if not assigned previously, this will do nothing
#endif #endif
} }
} }
@ -277,54 +277,56 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
char bt[4] = "BT"; bt[2] = offset+i; bt[3] = 0; // button pin (use A,B,C,... if WLED_MAX_BUTTONS>10) char bt[4] = "BT"; bt[2] = offset+i; bt[3] = 0; // button pin (use A,B,C,... if WLED_MAX_BUTTONS>10)
char be[4] = "BE"; be[2] = offset+i; be[3] = 0; // button type (use A,B,C,... if WLED_MAX_BUTTONS>10) char be[4] = "BE"; be[2] = offset+i; be[3] = 0; // button type (use A,B,C,... if WLED_MAX_BUTTONS>10)
int hw_btn_pin = request->arg(bt).toInt(); int hw_btn_pin = request->arg(bt).toInt();
if (hw_btn_pin >= 0 && PinManager::allocatePin(hw_btn_pin,false,PinOwner::Button)) { if (i >= buttons.size()) buttons.emplace_back(hw_btn_pin, request->arg(be).toInt()); // add button to vector
btnPin[i] = hw_btn_pin; else {
buttonType[i] = request->arg(be).toInt(); buttons[i].pin = hw_btn_pin;
buttons[i].type = request->arg(be).toInt();
}
if (buttons[i].pin >= 0 && PinManager::allocatePin(buttons[i].pin, false, PinOwner::Button)) {
#ifdef ARDUINO_ARCH_ESP32 #ifdef ARDUINO_ARCH_ESP32
// ESP32 only: check that button pin is a valid gpio // ESP32 only: check that button pin is a valid gpio
if ((buttonType[i] == BTN_TYPE_ANALOG) || (buttonType[i] == BTN_TYPE_ANALOG_INVERTED)) if ((buttons[i].type == BTN_TYPE_ANALOG) || (buttons[i].type == BTN_TYPE_ANALOG_INVERTED)) {
{ if (digitalPinToAnalogChannel(buttons[i].pin) < 0) {
if (digitalPinToAnalogChannel(btnPin[i]) < 0) {
// not an ADC analog pin // not an ADC analog pin
DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for analog button #%d is not an analog pin!\n"), btnPin[i], i); DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for analog button #%d is not an analog pin!\n"), buttons[i].pin, i);
btnPin[i] = -1; PinManager::deallocatePin(buttons[i].pin, PinOwner::Button);
PinManager::deallocatePin(hw_btn_pin,PinOwner::Button); buttons[i].type = BTN_TYPE_NONE;
} else { } else {
analogReadResolution(12); // see #4040 analogReadResolution(12); // see #4040
} }
} } else if ((buttons[i].type == BTN_TYPE_TOUCH || buttons[i].type == BTN_TYPE_TOUCH_SWITCH)) {
else if ((buttonType[i] == BTN_TYPE_TOUCH || buttonType[i] == BTN_TYPE_TOUCH_SWITCH)) if (digitalPinToTouchChannel(buttons[i].pin) < 0) {
{
if (digitalPinToTouchChannel(btnPin[i]) < 0)
{
// not a touch pin // not a touch pin
DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for touch button #%d is not an touch pin!\n"), btnPin[i], i); DEBUG_PRINTF_P(PSTR("PIN ALLOC error: GPIO%d for touch button #%d is not an touch pin!\n"), buttons[i].pin, i);
btnPin[i] = -1; PinManager::deallocatePin(buttons[i].pin, PinOwner::Button);
PinManager::deallocatePin(hw_btn_pin,PinOwner::Button); buttons[i].type = BTN_TYPE_NONE;
} }
#ifdef SOC_TOUCH_VERSION_2 // ESP32 S2 and S3 have a fucntion to check touch state but need to attach an interrupt to do so #ifdef SOC_TOUCH_VERSION_2 // ESP32 S2 and S3 have a fucntion to check touch state but need to attach an interrupt to do so
else else touchAttachInterrupt(buttons[i].pin, touchButtonISR, touchThreshold << 4); // threshold on Touch V2 is much higher (1500 is a value given by Espressif example, I measured changes of over 5000)
{
touchAttachInterrupt(btnPin[i], touchButtonISR, touchThreshold << 4); // threshold on Touch V2 is much higher (1500 is a value given by Espressif example, I measured changes of over 5000)
}
#endif #endif
} } else
else
#endif #endif
{ {
// regular buttons and switches
if (disablePullUp) { if (disablePullUp) {
pinMode(btnPin[i], INPUT); pinMode(buttons[i].pin, INPUT);
} else { } else {
#ifdef ESP32 #ifdef ESP32
pinMode(btnPin[i], buttonType[i]==BTN_TYPE_PUSH_ACT_HIGH ? INPUT_PULLDOWN : INPUT_PULLUP); pinMode(buttons[i].pin, buttons[i].type==BTN_TYPE_PUSH_ACT_HIGH ? INPUT_PULLDOWN : INPUT_PULLUP);
#else #else
pinMode(btnPin[i], INPUT_PULLUP); pinMode(buttons[i].pin, INPUT_PULLUP);
#endif #endif
} }
} }
} else { } else {
btnPin[i] = -1; buttons[i].pin = -1;
buttonType[i] = BTN_TYPE_NONE; buttons[i].type = BTN_TYPE_NONE;
}
}
// we should remove all unused buttons from the vector
for (int i = buttons.size()-1; i > 0; i--) {
if (buttons[i].pin < 0 && buttons[i].type == BTN_TYPE_NONE) {
buttons.erase(buttons.begin() + i); // remove button from vector
} }
} }
@ -529,14 +531,16 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
macroAlexaOff = request->arg(F("A1")).toInt(); macroAlexaOff = request->arg(F("A1")).toInt();
macroCountdown = request->arg(F("MC")).toInt(); macroCountdown = request->arg(F("MC")).toInt();
macroNl = request->arg(F("MN")).toInt(); macroNl = request->arg(F("MN")).toInt();
for (unsigned i=0; i<WLED_MAX_BUTTONS; i++) { int i = 0;
char mp[4] = "MP"; mp[2] = (i<10?48:55)+i; mp[3] = 0; // short for (auto &button : buttons) {
char ml[4] = "ML"; ml[2] = (i<10?48:55)+i; ml[3] = 0; // long char mp[4] = "MP"; mp[2] = (i<10?'0':'A'-10)+i; mp[3] = 0; // short
char md[4] = "MD"; md[2] = (i<10?48:55)+i; md[3] = 0; // double char ml[4] = "ML"; ml[2] = (i<10?'0':'A'-10)+i; ml[3] = 0; // long
char md[4] = "MD"; md[2] = (i<10?'0':'A'-10)+i; md[3] = 0; // double
//if (!request->hasArg(mp)) break; //if (!request->hasArg(mp)) break;
macroButton[i] = request->arg(mp).toInt(); // these will default to 0 if not present button.macroButton = request->arg(mp).toInt(); // these will default to 0 if not present
macroLongPress[i] = request->arg(ml).toInt(); button.macroLongPress = request->arg(ml).toInt();
macroDoublePress[i] = request->arg(md).toInt(); button.macroDoublePress = request->arg(md).toInt();
i++;
} }
char k[3]; k[2] = 0; char k[3]; k[2] = 0;

View File

@ -577,9 +577,6 @@ WLED_GLOBAL byte countdownMin _INIT(0) , countdownSec _INIT(0);
WLED_GLOBAL byte macroNl _INIT(0); // after nightlight delay over WLED_GLOBAL byte macroNl _INIT(0); // after nightlight delay over
WLED_GLOBAL byte macroCountdown _INIT(0); WLED_GLOBAL byte macroCountdown _INIT(0);
WLED_GLOBAL byte macroAlexaOn _INIT(0), macroAlexaOff _INIT(0); WLED_GLOBAL byte macroAlexaOn _INIT(0), macroAlexaOff _INIT(0);
WLED_GLOBAL byte macroButton[WLED_MAX_BUTTONS] _INIT({0});
WLED_GLOBAL byte macroLongPress[WLED_MAX_BUTTONS] _INIT({0});
WLED_GLOBAL byte macroDoublePress[WLED_MAX_BUTTONS] _INIT({0});
// Security CONFIG // Security CONFIG
#ifdef WLED_OTA_PASS #ifdef WLED_OTA_PASS
@ -646,13 +643,32 @@ WLED_GLOBAL byte briLast _INIT(128); // brightness before
WLED_GLOBAL byte whiteLast _INIT(128); // white channel before turned off. Used for toggle function in ir.cpp WLED_GLOBAL byte whiteLast _INIT(128); // white channel before turned off. Used for toggle function in ir.cpp
// button // button
WLED_GLOBAL int8_t btnPin[WLED_MAX_BUTTONS] _INIT({BTNPIN}); struct Button {
WLED_GLOBAL byte buttonType[WLED_MAX_BUTTONS] _INIT({BTNTYPE}); unsigned long pressedTime; // time button was pressed
unsigned long waitTime; // time to wait for next button press
int8_t pin; // pin number
struct {
uint8_t type : 6; // button type (push, long, double, etc.)
bool pressedBefore : 1; // button was pressed before
bool longPressed : 1; // button was long pressed
};
uint8_t macroButton; // macro/preset to call on button press
uint8_t macroLongPress; // macro/preset to call on long press
uint8_t macroDoublePress; // macro/preset to call on double press
Button(int8_t p, uint8_t t, uint8_t mB = 0, uint8_t mLP = 0, uint8_t mDP = 0)
: pressedTime(0)
, waitTime(0)
, pin(p)
, type(t)
, pressedBefore(false)
, longPressed(false)
, macroButton(mB)
, macroLongPress(mLP)
, macroDoublePress(mDP) {}
};
WLED_GLOBAL std::vector<Button> buttons; // vector of button structs
WLED_GLOBAL bool buttonPublishMqtt _INIT(false); WLED_GLOBAL bool buttonPublishMqtt _INIT(false);
WLED_GLOBAL bool buttonPressedBefore[WLED_MAX_BUTTONS] _INIT({false});
WLED_GLOBAL bool buttonLongPressed[WLED_MAX_BUTTONS] _INIT({false});
WLED_GLOBAL unsigned long buttonPressedTime[WLED_MAX_BUTTONS] _INIT({0});
WLED_GLOBAL unsigned long buttonWaitTime[WLED_MAX_BUTTONS] _INIT({0});
WLED_GLOBAL bool disablePullUp _INIT(false); WLED_GLOBAL bool disablePullUp _INIT(false);
WLED_GLOBAL byte touchThreshold _INIT(TOUCH_THRESHOLD); WLED_GLOBAL byte touchThreshold _INIT(TOUCH_THRESHOLD);

View File

@ -273,7 +273,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
settingsScript.printf_P(PSTR("d.ledTypes=%s;"), BusManager::getLEDTypesJSONString().c_str()); settingsScript.printf_P(PSTR("d.ledTypes=%s;"), BusManager::getLEDTypesJSONString().c_str());
// set limits // set limits
settingsScript.printf_P(PSTR("bLimits(%d,%d,%d,%d,%d,%d,%d,%d);"), settingsScript.printf_P(PSTR("bLimits(%d,%d,%d,%d,%d,%d,%d,%d,%d);"),
WLED_MAX_BUSSES, WLED_MAX_BUSSES,
WLED_MIN_VIRTUAL_BUSSES, // irrelevant, but kept to distinguish S2/S3 in UI WLED_MIN_VIRTUAL_BUSSES, // irrelevant, but kept to distinguish S2/S3 in UI
MAX_LEDS_PER_BUS, MAX_LEDS_PER_BUS,
@ -281,7 +281,8 @@ void getSettingsJS(byte subPage, Print& settingsScript)
MAX_LEDS, MAX_LEDS,
WLED_MAX_COLOR_ORDER_MAPPINGS, WLED_MAX_COLOR_ORDER_MAPPINGS,
WLED_MAX_DIGITAL_CHANNELS, WLED_MAX_DIGITAL_CHANNELS,
WLED_MAX_ANALOG_CHANNELS WLED_MAX_ANALOG_CHANNELS,
WLED_MAX_BUTTONS
); );
printSetFormCheckbox(settingsScript,PSTR("MS"),strip.autoSegments); printSetFormCheckbox(settingsScript,PSTR("MS"),strip.autoSegments);
@ -384,8 +385,9 @@ void getSettingsJS(byte subPage, Print& settingsScript)
printSetFormValue(settingsScript,PSTR("RL"),rlyPin); printSetFormValue(settingsScript,PSTR("RL"),rlyPin);
printSetFormCheckbox(settingsScript,PSTR("RM"),rlyMde); printSetFormCheckbox(settingsScript,PSTR("RM"),rlyMde);
printSetFormCheckbox(settingsScript,PSTR("RO"),rlyOpenDrain); printSetFormCheckbox(settingsScript,PSTR("RO"),rlyOpenDrain);
for (int i = 0; i < WLED_MAX_BUTTONS; i++) { int i = 0;
settingsScript.printf_P(PSTR("addBtn(%d,%d,%d);"), i, btnPin[i], buttonType[i]); for (const auto &button : buttons) {
settingsScript.printf_P(PSTR("addBtn(%d,%d,%d);"), i++, button.pin, button.type);
} }
printSetFormCheckbox(settingsScript,PSTR("IP"),disablePullUp); printSetFormCheckbox(settingsScript,PSTR("IP"),disablePullUp);
printSetFormValue(settingsScript,PSTR("TT"),touchThreshold); printSetFormValue(settingsScript,PSTR("TT"),touchThreshold);
@ -559,8 +561,9 @@ void getSettingsJS(byte subPage, Print& settingsScript)
printSetFormValue(settingsScript,PSTR("A1"),macroAlexaOff); printSetFormValue(settingsScript,PSTR("A1"),macroAlexaOff);
printSetFormValue(settingsScript,PSTR("MC"),macroCountdown); printSetFormValue(settingsScript,PSTR("MC"),macroCountdown);
printSetFormValue(settingsScript,PSTR("MN"),macroNl); printSetFormValue(settingsScript,PSTR("MN"),macroNl);
for (unsigned i=0; i<WLED_MAX_BUTTONS; i++) { int i = 0;
settingsScript.printf_P(PSTR("addRow(%d,%d,%d,%d);"), i, macroButton[i], macroLongPress[i], macroDoublePress[i]); for (const auto &button : buttons) {
settingsScript.printf_P(PSTR("addRow(%d,%d,%d,%d);"), i++, button.macroButton, button.macroLongPress, button.macroDoublePress);
} }
char k[4]; char k[4];