Merge pull request #3654 from willmmiles/mpu6050-upgrade

Upgrade the MPU6050 usermod
This commit is contained in:
Blaž Kristan 2024-01-08 19:32:36 +01:00 committed by GitHub
commit 9940258725
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 470 additions and 80 deletions

View File

@ -198,6 +198,8 @@ lib_deps =
#For ADS1115 sensor uncomment following
; adafruit/Adafruit BusIO @ 1.13.2
; adafruit/Adafruit ADS1X15 @ 2.4.0
#For MPU6050 IMU uncomment follwoing
; electroniccats/MPU6050 @1.0.1
extra_scripts = ${scripts_defaults.extra_scripts}

View File

@ -20,14 +20,11 @@ react to the globes orientation. See the blog post on building it <https://www.r
I2Cdev and MPU6050 must be installed.
To install them, add I2Cdevlib-MPU6050@fbde122cc5 to lib_deps in the platformio.ini file.
You also need to change lib_compat_mode from strict to soft in platformio.ini (This ignores that I2Cdevlib-MPU6050 doesn't list platform compatibility)
To install them, add electroniccats/MPU6050@1.0.1 to lib_deps in the platformio.ini file.
For example:
```
lib_compat_mode = soft
lib_deps =
FastLED@3.3.2
NeoPixelBus@2.5.7
@ -36,7 +33,7 @@ lib_deps =
AsyncTCP@1.0.3
Esp Async WebServer@1.2.0
IRremoteESP8266@2.7.3
jrowberg/I2Cdevlib-MPU6050@^1.0.0
electroniccats/MPU6050@1.0.1
```
## Wiring

View File

@ -0,0 +1,219 @@
#pragma once
/* This usermod uses gyro data to provide a "surge" effect on movement
Requires lib_deps = bolderflight/Bolder Flight Systems Eigen@^3.0.0
*/
#include "wled.h"
// Eigen include block
#ifdef A0
namespace { constexpr size_t A0_temp {A0}; }
#undef A0
static constexpr size_t A0 {A0_temp};
#endif
#ifdef A1
namespace { constexpr size_t A1_temp {A1}; }
#undef A1
static constexpr size_t A1 {A1_temp};
#endif
#ifdef B0
namespace { constexpr size_t B0_temp {B0}; }
#undef B0
static constexpr size_t B0 {B0_temp};
#endif
#ifdef B1
namespace { constexpr size_t B1_temp {B1}; }
#undef B1
static constexpr size_t B1 {B1_temp};
#endif
#ifdef D0
namespace { constexpr size_t D0_temp {D0}; }
#undef D0
static constexpr size_t D0 {D0_temp};
#endif
#ifdef D1
namespace { constexpr size_t D1_temp {D1}; }
#undef D1
static constexpr size_t D1 {D1_temp};
#endif
#ifdef D2
namespace { constexpr size_t D2_temp {D2}; }
#undef D2
static constexpr size_t D2 {D2_temp};
#endif
#ifdef D3
namespace { constexpr size_t D3_temp {D3}; }
#undef D3
static constexpr size_t D3 {D3_temp};
#endif
#include "eigen.h"
#include <Eigen/Geometry>
constexpr auto ESTIMATED_G = 9.801; // m/s^2
constexpr auto ESTIMATED_G_COUNTS = 8350.;
constexpr auto ESTIMATED_ANGULAR_RATE = (M_PI * 2000) / (INT16_MAX * 180); // radians per second
// Horribly lame digital filter code
// Currently implements a static IIR filter.
template<typename T, unsigned C>
class xir_filter {
typedef Eigen::Array<T, C, 1> array_t;
const array_t a_coeff, b_coeff;
const T gain;
array_t x, y;
public:
xir_filter(T gain_, array_t a, array_t b) : a_coeff(std::move(a)), b_coeff(std::move(b)), gain(gain_), x(array_t::Zero()), y(array_t::Zero()) {};
T operator()(T input) {
x.head(C-1) = x.tail(C-1); // shift by one
x(C-1) = input / gain;
y.head(C-1) = y.tail(C-1); // shift by one
y(C-1) = (x * b_coeff).sum();
y(C-1) -= (y.head(C-1) * a_coeff.head(C-1)).sum();
return y(C-1);
}
T last() { return y(C-1); };
};
class GyroSurge : public Usermod {
private:
static const char _name[];
bool enabled = true;
// Params
uint8_t max = 0;
float sensitivity = 0;
// State
uint32_t last_sample;
// 100hz input
// butterworth low pass filter at 20hz
xir_filter<float, 3> filter = { 1., { -0.36952738, 0.19581571, 1.}, {0.20657208, 0.41314417, 0.20657208} };
// { 1., { 0., 0., 1.}, { 0., 0., 1. } }; // no filter
public:
/*
* setup() is called once at boot. WiFi is not yet connected at this point.
*/
void setup() {};
/*
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
* I highly recommend checking out the basics of ArduinoJson serialization and deserialization in order to use custom settings!
*/
void addToConfig(JsonObject& root)
{
JsonObject top = root.createNestedObject(FPSTR(_name));
//save these vars persistently whenever settings are saved
top["max"] = max;
top["sensitivity"] = sensitivity;
}
/*
* readFromConfig() can be used to read back the custom settings you added with addToConfig().
* This is called by WLED when settings are loaded (currently this only happens immediately after boot, or after saving on the Usermod Settings page)
*
* readFromConfig() is called BEFORE setup(). This means you can use your persistent values in setup() (e.g. pin assignments, buffer sizes),
* but also that if you want to write persistent values to a dynamic buffer, you'd need to allocate it here instead of in setup.
* If you don't know what that is, don't fret. It most likely doesn't affect your use case :)
*
* Return true in case the config values returned from Usermod Settings were complete, or false if you'd like WLED to save your defaults to disk (so any missing values are editable in Usermod Settings)
*
* getJsonValue() returns false if the value is missing, or copies the value into the variable provided and returns true if the value is present
* The configComplete variable is true only if the "exampleUsermod" object and all values are present. If any values are missing, WLED will know to call addToConfig() to save them
*
* This function is guaranteed to be called on boot, but could also be called every time settings are updated
*/
bool readFromConfig(JsonObject& root)
{
// default settings values could be set here (or below using the 3-argument getJsonValue()) instead of in the class definition or constructor
// setting them inside readFromConfig() is slightly more robust, handling the rare but plausible use case of single value being missing after boot (e.g. if the cfg.json was manually edited and a value was removed)
JsonObject top = root[FPSTR(_name)];
bool configComplete = !top.isNull();
configComplete &= getJsonValue(top["max"], max, 0);
configComplete &= getJsonValue(top["sensitivity"], sensitivity, 10);
return configComplete;
}
void loop() {
// get IMU data
um_data_t *um_data;
if (!usermods.getUMData(&um_data, USERMOD_ID_IMU)) {
// Apply max
strip.getSegment(0).fadeToBlackBy(max);
return;
}
uint32_t sample_count = *(uint32_t*)(um_data->u_data[8]);
if (sample_count != last_sample) {
last_sample = sample_count;
// Calculate based on new data
// We use the raw gyro data (angular rate)
auto gyros = (int16_t*)um_data->u_data[4]; // 16384 == 2000 deg/s
// Compute the overall rotation rate
// For my application (a plasma sword) we ignore X axis rotations (eg. around the long axis)
auto gyro_q = Eigen::AngleAxis<float> {
//Eigen::AngleAxis<float>(ESTIMATED_ANGULAR_RATE * gyros[0], Eigen::Vector3f::UnitX()) *
Eigen::AngleAxis<float>(ESTIMATED_ANGULAR_RATE * gyros[1], Eigen::Vector3f::UnitY()) *
Eigen::AngleAxis<float>(ESTIMATED_ANGULAR_RATE * gyros[2], Eigen::Vector3f::UnitZ()) };
// Filter the results
filter(std::min(sensitivity * gyro_q.angle(), 1.0f)); // radians per second
/*
Serial.printf("[%lu] Gy: %d, %d, %d -- ", millis(), (int)gyros[0], (int)gyros[1], (int)gyros[2]);
Serial.print(gyro_q.angle());
Serial.print(", ");
Serial.print(sensitivity * gyro_q.angle());
Serial.print(" --> ");
Serial.println(filter.last());
*/
}
}; // noop
/*
* handleOverlayDraw() is called just before every show() (LED strip update frame) after effects have set the colors.
* Use this to blank out some LEDs or set them to a different color regardless of the set effect mode.
* Commonly used for custom clocks (Cronixie, 7 segment)
*/
void handleOverlayDraw()
{
// TODO: some kind of timing analysis for filtering ...
// Calculate brightness boost
auto r_float = std::max(std::min(filter.last(), 1.0f), 0.f);
auto result = (uint8_t) (r_float * max);
//Serial.printf("[%lu] %d -- ", millis(), result);
//Serial.println(r_float);
// TODO - multiple segment handling??
strip.getSegment(0).fadeToBlackBy(max - result);
}
};
const char GyroSurge::_name[] PROGMEM = "GyroSurge";

View File

@ -20,11 +20,11 @@
XCL not connected
AD0 not connected
INT D8 (GPIO15) Interrupt pin
Using usermod:
1. Copy the usermod into the sketch folder (same folder as wled00.ino)
2. Register the usermod by adding #include "usermod_filename.h" in the top and registerUsermod(new MyUsermodClass()) in the bottom of usermods_list.cpp
3. I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h file
3. I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h file
for both classes must be in the include path of your project. To install the
libraries add I2Cdevlib-MPU6050@fbde122cc5 to lib_deps in the platformio.ini file.
4. You also need to change lib_compat_mode from strict to soft in platformio.ini (This ignores that I2Cdevlib-MPU6050 doesn't list platform compatibility)
@ -33,6 +33,9 @@
#include "I2Cdev.h"
#undef DEBUG_PRINT
#undef DEBUG_PRINTLN
#undef DEBUG_PRINTF
#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file
@ -42,6 +45,23 @@
#include "Wire.h"
#endif
// Restore debug macros
// MPU6050 unfortunately uses the same macro names as WLED :(
#undef DEBUG_PRINT
#undef DEBUG_PRINTLN
#undef DEBUG_PRINTF
#ifdef WLED_DEBUG
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#endif
// ================================================================
// === INTERRUPT DETECTION ROUTINE ===
// ================================================================
@ -52,21 +72,31 @@ void IRAM_ATTR dmpDataReady() {
}
class MPU6050Driver : public Usermod {
private:
MPU6050 mpu;
bool enabled = true;
// configuration state
// default values are set in readFromConfig
// By making this a struct, we enable easy backup and comparison in the readFromConfig class
struct config_t {
bool enabled;
int8_t interruptPin;
int16_t gyro_offset[3];
int16_t accel_offset[3];
};
config_t config;
// MPU control/status vars
bool irqBound = false; // set true if we have bound the IRQ pin
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
//NOTE: some of these can be removed to save memory, processing time
// if the measurement isn't needed
// TODO: some of these can be removed to save memory, processing time if the measurement isn't needed
Quaternion qat; // [w, x, y, z] quaternion container
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container
@ -75,17 +105,67 @@ class MPU6050Driver : public Usermod {
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
uint32 sample_count;
static const int INTERRUPT_PIN = 15; // use pin 15 on ESP8266
// Usermod output
um_data_t um_data;
// config element names as progmem strs
static const char _name[];
static const char _enabled[];
static const char _interrupt_pin[];
static const char _x_acc_bias[];
static const char _y_acc_bias[];
static const char _z_acc_bias[];
static const char _x_gyro_bias[];
static const char _y_gyro_bias[];
static const char _z_gyro_bias[];
public:
//Functions called by WLED
inline bool initDone() { return um_data.u_size != 0; }; // recycle this instead of storing an extra variable
//Functions called by WLED
/*
* setup() is called once at boot. WiFi is not yet connected at this point.
*/
void setup() {
if (i2c_scl<0 || i2c_sda<0) { enabled = false; return; }
dmpReady = false; // Start clean
// one time init
if (!initDone()) {
um_data.u_size = 9;
um_data.u_type = new um_types_t[um_data.u_size];
um_data.u_data = new void*[um_data.u_size];
um_data.u_data[0] = &qat;
um_data.u_type[0] = UMT_FLOAT_ARR;
um_data.u_data[1] = &euler;
um_data.u_type[1] = UMT_FLOAT_ARR;
um_data.u_data[2] = &ypr;
um_data.u_type[2] = UMT_FLOAT_ARR;
um_data.u_data[3] = &aa;
um_data.u_type[3] = UMT_INT16_ARR;
um_data.u_data[4] = &gy;
um_data.u_type[4] = UMT_INT16_ARR;
um_data.u_data[5] = &aaReal;
um_data.u_type[5] = UMT_INT16_ARR;
um_data.u_data[6] = &aaWorld;
um_data.u_type[6] = UMT_INT16_ARR;
um_data.u_data[7] = &gravity;
um_data.u_type[7] = UMT_FLOAT_ARR;
um_data.u_data[8] = &sample_count;
um_data.u_type[8] = UMT_UINT32;
}
if (!config.enabled) return;
if (i2c_scl<0 || i2c_sda<0) { DEBUG_PRINTLN(F("MPU6050: I2C is no good.")); return; }
// Check the interrupt pin
if (config.interruptPin >= 0) {
irqBound = pinManager.allocatePin(config.interruptPin, false, PinOwner::UM_IMU);
if (!irqBound) { DEBUG_PRINTLN(F("MPU6050: IRQ pin already in use.")); return; }
pinMode(config.interruptPin, INPUT);
};
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.setClock(400000U); // 400kHz I2C clock. Comment this line if having compilation difficulties
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
@ -95,7 +175,6 @@ class MPU6050Driver : public Usermod {
// initialize device
DEBUG_PRINTLN(F("Initializing I2C devices..."));
mpu.initialize();
pinMode(INTERRUPT_PIN, INPUT);
// verify connection
DEBUG_PRINTLN(F("Testing device connections..."));
@ -105,11 +184,16 @@ class MPU6050Driver : public Usermod {
DEBUG_PRINTLN(F("Initializing DMP..."));
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyroOffset(220);
mpu.setYGyroOffset(76);
mpu.setZGyroOffset(-85);
mpu.setZAccelOffset(1788); // 1688 factory default for my test chip
// set offsets (from config)
mpu.setXGyroOffset(config.gyro_offset[0]);
mpu.setYGyroOffset(config.gyro_offset[1]);
mpu.setZGyroOffset(config.gyro_offset[2]);
mpu.setXAccelOffset(config.accel_offset[0]);
mpu.setYAccelOffset(config.accel_offset[1]);
mpu.setZAccelOffset(config.accel_offset[2]);
// set sample rate
mpu.setRate(16); // ~100Hz
// make sure it worked (returns 0 if so)
if (devStatus == 0) {
@ -117,17 +201,19 @@ class MPU6050Driver : public Usermod {
DEBUG_PRINTLN(F("Enabling DMP..."));
mpu.setDMPEnabled(true);
// enable Arduino interrupt detection
DEBUG_PRINTLN(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main loop() function knows it's okay to use it
DEBUG_PRINTLN(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
mpuInterrupt = true;
if (irqBound) {
// enable Arduino interrupt detection
DEBUG_PRINTLN(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
attachInterrupt(digitalPinToInterrupt(config.interruptPin), dmpDataReady, RISING);
}
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
// set our DMP Ready flag so the main loop() function knows it's okay to use it
DEBUG_PRINTLN(F("DMP ready!"));
dmpReady = true;
} else {
// ERROR!
// 1 = initial memory load failed
@ -137,6 +223,9 @@ class MPU6050Driver : public Usermod {
DEBUG_PRINT(devStatus);
DEBUG_PRINTLN(")");
}
fifoCount = 0;
sample_count = 0;
}
/*
@ -153,28 +242,31 @@ class MPU6050Driver : public Usermod {
*/
void loop() {
// if programming failed, don't try to do anything
if (!enabled || !dmpReady || strip.isUpdating()) return;
if (!config.enabled || !dmpReady || strip.isUpdating()) return;
// wait for MPU interrupt or extra packet(s) available
// mpuInterrupt is fixed on if interrupt pin is disabled
if (!mpuInterrupt && fifoCount < packetSize) return;
// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();
// get current FIFO count
auto mpuIntStatus = mpu.getIntStatus();
// Update current FIFO count
fifoCount = mpu.getFIFOCount();
// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
DEBUG_PRINTLN(F("FIFO overflow!"));
DEBUG_PRINTLN(F("MPU6050: FIFO overflow!"));
// otherwise, check for DMP data ready interrupt (this should happen frequently)
} else if (mpuIntStatus & 0x02) {
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
// otherwise, check for data ready
} else if (fifoCount >= packetSize) {
// clear local interrupt pending status, if not polling
mpuInterrupt = !irqBound;
// DEBUG_PRINT(F("MPU6050: Processing packet: "));
// DEBUG_PRINT(fifoCount);
// DEBUG_PRINTLN(F(" bytes in FIFO"));
// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);
@ -183,7 +275,6 @@ class MPU6050Driver : public Usermod {
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;
//NOTE: some of these can be removed to save memory, processing time
// if the measurement isn't needed
mpu.dmpGetQuaternion(&qat, fifoBuffer);
@ -194,87 +285,141 @@ class MPU6050Driver : public Usermod {
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &qat);
mpu.dmpGetYawPitchRoll(ypr, &qat, &gravity);
++sample_count;
}
}
void addToJsonInfo(JsonObject& root)
{
int reading = 20;
//this code adds "u":{"Light":[20," lux"]} to the info object
JsonObject user = root["u"];
if (user.isNull()) user = root.createNestedObject("u");
JsonObject imu_meas = user.createNestedObject("IMU");
JsonArray quat_json = imu_meas.createNestedArray("Quat");
// Unfortunately the web UI doesn't know how to print sub-objects: you just see '[object Object]'
// For now, we just put everything in the root userdata object.
//auto imu_meas = user.createNestedObject("IMU");
auto& imu_meas = user;
// If an element is an array, the UI expects two elements in the form [value, unit]
// Since our /value/ is an array, wrap it, eg. [[a, b, c]]
JsonArray quat_json = imu_meas.createNestedArray("Quat").createNestedArray();
quat_json.add(qat.w);
quat_json.add(qat.x);
quat_json.add(qat.y);
quat_json.add(qat.z);
JsonArray euler_json = imu_meas.createNestedArray("Euler");
JsonArray euler_json = imu_meas.createNestedArray("Euler").createNestedArray();
euler_json.add(euler[0]);
euler_json.add(euler[1]);
euler_json.add(euler[2]);
JsonArray accel_json = imu_meas.createNestedArray("Accel");
JsonArray accel_json = imu_meas.createNestedArray("Accel").createNestedArray();
accel_json.add(aa.x);
accel_json.add(aa.y);
accel_json.add(aa.z);
JsonArray gyro_json = imu_meas.createNestedArray("Gyro");
JsonArray gyro_json = imu_meas.createNestedArray("Gyro").createNestedArray();
gyro_json.add(gy.x);
gyro_json.add(gy.y);
gyro_json.add(gy.z);
JsonArray world_json = imu_meas.createNestedArray("WorldAccel");
JsonArray world_json = imu_meas.createNestedArray("WorldAccel").createNestedArray();
world_json.add(aaWorld.x);
world_json.add(aaWorld.y);
world_json.add(aaWorld.z);
JsonArray real_json = imu_meas.createNestedArray("RealAccel");
JsonArray real_json = imu_meas.createNestedArray("RealAccel").createNestedArray();
real_json.add(aaReal.x);
real_json.add(aaReal.y);
real_json.add(aaReal.z);
JsonArray grav_json = imu_meas.createNestedArray("Gravity");
JsonArray grav_json = imu_meas.createNestedArray("Gravity").createNestedArray();
grav_json.add(gravity.x);
grav_json.add(gravity.y);
grav_json.add(gravity.z);
JsonArray orient_json = imu_meas.createNestedArray("Orientation");
JsonArray orient_json = imu_meas.createNestedArray("Orientation").createNestedArray();
orient_json.add(ypr[0]);
orient_json.add(ypr[1]);
orient_json.add(ypr[2]);
}
/*
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
//void addToJsonState(JsonObject& root)
//{
//root["user0"] = userVar0;
//}
/*
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
//void readFromJsonState(JsonObject& root)
//{
//if (root["bri"] == 255) DEBUG_PRINTLN(F("Don't burn down your garage!"));
//}
/*
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
* I highly recommend checking out the basics of ArduinoJson serialization and deserialization in order to use custom settings!
*/
// void addToConfig(JsonObject& root)
// {
// JsonObject top = root.createNestedObject("MPU6050_IMU");
// JsonArray pins = top.createNestedArray("pin");
// pins.add(HW_PIN_SCL);
// pins.add(HW_PIN_SDA);
// }
void addToConfig(JsonObject& root)
{
JsonObject top = root.createNestedObject(FPSTR(_name));
//save these vars persistently whenever settings are saved
top[FPSTR(_enabled)] = config.enabled;
top[FPSTR(_interrupt_pin)] = config.interruptPin;
top[FPSTR(_x_acc_bias)] = config.accel_offset[0];
top[FPSTR(_y_acc_bias)] = config.accel_offset[1];
top[FPSTR(_z_acc_bias)] = config.accel_offset[2];
top[FPSTR(_x_gyro_bias)] = config.gyro_offset[0];
top[FPSTR(_y_gyro_bias)] = config.gyro_offset[1];
top[FPSTR(_z_gyro_bias)] = config.gyro_offset[2];
}
/*
* readFromConfig() can be used to read back the custom settings you added with addToConfig().
* This is called by WLED when settings are loaded (currently this only happens immediately after boot, or after saving on the Usermod Settings page)
*
* readFromConfig() is called BEFORE setup(). This means you can use your persistent values in setup() (e.g. pin assignments, buffer sizes),
* but also that if you want to write persistent values to a dynamic buffer, you'd need to allocate it here instead of in setup.
* If you don't know what that is, don't fret. It most likely doesn't affect your use case :)
*
* Return true in case the config values returned from Usermod Settings were complete, or false if you'd like WLED to save your defaults to disk (so any missing values are editable in Usermod Settings)
*
* getJsonValue() returns false if the value is missing, or copies the value into the variable provided and returns true if the value is present
* The configComplete variable is true only if the "exampleUsermod" object and all values are present. If any values are missing, WLED will know to call addToConfig() to save them
*
* This function is guaranteed to be called on boot, but could also be called every time settings are updated
*/
bool readFromConfig(JsonObject& root)
{
// default settings values could be set here (or below using the 3-argument getJsonValue()) instead of in the class definition or constructor
// setting them inside readFromConfig() is slightly more robust, handling the rare but plausible use case of single value being missing after boot (e.g. if the cfg.json was manually edited and a value was removed)
auto old_cfg = config;
JsonObject top = root[FPSTR(_name)];
bool configComplete = top.isNull();
// Ensure default configuration is loaded
configComplete &= getJsonValue(top[FPSTR(_enabled)], config.enabled, true);
configComplete &= getJsonValue(top[FPSTR(_interrupt_pin)], config.interruptPin, -1);
configComplete &= getJsonValue(top[FPSTR(_x_acc_bias)], config.accel_offset[0], 0);
configComplete &= getJsonValue(top[FPSTR(_y_acc_bias)], config.accel_offset[1], 0);
configComplete &= getJsonValue(top[FPSTR(_z_acc_bias)], config.accel_offset[2], 0);
configComplete &= getJsonValue(top[FPSTR(_x_gyro_bias)], config.gyro_offset[0], 0);
configComplete &= getJsonValue(top[FPSTR(_y_gyro_bias)], config.gyro_offset[1], 0);
configComplete &= getJsonValue(top[FPSTR(_z_gyro_bias)], config.gyro_offset[2], 0);
DEBUG_PRINT(FPSTR(_name));
if (top.isNull()) {
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
} else if (!initDone()) {
DEBUG_PRINTLN(F(": config loaded."));
} else if (memcmp(&config, &old_cfg, sizeof(config)) == 0) {
DEBUG_PRINTLN(F(": config unchanged."));
} else {
DEBUG_PRINTLN(F(": config updated."));
// Previously loaded and config changed
if (irqBound && ((old_cfg.interruptPin != config.interruptPin) || !config.enabled)) {
detachInterrupt(old_cfg.interruptPin);
pinManager.deallocatePin(old_cfg.interruptPin, PinOwner::UM_IMU);
irqBound = false;
}
// Just re-init
setup();
}
return configComplete;
}
bool getUMData(um_data_t **data)
{
if (!data || !config.enabled || !dmpReady) return false; // no pointer provided by caller or not enabled -> exit
*data = &um_data;
return true;
}
/*
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
@ -285,3 +430,14 @@ class MPU6050Driver : public Usermod {
}
};
const char MPU6050Driver::_name[] PROGMEM = "MPU6050_IMU";
const char MPU6050Driver::_enabled[] PROGMEM = "enabled";
const char MPU6050Driver::_interrupt_pin[] PROGMEM = "interrupt_pin";
const char MPU6050Driver::_x_acc_bias[] PROGMEM = "x_acc_bias";
const char MPU6050Driver::_y_acc_bias[] PROGMEM = "y_acc_bias";
const char MPU6050Driver::_z_acc_bias[] PROGMEM = "z_acc_bias";
const char MPU6050Driver::_x_gyro_bias[] PROGMEM = "x_gyro_bias";
const char MPU6050Driver::_y_gyro_bias[] PROGMEM = "y_gyro_bias";
const char MPU6050Driver::_z_gyro_bias[] PROGMEM = "z_gyro_bias";

View File

@ -41,7 +41,7 @@ enum struct PinOwner : uint8_t {
UM_Temperature = USERMOD_ID_TEMPERATURE, // 0x03 // Usermod "usermod_temperature.h"
// #define USERMOD_ID_FIXNETSERVICES // 0x04 // Usermod "usermod_Fix_unreachable_netservices.h" -- Does not allocate pins
UM_PIR = USERMOD_ID_PIRSWITCH, // 0x05 // Usermod "usermod_PIR_sensor_switch.h"
// #define USERMOD_ID_IMU // 0x06 // Usermod "usermod_mpu6050_imu.h" -- Uses "standard" HW_I2C pins
UM_IMU = USERMOD_ID_IMU, // 0x06 // Usermod "usermod_mpu6050_imu.h" -- Interrupt pin
UM_FourLineDisplay = USERMOD_ID_FOUR_LINE_DISP, // 0x07 // Usermod "usermod_v2_four_line_display.h -- May use "standard" HW_I2C pins
UM_RotaryEncoderUI = USERMOD_ID_ROTARY_ENC_UI, // 0x08 // Usermod "usermod_v2_rotary_encoder_ui.h"
// #define USERMOD_ID_AUTO_SAVE // 0x09 // Usermod "usermod_v2_auto_save.h" -- Does not allocate pins

View File

@ -197,6 +197,13 @@
#include "../usermods/pwm_outputs/usermod_pwm_outputs.h"
#endif
#ifdef USERMOD_MPU6050_IMU
#include "../usermods/mpu6050_imu/usermod_mpu6050_imu.h"
#endif
#ifdef USERMOD_MPU6050_IMU
#include "../usermods/mpu6050_imu/usermod_gyro_surge.h"
#endif
void registerUsermods()
{
@ -206,6 +213,7 @@ void registerUsermods()
* \/ \/ \/
*/
//usermods.add(new MyExampleUsermod());
#ifdef USERMOD_BATTERY
usermods.add(new UsermodBattery());
#endif
@ -373,4 +381,12 @@ void registerUsermods()
#ifdef USERMOD_INTERNAL_TEMPERATURE
usermods.add(new InternalTemperatureUsermod());
#endif
#ifdef USERMOD_MPU6050_IMU
static MPU6050Driver mpu6050; usermods.add(&mpu6050);
#endif
#ifdef USERMOD_GYRO_SURGE
static GyroSurge gyro_surge; usermods.add(&gyro_surge);
#endif
}