mirror of
https://github.com/wled/WLED.git
synced 2025-04-24 06:47:18 +00:00
Merge branch '0_15' into pr/3961
This commit is contained in:
commit
c91e0fc988
@ -1,9 +1,24 @@
|
||||
# Little convenience script to get an object dump
|
||||
# You may add "-S" to the objdump commandline (i.e. replace "-D -C " with "-d -S -C ")
|
||||
# to get source code intermixed with disassembly (SLOW !)
|
||||
|
||||
Import('env')
|
||||
|
||||
def obj_dump_after_elf(source, target, env):
|
||||
platform = env.PioPlatform()
|
||||
board = env.BoardConfig()
|
||||
mcu = board.get("build.mcu", "esp32")
|
||||
|
||||
print("Create firmware.asm")
|
||||
env.Execute("xtensa-lx106-elf-objdump "+ "-D " + str(target[0]) + " > "+ "${PROGNAME}.asm")
|
||||
|
||||
if mcu == "esp8266":
|
||||
env.Execute("xtensa-lx106-elf-objdump "+ "-D -C " + str(target[0]) + " > "+ "$BUILD_DIR/${PROGNAME}.asm")
|
||||
if mcu == "esp32":
|
||||
env.Execute("xtensa-esp32-elf-objdump "+ "-D -C " + str(target[0]) + " > "+ "$BUILD_DIR/${PROGNAME}.asm")
|
||||
if mcu == "esp32s2":
|
||||
env.Execute("xtensa-esp32s2-elf-objdump "+ "-D -C " + str(target[0]) + " > "+ "$BUILD_DIR/${PROGNAME}.asm")
|
||||
if mcu == "esp32s3":
|
||||
env.Execute("xtensa-esp32s3-elf-objdump "+ "-D -C " + str(target[0]) + " > "+ "$BUILD_DIR/${PROGNAME}.asm")
|
||||
if mcu == "esp32c3":
|
||||
env.Execute("riscv32-esp-elf-objdump "+ "-D -C " + str(target[0]) + " > "+ "$BUILD_DIR/${PROGNAME}.asm")
|
||||
|
||||
env.AddPostAction("$BUILD_DIR/${PROGNAME}.elf", [obj_dump_after_elf])
|
||||
|
@ -115,6 +115,7 @@ extra_scripts =
|
||||
post:pio-scripts/strip-floats.py
|
||||
pre:pio-scripts/user_config_copy.py
|
||||
pre:pio-scripts/build_ui.py
|
||||
; post:pio-scripts/obj-dump.py ;; convenience script to create a disassembly dump of the firmware (hardcore debugging)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# COMMON SETTINGS:
|
||||
@ -338,14 +339,14 @@ platform_packages = ${common.platform_packages}
|
||||
board_build.ldscript = ${common.ldscript_1m128k}
|
||||
build_unflags = ${common.build_unflags}
|
||||
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=ESP01 -D WLED_DISABLE_OTA
|
||||
; -D WLED_USE_UNREAL_MATH ;; may cause wrong sunset/sunrise times, but saves 7064 bytes FLASH and 975 bytes RAM
|
||||
; -D WLED_USE_REAL_MATH ;; may fix wrong sunset/sunrise times, at the cost of 7064 bytes FLASH and 975 bytes RAM
|
||||
lib_deps = ${esp8266.lib_deps}
|
||||
|
||||
[env:esp01_1m_full_160]
|
||||
extends = env:esp01_1m_full
|
||||
board_build.f_cpu = 160000000L
|
||||
build_flags = ${common.build_flags} ${esp8266.build_flags} -D WLED_RELEASE_NAME=ESP01_160 -D WLED_DISABLE_OTA
|
||||
; -D WLED_USE_UNREAL_MATH ;; may cause wrong sunset/sunrise times, but saves 7064 bytes FLASH and 975 bytes RAM
|
||||
; -D WLED_USE_REAL_MATH ;; may fix wrong sunset/sunrise times, at the cost of 7064 bytes FLASH and 975 bytes RAM
|
||||
|
||||
[env:esp32dev]
|
||||
board = esp32dev
|
||||
|
@ -368,9 +368,9 @@ public:
|
||||
|
||||
JsonArray temperature_json = user.createNestedArray(F("Temperature"));
|
||||
JsonArray pressure_json = user.createNestedArray(F("Pressure"));
|
||||
temperature_json.add(roundf(sensorTemperature * powf(10, TemperatureDecimals)));
|
||||
temperature_json.add(roundf(sensorTemperature * powf(10, TemperatureDecimals)) / powf(10, TemperatureDecimals));
|
||||
temperature_json.add(tempScale);
|
||||
pressure_json.add(roundf(sensorPressure * powf(10, PressureDecimals)));
|
||||
pressure_json.add(roundf(sensorPressure * powf(10, PressureDecimals)) / powf(10, PressureDecimals));
|
||||
pressure_json.add(F("hPa"));
|
||||
}
|
||||
else if (sensorType==1) //BME280
|
||||
@ -382,9 +382,9 @@ public:
|
||||
JsonArray dewpoint_json = user.createNestedArray(F("Dew Point"));
|
||||
temperature_json.add(roundf(sensorTemperature * powf(10, TemperatureDecimals)) / powf(10, TemperatureDecimals));
|
||||
temperature_json.add(tempScale);
|
||||
humidity_json.add(roundf(sensorHumidity * powf(10, HumidityDecimals)));
|
||||
humidity_json.add(roundf(sensorHumidity * powf(10, HumidityDecimals)) / powf(10, HumidityDecimals));
|
||||
humidity_json.add(F("%"));
|
||||
pressure_json.add(roundf(sensorPressure * powf(10, PressureDecimals)));
|
||||
pressure_json.add(roundf(sensorPressure * powf(10, PressureDecimals)) / powf(10, PressureDecimals));
|
||||
pressure_json.add(F("hPa"));
|
||||
heatindex_json.add(roundf(sensorHeatIndex * powf(10, TemperatureDecimals)) / powf(10, TemperatureDecimals));
|
||||
heatindex_json.add(tempScale);
|
||||
|
160
usermods/Battery/UMBattery.h
Normal file
160
usermods/Battery/UMBattery.h
Normal file
@ -0,0 +1,160 @@
|
||||
#ifndef UMBBattery_h
|
||||
#define UMBBattery_h
|
||||
|
||||
#include "battery_defaults.h"
|
||||
|
||||
/**
|
||||
* Battery base class
|
||||
* all other battery classes should inherit from this
|
||||
*/
|
||||
class UMBattery
|
||||
{
|
||||
private:
|
||||
|
||||
protected:
|
||||
float minVoltage;
|
||||
float maxVoltage;
|
||||
float voltage;
|
||||
int8_t level = 100;
|
||||
float calibration; // offset or calibration value to fine tune the calculated voltage
|
||||
float voltageMultiplier; // ratio for the voltage divider
|
||||
|
||||
float linearMapping(float v, float min, float max, float oMin = 0.0f, float oMax = 100.0f)
|
||||
{
|
||||
return (v-min) * (oMax-oMin) / (max-min) + oMin;
|
||||
}
|
||||
|
||||
public:
|
||||
UMBattery()
|
||||
{
|
||||
this->setVoltageMultiplier(USERMOD_BATTERY_VOLTAGE_MULTIPLIER);
|
||||
this->setCalibration(USERMOD_BATTERY_CALIBRATION);
|
||||
}
|
||||
|
||||
virtual void update(batteryConfig cfg)
|
||||
{
|
||||
if(cfg.minVoltage) this->setMinVoltage(cfg.minVoltage);
|
||||
if(cfg.maxVoltage) this->setMaxVoltage(cfg.maxVoltage);
|
||||
if(cfg.level) this->setLevel(cfg.level);
|
||||
if(cfg.calibration) this->setCalibration(cfg.calibration);
|
||||
if(cfg.voltageMultiplier) this->setVoltageMultiplier(cfg.voltageMultiplier);
|
||||
}
|
||||
|
||||
/**
|
||||
* Corresponding battery curves
|
||||
* calculates the level in % (0-100) with given voltage and possible voltage range
|
||||
*/
|
||||
virtual float mapVoltage(float v, float min, float max) = 0;
|
||||
// {
|
||||
// example implementation, linear mapping
|
||||
// return (v-min) * 100 / (max-min);
|
||||
// };
|
||||
|
||||
virtual void calculateAndSetLevel(float voltage) = 0;
|
||||
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Getter and Setter
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* Get lowest configured battery voltage
|
||||
*/
|
||||
virtual float getMinVoltage()
|
||||
{
|
||||
return this->minVoltage;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set lowest battery voltage
|
||||
* can't be below 0 volt
|
||||
*/
|
||||
virtual void setMinVoltage(float voltage)
|
||||
{
|
||||
this->minVoltage = max(0.0f, voltage);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get highest configured battery voltage
|
||||
*/
|
||||
virtual float getMaxVoltage()
|
||||
{
|
||||
return this->maxVoltage;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set highest battery voltage
|
||||
* can't be below minVoltage
|
||||
*/
|
||||
virtual void setMaxVoltage(float voltage)
|
||||
{
|
||||
this->maxVoltage = max(getMinVoltage()+.5f, voltage);
|
||||
}
|
||||
|
||||
float getVoltage()
|
||||
{
|
||||
return this->voltage;
|
||||
}
|
||||
|
||||
/**
|
||||
* check if voltage is within specified voltage range, allow 10% over/under voltage
|
||||
*/
|
||||
void setVoltage(float voltage)
|
||||
{
|
||||
// this->voltage = ( (voltage < this->getMinVoltage() * 0.85f) || (voltage > this->getMaxVoltage() * 1.1f) )
|
||||
// ? -1.0f
|
||||
// : voltage;
|
||||
this->voltage = voltage;
|
||||
}
|
||||
|
||||
float getLevel()
|
||||
{
|
||||
return this->level;
|
||||
}
|
||||
|
||||
void setLevel(float level)
|
||||
{
|
||||
this->level = constrain(level, 0.0f, 110.0f);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the configured calibration value
|
||||
* a offset value to fine-tune the calculated voltage.
|
||||
*/
|
||||
virtual float getCalibration()
|
||||
{
|
||||
return calibration;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the voltage calibration offset value
|
||||
* a offset value to fine-tune the calculated voltage.
|
||||
*/
|
||||
virtual void setCalibration(float offset)
|
||||
{
|
||||
calibration = offset;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the configured calibration value
|
||||
* a value to set the voltage divider ratio
|
||||
*/
|
||||
virtual float getVoltageMultiplier()
|
||||
{
|
||||
return voltageMultiplier;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the voltage multiplier value
|
||||
* a value to set the voltage divider ratio.
|
||||
*/
|
||||
virtual void setVoltageMultiplier(float multiplier)
|
||||
{
|
||||
voltageMultiplier = multiplier;
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
@ -1,3 +1,8 @@
|
||||
#ifndef UMBDefaults_h
|
||||
#define UMBDefaults_h
|
||||
|
||||
#include "wled.h"
|
||||
|
||||
// pin defaults
|
||||
// for the esp32 it is best to use the ADC1: GPIO32 - GPIO39
|
||||
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/adc.html
|
||||
@ -9,24 +14,66 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// The initial delay before the first battery voltage reading after power-on.
|
||||
// This allows the voltage to stabilize before readings are taken, improving accuracy of initial reading.
|
||||
#ifndef USERMOD_BATTERY_INITIAL_DELAY
|
||||
#define USERMOD_BATTERY_INITIAL_DELAY 10000 // (milliseconds)
|
||||
#endif
|
||||
|
||||
// the frequency to check the battery, 30 sec
|
||||
#ifndef USERMOD_BATTERY_MEASUREMENT_INTERVAL
|
||||
#define USERMOD_BATTERY_MEASUREMENT_INTERVAL 30000
|
||||
#endif
|
||||
|
||||
// default for 18650 battery
|
||||
// https://batterybro.com/blogs/18650-wholesale-battery-reviews/18852515-when-to-recycle-18650-batteries-and-how-to-start-a-collection-center-in-your-vape-shop
|
||||
// Discharge voltage: 2.5 volt + .1 for personal safety
|
||||
#ifndef USERMOD_BATTERY_MIN_VOLTAGE
|
||||
#ifdef USERMOD_BATTERY_USE_LIPO
|
||||
// LiPo "1S" Batteries should not be dischared below 3V !!
|
||||
#define USERMOD_BATTERY_MIN_VOLTAGE 3.2f
|
||||
#else
|
||||
#define USERMOD_BATTERY_MIN_VOLTAGE 2.6f
|
||||
#endif
|
||||
|
||||
/* Default Battery Type
|
||||
* 0 = unkown
|
||||
* 1 = Lipo
|
||||
* 2 = Lion
|
||||
*/
|
||||
#ifndef USERMOD_BATTERY_DEFAULT_TYPE
|
||||
#define USERMOD_BATTERY_DEFAULT_TYPE 0
|
||||
#endif
|
||||
/*
|
||||
*
|
||||
* Unkown 'Battery' defaults
|
||||
*
|
||||
*/
|
||||
#ifndef USERMOD_BATTERY_UNKOWN_MIN_VOLTAGE
|
||||
// Extra save defaults
|
||||
#define USERMOD_BATTERY_UNKOWN_MIN_VOLTAGE 3.3f
|
||||
#endif
|
||||
#ifndef USERMOD_BATTERY_UNKOWN_MAX_VOLTAGE
|
||||
#define USERMOD_BATTERY_UNKOWN_MAX_VOLTAGE 4.2f
|
||||
#endif
|
||||
|
||||
//the default ratio for the voltage divider
|
||||
/*
|
||||
*
|
||||
* Lithium polymer (Li-Po) defaults
|
||||
*
|
||||
*/
|
||||
#ifndef USERMOD_BATTERY_LIPO_MIN_VOLTAGE
|
||||
// LiPo "1S" Batteries should not be dischared below 3V !!
|
||||
#define USERMOD_BATTERY_LIPO_MIN_VOLTAGE 3.2f
|
||||
#endif
|
||||
#ifndef USERMOD_BATTERY_LIPO_MAX_VOLTAGE
|
||||
#define USERMOD_BATTERY_LIPO_MAX_VOLTAGE 4.2f
|
||||
#endif
|
||||
|
||||
/*
|
||||
*
|
||||
* Lithium-ion (Li-Ion) defaults
|
||||
*
|
||||
*/
|
||||
#ifndef USERMOD_BATTERY_LION_MIN_VOLTAGE
|
||||
// default for 18650 battery
|
||||
#define USERMOD_BATTERY_LION_MIN_VOLTAGE 2.6f
|
||||
#endif
|
||||
#ifndef USERMOD_BATTERY_LION_MAX_VOLTAGE
|
||||
#define USERMOD_BATTERY_LION_MAX_VOLTAGE 4.2f
|
||||
#endif
|
||||
|
||||
// the default ratio for the voltage divider
|
||||
#ifndef USERMOD_BATTERY_VOLTAGE_MULTIPLIER
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
#define USERMOD_BATTERY_VOLTAGE_MULTIPLIER 2.0f
|
||||
@ -35,13 +82,8 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef USERMOD_BATTERY_MAX_VOLTAGE
|
||||
#define USERMOD_BATTERY_MAX_VOLTAGE 4.2f
|
||||
#endif
|
||||
|
||||
// a common capacity for single 18650 battery cells is between 2500 and 3600 mAh
|
||||
#ifndef USERMOD_BATTERY_TOTAL_CAPACITY
|
||||
#define USERMOD_BATTERY_TOTAL_CAPACITY 3100
|
||||
#ifndef USERMOD_BATTERY_AVERAGING_ALPHA
|
||||
#define USERMOD_BATTERY_AVERAGING_ALPHA 0.1f
|
||||
#endif
|
||||
|
||||
// offset or calibration value to fine tune the calculated voltage
|
||||
@ -49,11 +91,6 @@
|
||||
#define USERMOD_BATTERY_CALIBRATION 0
|
||||
#endif
|
||||
|
||||
// calculate remaining time / the time that is left before the battery runs out of power
|
||||
// #ifndef USERMOD_BATTERY_CALCULATE_TIME_LEFT_ENABLED
|
||||
// #define USERMOD_BATTERY_CALCULATE_TIME_LEFT_ENABLED false
|
||||
// #endif
|
||||
|
||||
// auto-off feature
|
||||
#ifndef USERMOD_BATTERY_AUTO_OFF_ENABLED
|
||||
#define USERMOD_BATTERY_AUTO_OFF_ENABLED true
|
||||
@ -78,4 +115,26 @@
|
||||
|
||||
#ifndef USERMOD_BATTERY_LOW_POWER_INDICATOR_DURATION
|
||||
#define USERMOD_BATTERY_LOW_POWER_INDICATOR_DURATION 5
|
||||
#endif
|
||||
|
||||
// battery types
|
||||
typedef enum
|
||||
{
|
||||
unknown=0,
|
||||
lipo=1,
|
||||
lion=2
|
||||
} batteryType;
|
||||
|
||||
// used for initial configuration after boot
|
||||
typedef struct bconfig_t
|
||||
{
|
||||
batteryType type;
|
||||
float minVoltage;
|
||||
float maxVoltage;
|
||||
float voltage; // current voltage
|
||||
int8_t level; // current level
|
||||
float calibration; // offset or calibration value to fine tune the calculated voltage
|
||||
float voltageMultiplier;
|
||||
} batteryConfig;
|
||||
|
||||
#endif
|
@ -36,13 +36,13 @@ define `USERMOD_BATTERY` in `wled00/my_config.h`
|
||||
| Name | Unit | Description |
|
||||
| ----------------------------------------------- | ----------- |-------------------------------------------------------------------------------------- |
|
||||
| `USERMOD_BATTERY` | | define this (in `my_config.h`) to have this usermod included wled00\usermods_list.cpp |
|
||||
| `USERMOD_BATTERY_USE_LIPO` | | define this (in `my_config.h`) if you use LiPo rechargeables (1S) |
|
||||
| `USERMOD_BATTERY_MEASUREMENT_PIN` | | defaults to A0 on ESP8266 and GPIO35 on ESP32 |
|
||||
| `USERMOD_BATTERY_INITIAL_DELAY` | ms | delay before initial reading. defaults to 10 seconds to allow voltage stabilization
|
||||
| `USERMOD_BATTERY_MEASUREMENT_INTERVAL` | ms | battery check interval. defaults to 30 seconds |
|
||||
| `USERMOD_BATTERY_MIN_VOLTAGE` | v | minimum battery voltage. default is 2.6 (18650 battery standard) |
|
||||
| `USERMOD_BATTERY_MAX_VOLTAGE` | v | maximum battery voltage. default is 4.2 (18650 battery standard) |
|
||||
| `USERMOD_BATTERY_TOTAL_CAPACITY` | mAh | the capacity of all cells in parallel summed up |
|
||||
| `USERMOD_BATTERY_CALIBRATION` | | offset / calibration number, fine tune the measured voltage by the microcontroller |
|
||||
| `USERMOD_BATTERY_{TYPE}_MIN_VOLTAGE` | v | minimum battery voltage. default is 2.6 (18650 battery standard) |
|
||||
| `USERMOD_BATTERY_{TYPE}_MAX_VOLTAGE` | v | maximum battery voltage. default is 4.2 (18650 battery standard) |
|
||||
| `USERMOD_BATTERY_{TYPE}_TOTAL_CAPACITY` | mAh | the capacity of all cells in parallel summed up |
|
||||
| `USERMOD_BATTERY_{TYPE}_CALIBRATION` | | offset / calibration number, fine tune the measured voltage by the microcontroller |
|
||||
| Auto-Off | --- | --- |
|
||||
| `USERMOD_BATTERY_AUTO_OFF_ENABLED` | true/false | enables auto-off |
|
||||
| `USERMOD_BATTERY_AUTO_OFF_THRESHOLD` | % (0-100) | when this threshold is reached master power turns off |
|
||||
@ -54,6 +54,13 @@ define `USERMOD_BATTERY` in `wled00/my_config.h`
|
||||
|
||||
All parameters can be configured at runtime via the Usermods settings page.
|
||||
|
||||
**NOTICE:** Each Battery type can be pre-configured individualy (in `my_config.h`)
|
||||
|
||||
| Name | Alias | `my_config.h` example |
|
||||
| --------------- | ------------- | ------------------------------------- |
|
||||
| Lithium Polymer | lipo (Li-Po) | `USERMOD_BATTERY_lipo_MIN_VOLTAGE` |
|
||||
| Lithium Ionen | lion (Li-Ion) | `USERMOD_BATTERY_lion_TOTAL_CAPACITY` |
|
||||
|
||||
## ⚠️ Important
|
||||
|
||||
- Make sure you know your battery specifications! All batteries are **NOT** the same!
|
||||
@ -80,6 +87,15 @@ Specification from: [Molicel INR18650-M35A, 3500mAh 10A Lithium-ion battery, 3.
|
||||
|
||||
## 📝 Change Log
|
||||
|
||||
2024-04-30
|
||||
|
||||
- improved initial reading accuracy by delaying initial measurement to allow voltage to stabilize at power-on
|
||||
|
||||
2024-04-30
|
||||
|
||||
- integrate factory pattern to make it easier to add other / custom battery types
|
||||
- update readme
|
||||
|
||||
2023-01-04
|
||||
|
||||
- basic support for LiPo rechargeable batteries ( `-D USERMOD_BATTERY_USE_LIPO`)
|
||||
|
38
usermods/Battery/types/LionUMBattery.h
Normal file
38
usermods/Battery/types/LionUMBattery.h
Normal file
@ -0,0 +1,38 @@
|
||||
#ifndef UMBLion_h
|
||||
#define UMBLion_h
|
||||
|
||||
#include "../battery_defaults.h"
|
||||
#include "../UMBattery.h"
|
||||
|
||||
/**
|
||||
* LiOn Battery
|
||||
*
|
||||
*/
|
||||
class LionUMBattery : public UMBattery
|
||||
{
|
||||
private:
|
||||
|
||||
public:
|
||||
LionUMBattery() : UMBattery()
|
||||
{
|
||||
this->setMinVoltage(USERMOD_BATTERY_LION_MIN_VOLTAGE);
|
||||
this->setMaxVoltage(USERMOD_BATTERY_LION_MAX_VOLTAGE);
|
||||
}
|
||||
|
||||
float mapVoltage(float v, float min, float max) override
|
||||
{
|
||||
return this->linearMapping(v, min, max); // basic mapping
|
||||
};
|
||||
|
||||
void calculateAndSetLevel(float voltage) override
|
||||
{
|
||||
this->setLevel(this->mapVoltage(voltage, this->getMinVoltage(), this->getMaxVoltage()));
|
||||
};
|
||||
|
||||
virtual void setMaxVoltage(float voltage) override
|
||||
{
|
||||
this->maxVoltage = max(getMinVoltage()+1.0f, voltage);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
54
usermods/Battery/types/LipoUMBattery.h
Normal file
54
usermods/Battery/types/LipoUMBattery.h
Normal file
@ -0,0 +1,54 @@
|
||||
#ifndef UMBLipo_h
|
||||
#define UMBLipo_h
|
||||
|
||||
#include "../battery_defaults.h"
|
||||
#include "../UMBattery.h"
|
||||
|
||||
/**
|
||||
* LiPo Battery
|
||||
*
|
||||
*/
|
||||
class LipoUMBattery : public UMBattery
|
||||
{
|
||||
private:
|
||||
|
||||
public:
|
||||
LipoUMBattery() : UMBattery()
|
||||
{
|
||||
this->setMinVoltage(USERMOD_BATTERY_LIPO_MIN_VOLTAGE);
|
||||
this->setMaxVoltage(USERMOD_BATTERY_LIPO_MAX_VOLTAGE);
|
||||
}
|
||||
|
||||
/**
|
||||
* LiPo batteries have a differnt discharge curve, see
|
||||
* https://blog.ampow.com/lipo-voltage-chart/
|
||||
*/
|
||||
float mapVoltage(float v, float min, float max) override
|
||||
{
|
||||
float lvl = 0.0f;
|
||||
lvl = this->linearMapping(v, min, max); // basic mapping
|
||||
|
||||
if (lvl < 40.0f)
|
||||
lvl = this->linearMapping(lvl, 0, 40, 0, 12); // last 45% -> drops very quickly
|
||||
else {
|
||||
if (lvl < 90.0f)
|
||||
lvl = this->linearMapping(lvl, 40, 90, 12, 95); // 90% ... 40% -> almost linear drop
|
||||
else // level > 90%
|
||||
lvl = this->linearMapping(lvl, 90, 105, 95, 100); // highest 15% -> drop slowly
|
||||
}
|
||||
|
||||
return lvl;
|
||||
};
|
||||
|
||||
void calculateAndSetLevel(float voltage) override
|
||||
{
|
||||
this->setLevel(this->mapVoltage(voltage, this->getMinVoltage(), this->getMaxVoltage()));
|
||||
};
|
||||
|
||||
virtual void setMaxVoltage(float voltage) override
|
||||
{
|
||||
this->maxVoltage = max(getMinVoltage()+0.7f, voltage);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
39
usermods/Battery/types/UnkownUMBattery.h
Normal file
39
usermods/Battery/types/UnkownUMBattery.h
Normal file
@ -0,0 +1,39 @@
|
||||
#ifndef UMBUnkown_h
|
||||
#define UMBUnkown_h
|
||||
|
||||
#include "../battery_defaults.h"
|
||||
#include "../UMBattery.h"
|
||||
|
||||
/**
|
||||
* Unkown / Default Battery
|
||||
*
|
||||
*/
|
||||
class UnkownUMBattery : public UMBattery
|
||||
{
|
||||
private:
|
||||
|
||||
public:
|
||||
UnkownUMBattery() : UMBattery()
|
||||
{
|
||||
this->setMinVoltage(USERMOD_BATTERY_UNKOWN_MIN_VOLTAGE);
|
||||
this->setMaxVoltage(USERMOD_BATTERY_UNKOWN_MAX_VOLTAGE);
|
||||
}
|
||||
|
||||
void update(batteryConfig cfg)
|
||||
{
|
||||
if(cfg.minVoltage) this->setMinVoltage(cfg.minVoltage); else this->setMinVoltage(USERMOD_BATTERY_UNKOWN_MIN_VOLTAGE);
|
||||
if(cfg.maxVoltage) this->setMaxVoltage(cfg.maxVoltage); else this->setMaxVoltage(USERMOD_BATTERY_UNKOWN_MAX_VOLTAGE);
|
||||
}
|
||||
|
||||
float mapVoltage(float v, float min, float max) override
|
||||
{
|
||||
return this->linearMapping(v, min, max); // basic mapping
|
||||
};
|
||||
|
||||
void calculateAndSetLevel(float voltage) override
|
||||
{
|
||||
this->setLevel(this->mapVoltage(voltage, this->getMinVoltage(), this->getMaxVoltage()));
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@ -2,12 +2,15 @@
|
||||
|
||||
#include "wled.h"
|
||||
#include "battery_defaults.h"
|
||||
#include "UMBattery.h"
|
||||
#include "types/UnkownUMBattery.h"
|
||||
#include "types/LionUMBattery.h"
|
||||
#include "types/LiPoUMBattery.h"
|
||||
|
||||
/*
|
||||
* Usermod by Maximilian Mewes
|
||||
* Mail: mewes.maximilian@gmx.de
|
||||
* GitHub: itCarl
|
||||
* Date: 25.12.2022
|
||||
* E-mail: mewes.maximilian@gmx.de
|
||||
* Created at: 25.12.2022
|
||||
* If you have any questions, please feel free to contact me.
|
||||
*/
|
||||
class UsermodBattery : public Usermod
|
||||
@ -15,47 +18,36 @@ class UsermodBattery : public Usermod
|
||||
private:
|
||||
// battery pin can be defined in my_config.h
|
||||
int8_t batteryPin = USERMOD_BATTERY_MEASUREMENT_PIN;
|
||||
|
||||
UMBattery* bat = new UnkownUMBattery();
|
||||
batteryConfig cfg;
|
||||
|
||||
// Initial delay before first reading to allow voltage stabilization
|
||||
unsigned long initialDelay = USERMOD_BATTERY_INITIAL_DELAY;
|
||||
bool initialDelayComplete = false;
|
||||
bool isFirstVoltageReading = true;
|
||||
// how often to read the battery voltage
|
||||
unsigned long readingInterval = USERMOD_BATTERY_MEASUREMENT_INTERVAL;
|
||||
unsigned long nextReadTime = 0;
|
||||
unsigned long lastReadTime = 0;
|
||||
// battery min. voltage
|
||||
float minBatteryVoltage = USERMOD_BATTERY_MIN_VOLTAGE;
|
||||
// battery max. voltage
|
||||
float maxBatteryVoltage = USERMOD_BATTERY_MAX_VOLTAGE;
|
||||
// all battery cells summed up
|
||||
unsigned int totalBatteryCapacity = USERMOD_BATTERY_TOTAL_CAPACITY;
|
||||
// raw analog reading
|
||||
float rawValue = 0.0f;
|
||||
// calculated voltage
|
||||
float voltage = maxBatteryVoltage;
|
||||
// between 0 and 1, to control strength of voltage smoothing filter
|
||||
float alpha = 0.05f;
|
||||
// multiplier for the voltage divider that is in place between ADC pin and battery, default will be 2 but might be adapted to readout voltages over ~5v ESP32 or ~6.6v ESP8266
|
||||
float voltageMultiplier = USERMOD_BATTERY_VOLTAGE_MULTIPLIER;
|
||||
// mapped battery level based on voltage
|
||||
int8_t batteryLevel = 100;
|
||||
// offset or calibration value to fine tune the calculated voltage
|
||||
float calibration = USERMOD_BATTERY_CALIBRATION;
|
||||
|
||||
// time left estimation feature
|
||||
// bool calculateTimeLeftEnabled = USERMOD_BATTERY_CALCULATE_TIME_LEFT_ENABLED;
|
||||
// float estimatedTimeLeft = 0.0;
|
||||
float alpha = USERMOD_BATTERY_AVERAGING_ALPHA;
|
||||
|
||||
// auto shutdown/shutoff/master off feature
|
||||
bool autoOffEnabled = USERMOD_BATTERY_AUTO_OFF_ENABLED;
|
||||
int8_t autoOffThreshold = USERMOD_BATTERY_AUTO_OFF_THRESHOLD;
|
||||
uint8_t autoOffThreshold = USERMOD_BATTERY_AUTO_OFF_THRESHOLD;
|
||||
|
||||
// low power indicator feature
|
||||
bool lowPowerIndicatorEnabled = USERMOD_BATTERY_LOW_POWER_INDICATOR_ENABLED;
|
||||
int8_t lowPowerIndicatorPreset = USERMOD_BATTERY_LOW_POWER_INDICATOR_PRESET;
|
||||
int8_t lowPowerIndicatorThreshold = USERMOD_BATTERY_LOW_POWER_INDICATOR_THRESHOLD;
|
||||
int8_t lowPowerIndicatorReactivationThreshold = lowPowerIndicatorThreshold+10;
|
||||
int8_t lowPowerIndicatorDuration = USERMOD_BATTERY_LOW_POWER_INDICATOR_DURATION;
|
||||
uint8_t lowPowerIndicatorPreset = USERMOD_BATTERY_LOW_POWER_INDICATOR_PRESET;
|
||||
uint8_t lowPowerIndicatorThreshold = USERMOD_BATTERY_LOW_POWER_INDICATOR_THRESHOLD;
|
||||
uint8_t lowPowerIndicatorReactivationThreshold = lowPowerIndicatorThreshold+10;
|
||||
uint8_t lowPowerIndicatorDuration = USERMOD_BATTERY_LOW_POWER_INDICATOR_DURATION;
|
||||
bool lowPowerIndicationDone = false;
|
||||
unsigned long lowPowerActivationTime = 0; // used temporary during active time
|
||||
int8_t lastPreset = 0;
|
||||
uint8_t lastPreset = 0;
|
||||
|
||||
//
|
||||
bool initDone = false;
|
||||
bool initializing = true;
|
||||
|
||||
@ -67,22 +59,17 @@ class UsermodBattery : public Usermod
|
||||
static const char _preset[];
|
||||
static const char _duration[];
|
||||
static const char _init[];
|
||||
|
||||
|
||||
// custom map function
|
||||
// https://forum.arduino.cc/t/floating-point-using-map-function/348113/2
|
||||
double mapf(double x, double in_min, double in_max, double out_min, double out_max)
|
||||
{
|
||||
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper for rounding floating point values
|
||||
*/
|
||||
float dot2round(float x)
|
||||
{
|
||||
float nx = (int)(x * 100 + .5);
|
||||
return (float)(nx / 100);
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Turn off all leds
|
||||
*/
|
||||
void turnOff()
|
||||
@ -91,15 +78,15 @@ class UsermodBattery : public Usermod
|
||||
stateUpdated(CALL_MODE_DIRECT_CHANGE);
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Indicate low power by activating a configured preset for a given time and then switching back to the preset that was selected previously
|
||||
*/
|
||||
void lowPowerIndicator()
|
||||
{
|
||||
if (!lowPowerIndicatorEnabled) return;
|
||||
if (batteryPin < 0) return; // no measurement
|
||||
if (lowPowerIndicationDone && lowPowerIndicatorReactivationThreshold <= batteryLevel) lowPowerIndicationDone = false;
|
||||
if (lowPowerIndicatorThreshold <= batteryLevel) return;
|
||||
if (lowPowerIndicationDone && lowPowerIndicatorReactivationThreshold <= bat->getLevel()) lowPowerIndicationDone = false;
|
||||
if (lowPowerIndicatorThreshold <= bat->getLevel()) return;
|
||||
if (lowPowerIndicationDone) return;
|
||||
if (lowPowerActivationTime <= 1) {
|
||||
lowPowerActivationTime = millis();
|
||||
@ -114,26 +101,39 @@ class UsermodBattery : public Usermod
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* read the battery voltage in different ways depending on the architecture
|
||||
*/
|
||||
float readVoltage()
|
||||
{
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
// use calibrated millivolts analogread on esp32 (150 mV ~ 2450 mV default attentuation) and divide by 1000 to get from milivolts to volts and multiply by voltage multiplier and apply calibration value
|
||||
return (analogReadMilliVolts(batteryPin) / 1000.0f) * voltageMultiplier + calibration;
|
||||
return (analogReadMilliVolts(batteryPin) / 1000.0f) * bat->getVoltageMultiplier() + bat->getCalibration();
|
||||
#else
|
||||
// use analog read on esp8266 ( 0V ~ 1V no attenuation options) and divide by ADC precision 1023 and multiply by voltage multiplier and apply calibration value
|
||||
return (analogRead(batteryPin) / 1023.0f) * voltageMultiplier + calibration;
|
||||
return (analogRead(batteryPin) / 1023.0f) * bat->getVoltageMultiplier() + bat->getCalibration();
|
||||
#endif
|
||||
}
|
||||
|
||||
public:
|
||||
//Functions called by WLED
|
||||
|
||||
/*
|
||||
/**
|
||||
* setup() is called once at boot. WiFi is not yet connected at this point.
|
||||
* You can use it to initialize variables, sensors or similar.
|
||||
*/
|
||||
void setup()
|
||||
{
|
||||
// plug in the right battery type
|
||||
if(cfg.type == (batteryType)lipo) {
|
||||
bat = new LipoUMBattery();
|
||||
} else if(cfg.type == (batteryType)lion) {
|
||||
bat = new LionUMBattery();
|
||||
}
|
||||
|
||||
// update the choosen battery type with configured values
|
||||
bat->update(cfg);
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
bool success = false;
|
||||
DEBUG_PRINTLN(F("Allocating battery pin..."));
|
||||
@ -141,7 +141,6 @@ class UsermodBattery : public Usermod
|
||||
if (pinManager.allocatePin(batteryPin, false, PinOwner::UM_Battery)) {
|
||||
DEBUG_PRINTLN(F("Battery pin allocation succeeded."));
|
||||
success = true;
|
||||
voltage = readVoltage();
|
||||
}
|
||||
|
||||
if (!success) {
|
||||
@ -152,17 +151,17 @@ class UsermodBattery : public Usermod
|
||||
}
|
||||
#else //ESP8266 boards have only one analog input pin A0
|
||||
pinMode(batteryPin, INPUT);
|
||||
voltage = readVoltage();
|
||||
#endif
|
||||
|
||||
nextReadTime = millis() + readingInterval;
|
||||
// First voltage reading is delayed to allow voltage stabilization after powering up
|
||||
nextReadTime = millis() + initialDelay;
|
||||
lastReadTime = millis();
|
||||
|
||||
initDone = true;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* connected() is called every time the WiFi is (re)connected
|
||||
* Use it to initialize network interfaces
|
||||
*/
|
||||
@ -182,6 +181,25 @@ class UsermodBattery : public Usermod
|
||||
|
||||
lowPowerIndicator();
|
||||
|
||||
// Handling the initial delay
|
||||
if (!initialDelayComplete && millis() < nextReadTime)
|
||||
return; // Continue to return until the initial delay is over
|
||||
|
||||
// Once the initial delay is over, set it as complete
|
||||
if (!initialDelayComplete)
|
||||
{
|
||||
initialDelayComplete = true;
|
||||
// Set the regular interval after initial delay
|
||||
nextReadTime = millis() + readingInterval;
|
||||
}
|
||||
|
||||
// Make the first voltage reading after the initial delay has elapsed
|
||||
if (isFirstVoltageReading)
|
||||
{
|
||||
bat->setVoltage(readVoltage());
|
||||
isFirstVoltageReading = false;
|
||||
}
|
||||
|
||||
// check the battery level every USERMOD_BATTERY_MEASUREMENT_INTERVAL (ms)
|
||||
if (millis() < nextReadTime) return;
|
||||
|
||||
@ -191,43 +209,17 @@ class UsermodBattery : public Usermod
|
||||
if (batteryPin < 0) return; // nothing to read
|
||||
|
||||
initializing = false;
|
||||
float rawValue = readVoltage();
|
||||
|
||||
rawValue = readVoltage();
|
||||
// filter with exponential smoothing because ADC in esp32 is fluctuating too much for a good single readout
|
||||
voltage = voltage + alpha * (rawValue - voltage);
|
||||
|
||||
// check if voltage is within specified voltage range, allow 10% over/under voltage - removed cause this just makes it hard for people to troubleshoot as the voltage in the web gui will say invalid instead of displaying a voltage
|
||||
//voltage = ((voltage < minBatteryVoltage * 0.85f) || (voltage > maxBatteryVoltage * 1.1f)) ? -1.0f : voltage;
|
||||
float filteredVoltage = bat->getVoltage() + alpha * (rawValue - bat->getVoltage());
|
||||
|
||||
bat->setVoltage(filteredVoltage);
|
||||
// translate battery voltage into percentage
|
||||
/*
|
||||
the standard "map" function doesn't work
|
||||
https://www.arduino.cc/reference/en/language/functions/math/map/ notes and warnings at the bottom
|
||||
*/
|
||||
#ifdef USERMOD_BATTERY_USE_LIPO
|
||||
batteryLevel = mapf(voltage, minBatteryVoltage, maxBatteryVoltage, 0, 100); // basic mapping
|
||||
// LiPo batteries have a differnt dischargin curve, see
|
||||
// https://blog.ampow.com/lipo-voltage-chart/
|
||||
if (batteryLevel < 40.0f)
|
||||
batteryLevel = mapf(batteryLevel, 0, 40, 0, 12); // last 45% -> drops very quickly
|
||||
else {
|
||||
if (batteryLevel < 90.0f)
|
||||
batteryLevel = mapf(batteryLevel, 40, 90, 12, 95); // 90% ... 40% -> almost linear drop
|
||||
else // level > 90%
|
||||
batteryLevel = mapf(batteryLevel, 90, 105, 95, 100); // highest 15% -> drop slowly
|
||||
}
|
||||
#else
|
||||
batteryLevel = mapf(voltage, minBatteryVoltage, maxBatteryVoltage, 0, 100);
|
||||
#endif
|
||||
if (voltage > -1.0f) batteryLevel = constrain(batteryLevel, 0.0f, 110.0f);
|
||||
|
||||
// if (calculateTimeLeftEnabled) {
|
||||
// float currentBatteryCapacity = totalBatteryCapacity;
|
||||
// estimatedTimeLeft = (currentBatteryCapacity/strip.currentMilliamps)*60;
|
||||
// }
|
||||
bat->calculateAndSetLevel(filteredVoltage);
|
||||
|
||||
// Auto off -- Master power off
|
||||
if (autoOffEnabled && (autoOffThreshold >= batteryLevel))
|
||||
if (autoOffEnabled && (autoOffThreshold >= bat->getLevel()))
|
||||
turnOff();
|
||||
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
@ -236,13 +228,13 @@ class UsermodBattery : public Usermod
|
||||
if (WLED_MQTT_CONNECTED) {
|
||||
char buf[64]; // buffer for snprintf()
|
||||
snprintf_P(buf, 63, PSTR("%s/voltage"), mqttDeviceTopic);
|
||||
mqtt->publish(buf, 0, false, String(voltage).c_str());
|
||||
mqtt->publish(buf, 0, false, String(bat->getVoltage()).c_str());
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
|
||||
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
|
||||
* Below it is shown how this could be used for e.g. a light sensor
|
||||
@ -262,16 +254,6 @@ class UsermodBattery : public Usermod
|
||||
// info modal display names
|
||||
JsonArray infoPercentage = user.createNestedArray(F("Battery level"));
|
||||
JsonArray infoVoltage = user.createNestedArray(F("Battery voltage"));
|
||||
// if (calculateTimeLeftEnabled)
|
||||
// {
|
||||
// JsonArray infoEstimatedTimeLeft = user.createNestedArray(F("Estimated time left"));
|
||||
// if (initializing) {
|
||||
// infoEstimatedTimeLeft.add(FPSTR(_init));
|
||||
// } else {
|
||||
// infoEstimatedTimeLeft.add(estimatedTimeLeft);
|
||||
// infoEstimatedTimeLeft.add(F(" min"));
|
||||
// }
|
||||
// }
|
||||
JsonArray infoNextUpdate = user.createNestedArray(F("Next update"));
|
||||
|
||||
infoNextUpdate.add((nextReadTime - millis()) / 1000);
|
||||
@ -283,46 +265,104 @@ class UsermodBattery : public Usermod
|
||||
return;
|
||||
}
|
||||
|
||||
if (batteryLevel < 0) {
|
||||
if (bat->getLevel() < 0) {
|
||||
infoPercentage.add(F("invalid"));
|
||||
} else {
|
||||
infoPercentage.add(batteryLevel);
|
||||
infoPercentage.add(bat->getLevel());
|
||||
}
|
||||
infoPercentage.add(F(" %"));
|
||||
|
||||
if (voltage < 0) {
|
||||
if (bat->getVoltage() < 0) {
|
||||
infoVoltage.add(F("invalid"));
|
||||
} else {
|
||||
infoVoltage.add(dot2round(voltage));
|
||||
infoVoltage.add(dot2round(bat->getVoltage()));
|
||||
}
|
||||
infoVoltage.add(F(" V"));
|
||||
}
|
||||
|
||||
void addBatteryToJsonObject(JsonObject& battery, bool forJsonState)
|
||||
{
|
||||
if(forJsonState) { battery[F("type")] = cfg.type; } else {battery[F("type")] = (String)cfg.type; } // has to be a String otherwise it won't get converted to a Dropdown
|
||||
battery[F("min-voltage")] = bat->getMinVoltage();
|
||||
battery[F("max-voltage")] = bat->getMaxVoltage();
|
||||
battery[F("calibration")] = bat->getCalibration();
|
||||
battery[F("voltage-multiplier")] = bat->getVoltageMultiplier();
|
||||
battery[FPSTR(_readInterval)] = readingInterval;
|
||||
|
||||
/*
|
||||
JsonObject ao = battery.createNestedObject(F("auto-off")); // auto off section
|
||||
ao[FPSTR(_enabled)] = autoOffEnabled;
|
||||
ao[FPSTR(_threshold)] = autoOffThreshold;
|
||||
|
||||
JsonObject lp = battery.createNestedObject(F("indicator")); // low power section
|
||||
lp[FPSTR(_enabled)] = lowPowerIndicatorEnabled;
|
||||
lp[FPSTR(_preset)] = lowPowerIndicatorPreset; // dropdown trickery (String)lowPowerIndicatorPreset;
|
||||
lp[FPSTR(_threshold)] = lowPowerIndicatorThreshold;
|
||||
lp[FPSTR(_duration)] = lowPowerIndicatorDuration;
|
||||
}
|
||||
|
||||
void getUsermodConfigFromJsonObject(JsonObject& battery)
|
||||
{
|
||||
getJsonValue(battery[F("type")], cfg.type);
|
||||
getJsonValue(battery[F("min-voltage")], cfg.minVoltage);
|
||||
getJsonValue(battery[F("max-voltage")], cfg.maxVoltage);
|
||||
getJsonValue(battery[F("calibration")], cfg.calibration);
|
||||
getJsonValue(battery[F("voltage-multiplier")], cfg.voltageMultiplier);
|
||||
|
||||
setReadingInterval(battery[FPSTR(_readInterval)] | readingInterval);
|
||||
|
||||
JsonObject ao = battery[F("auto-off")];
|
||||
setAutoOffEnabled(ao[FPSTR(_enabled)] | autoOffEnabled);
|
||||
setAutoOffThreshold(ao[FPSTR(_threshold)] | autoOffThreshold);
|
||||
|
||||
JsonObject lp = battery[F("indicator")];
|
||||
setLowPowerIndicatorEnabled(lp[FPSTR(_enabled)] | lowPowerIndicatorEnabled);
|
||||
setLowPowerIndicatorPreset(lp[FPSTR(_preset)] | lowPowerIndicatorPreset);
|
||||
setLowPowerIndicatorThreshold(lp[FPSTR(_threshold)] | lowPowerIndicatorThreshold);
|
||||
lowPowerIndicatorReactivationThreshold = lowPowerIndicatorThreshold+10;
|
||||
setLowPowerIndicatorDuration(lp[FPSTR(_duration)] | lowPowerIndicatorDuration);
|
||||
|
||||
if(initDone)
|
||||
bat->update(cfg);
|
||||
}
|
||||
|
||||
/**
|
||||
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
|
||||
* Values in the state object may be modified by connected clients
|
||||
*/
|
||||
/*
|
||||
void addToJsonState(JsonObject& root)
|
||||
{
|
||||
JsonObject battery = root.createNestedObject(FPSTR(_name));
|
||||
|
||||
if (battery.isNull())
|
||||
battery = root.createNestedObject(FPSTR(_name));
|
||||
|
||||
addBatteryToJsonObject(battery, true);
|
||||
|
||||
DEBUG_PRINTLN(F("Battery state exposed in JSON API."));
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
|
||||
* Values in the state object may be modified by connected clients
|
||||
*/
|
||||
/*
|
||||
void readFromJsonState(JsonObject& root)
|
||||
{
|
||||
if (!initDone) return; // prevent crash on boot applyPreset()
|
||||
|
||||
JsonObject battery = root[FPSTR(_name)];
|
||||
|
||||
if (!battery.isNull()) {
|
||||
getUsermodConfigFromJsonObject(battery);
|
||||
|
||||
DEBUG_PRINTLN(F("Battery state read from JSON API."));
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
|
||||
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
|
||||
* If you want to force saving the current state, use serializeConfig() in your loop().
|
||||
@ -359,47 +399,41 @@ class UsermodBattery : public Usermod
|
||||
*/
|
||||
void addToConfig(JsonObject& root)
|
||||
{
|
||||
JsonObject battery = root.createNestedObject(FPSTR(_name)); // usermodname
|
||||
JsonObject battery = root.createNestedObject(FPSTR(_name));
|
||||
|
||||
if (battery.isNull()) {
|
||||
battery = root.createNestedObject(FPSTR(_name));
|
||||
}
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
battery[F("pin")] = batteryPin;
|
||||
#endif
|
||||
|
||||
// battery[F("time-left")] = calculateTimeLeftEnabled;
|
||||
battery[F("min-voltage")] = minBatteryVoltage;
|
||||
battery[F("max-voltage")] = maxBatteryVoltage;
|
||||
battery[F("capacity")] = totalBatteryCapacity;
|
||||
battery[F("calibration")] = calibration;
|
||||
battery[F("voltage-multiplier")] = voltageMultiplier;
|
||||
battery[FPSTR(_readInterval)] = readingInterval;
|
||||
|
||||
JsonObject ao = battery.createNestedObject(F("auto-off")); // auto off section
|
||||
ao[FPSTR(_enabled)] = autoOffEnabled;
|
||||
ao[FPSTR(_threshold)] = autoOffThreshold;
|
||||
|
||||
JsonObject lp = battery.createNestedObject(F("indicator")); // low power section
|
||||
lp[FPSTR(_enabled)] = lowPowerIndicatorEnabled;
|
||||
lp[FPSTR(_preset)] = lowPowerIndicatorPreset; // dropdown trickery (String)lowPowerIndicatorPreset;
|
||||
lp[FPSTR(_threshold)] = lowPowerIndicatorThreshold;
|
||||
lp[FPSTR(_duration)] = lowPowerIndicatorDuration;
|
||||
addBatteryToJsonObject(battery, false);
|
||||
|
||||
// read voltage in case calibration or voltage multiplier changed to see immediate effect
|
||||
voltage = readVoltage();
|
||||
bat->setVoltage(readVoltage());
|
||||
|
||||
DEBUG_PRINTLN(F("Battery config saved."));
|
||||
}
|
||||
|
||||
void appendConfigData()
|
||||
{
|
||||
oappend(SET_F("addInfo('Battery:min-voltage', 1, 'v');"));
|
||||
oappend(SET_F("addInfo('Battery:max-voltage', 1, 'v');"));
|
||||
oappend(SET_F("addInfo('Battery:capacity', 1, 'mAh');"));
|
||||
oappend(SET_F("addInfo('Battery:interval', 1, 'ms');"));
|
||||
oappend(SET_F("addInfo('Battery:auto-off:threshold', 1, '%');"));
|
||||
oappend(SET_F("addInfo('Battery:indicator:threshold', 1, '%');"));
|
||||
oappend(SET_F("addInfo('Battery:indicator:duration', 1, 's');"));
|
||||
// Total: 462 Bytes
|
||||
oappend(SET_F("td=addDropdown('Battery', 'type');")); // 35 Bytes
|
||||
oappend(SET_F("addOption(td, 'Unkown', '0');")); // 30 Bytes
|
||||
oappend(SET_F("addOption(td, 'LiPo', '1');")); // 28 Bytes
|
||||
oappend(SET_F("addOption(td, 'LiOn', '2');")); // 28 Bytes
|
||||
oappend(SET_F("addInfo('Battery:type',1,'<small style=\"color:orange\">requires reboot</small>');")); // 81 Bytes
|
||||
oappend(SET_F("addInfo('Battery:min-voltage', 1, 'v');")); // 40 Bytes
|
||||
oappend(SET_F("addInfo('Battery:max-voltage', 1, 'v');")); // 40 Bytes
|
||||
oappend(SET_F("addInfo('Battery:interval', 1, 'ms');")); // 38 Bytes
|
||||
oappend(SET_F("addInfo('Battery:auto-off:threshold', 1, '%');")); // 47 Bytes
|
||||
oappend(SET_F("addInfo('Battery:indicator:threshold', 1, '%');")); // 48 Bytes
|
||||
oappend(SET_F("addInfo('Battery:indicator:duration', 1, 's');")); // 47 Bytes
|
||||
|
||||
// cannot quite get this mf to work. its exeeding some buffer limit i think
|
||||
// what i wanted is a list of all presets to select one from
|
||||
// this option list would exeed the oappend() buffer
|
||||
// a list of all presets to select one from
|
||||
// oappend(SET_F("bd=addDropdown('Battery:low-power-indicator', 'preset');"));
|
||||
// the loop generates: oappend(SET_F("addOption(bd, 'preset name', preset id);"));
|
||||
// for(int8_t i=1; i < 42; i++) {
|
||||
@ -412,7 +446,7 @@ class UsermodBattery : public Usermod
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* readFromConfig() can be used to read back the custom settings you added with addToConfig().
|
||||
* This is called by WLED when settings are loaded (currently this only happens immediately after boot, or after saving on the Usermod Settings page)
|
||||
*
|
||||
@ -445,25 +479,13 @@ class UsermodBattery : public Usermod
|
||||
newBatteryPin = battery[F("pin")] | newBatteryPin;
|
||||
#endif
|
||||
// calculateTimeLeftEnabled = battery[F("time-left")] | calculateTimeLeftEnabled;
|
||||
setMinBatteryVoltage(battery[F("min-voltage")] | minBatteryVoltage);
|
||||
setMaxBatteryVoltage(battery[F("max-voltage")] | maxBatteryVoltage);
|
||||
setTotalBatteryCapacity(battery[F("capacity")] | totalBatteryCapacity);
|
||||
setCalibration(battery[F("calibration")] | calibration);
|
||||
setVoltageMultiplier(battery[F("voltage-multiplier")] | voltageMultiplier);
|
||||
setMinBatteryVoltage(battery[F("min-voltage")] | bat->getMinVoltage());
|
||||
setMaxBatteryVoltage(battery[F("max-voltage")] | bat->getMaxVoltage());
|
||||
setCalibration(battery[F("calibration")] | bat->getCalibration());
|
||||
setVoltageMultiplier(battery[F("voltage-multiplier")] | bat->getVoltageMultiplier());
|
||||
setReadingInterval(battery[FPSTR(_readInterval)] | readingInterval);
|
||||
|
||||
JsonObject ao = battery[F("auto-off")];
|
||||
setAutoOffEnabled(ao[FPSTR(_enabled)] | autoOffEnabled);
|
||||
setAutoOffThreshold(ao[FPSTR(_threshold)] | autoOffThreshold);
|
||||
|
||||
JsonObject lp = battery[F("indicator")];
|
||||
setLowPowerIndicatorEnabled(lp[FPSTR(_enabled)] | lowPowerIndicatorEnabled);
|
||||
setLowPowerIndicatorPreset(lp[FPSTR(_preset)] | lowPowerIndicatorPreset); // dropdown trickery (int)lp["preset"]
|
||||
setLowPowerIndicatorThreshold(lp[FPSTR(_threshold)] | lowPowerIndicatorThreshold);
|
||||
lowPowerIndicatorReactivationThreshold = lowPowerIndicatorThreshold+10;
|
||||
setLowPowerIndicatorDuration(lp[FPSTR(_duration)] | lowPowerIndicatorDuration);
|
||||
|
||||
DEBUG_PRINT(FPSTR(_name));
|
||||
getUsermodConfigFromJsonObject(battery);
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
if (!initDone)
|
||||
@ -491,8 +513,9 @@ class UsermodBattery : public Usermod
|
||||
return !battery[FPSTR(_readInterval)].isNull();
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a preset sample for low power indication
|
||||
/**
|
||||
* TBD: Generate a preset sample for low power indication
|
||||
* a button on the config page would be cool, currently not possible
|
||||
*/
|
||||
void generateExamplePreset()
|
||||
{
|
||||
@ -529,7 +552,7 @@ class UsermodBattery : public Usermod
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
/**
|
||||
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
|
||||
* This could be used in the future for the system to determine whether your usermod is installed.
|
||||
*/
|
||||
@ -538,13 +561,23 @@ class UsermodBattery : public Usermod
|
||||
return USERMOD_ID_BATTERY;
|
||||
}
|
||||
|
||||
/**
|
||||
* get currently active battery type
|
||||
*/
|
||||
batteryType getBatteryType()
|
||||
{
|
||||
return cfg.type;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
unsigned long getReadingInterval()
|
||||
{
|
||||
return readingInterval;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* minimum repetition is 3000ms (3s)
|
||||
*/
|
||||
void setReadingInterval(unsigned long newReadingInterval)
|
||||
@ -552,105 +585,84 @@ class UsermodBattery : public Usermod
|
||||
readingInterval = max((unsigned long)3000, newReadingInterval);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get lowest configured battery voltage
|
||||
*/
|
||||
float getMinBatteryVoltage()
|
||||
{
|
||||
return minBatteryVoltage;
|
||||
return bat->getMinVoltage();
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set lowest battery voltage
|
||||
* can't be below 0 volt
|
||||
*/
|
||||
void setMinBatteryVoltage(float voltage)
|
||||
{
|
||||
minBatteryVoltage = max(0.0f, voltage);
|
||||
bat->setMinVoltage(voltage);
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get highest configured battery voltage
|
||||
*/
|
||||
float getMaxBatteryVoltage()
|
||||
{
|
||||
return maxBatteryVoltage;
|
||||
return bat->getMaxVoltage();
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set highest battery voltage
|
||||
* can't be below minBatteryVoltage
|
||||
*/
|
||||
void setMaxBatteryVoltage(float voltage)
|
||||
{
|
||||
#ifdef USERMOD_BATTERY_USE_LIPO
|
||||
maxBatteryVoltage = max(getMinBatteryVoltage()+0.7f, voltage);
|
||||
#else
|
||||
maxBatteryVoltage = max(getMinBatteryVoltage()+1.0f, voltage);
|
||||
#endif
|
||||
bat->setMaxVoltage(voltage);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Get the capacity of all cells in parralel sumed up
|
||||
* unit: mAh
|
||||
*/
|
||||
unsigned int getTotalBatteryCapacity()
|
||||
{
|
||||
return totalBatteryCapacity;
|
||||
}
|
||||
|
||||
void setTotalBatteryCapacity(unsigned int capacity)
|
||||
{
|
||||
totalBatteryCapacity = capacity;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get the calculated voltage
|
||||
* formula: (adc pin value / adc precision * max voltage) + calibration
|
||||
*/
|
||||
float getVoltage()
|
||||
{
|
||||
return voltage;
|
||||
return bat->getVoltage();
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get the mapped battery level (0 - 100) based on voltage
|
||||
* important: voltage can drop when a load is applied, so its only an estimate
|
||||
*/
|
||||
int8_t getBatteryLevel()
|
||||
{
|
||||
return batteryLevel;
|
||||
return bat->getLevel();
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get the configured calibration value
|
||||
* a offset value to fine-tune the calculated voltage.
|
||||
*/
|
||||
float getCalibration()
|
||||
{
|
||||
return calibration;
|
||||
return bat->getCalibration();
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set the voltage calibration offset value
|
||||
* a offset value to fine-tune the calculated voltage.
|
||||
*/
|
||||
void setCalibration(float offset)
|
||||
{
|
||||
calibration = offset;
|
||||
bat->setCalibration(offset);
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set the voltage multiplier value
|
||||
* A multiplier that may need adjusting for different voltage divider setups
|
||||
*/
|
||||
void setVoltageMultiplier(float multiplier)
|
||||
{
|
||||
voltageMultiplier = multiplier;
|
||||
bat->setVoltageMultiplier(multiplier);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -659,10 +671,10 @@ class UsermodBattery : public Usermod
|
||||
*/
|
||||
float getVoltageMultiplier()
|
||||
{
|
||||
return voltageMultiplier;
|
||||
return bat->getVoltageMultiplier();
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get auto-off feature enabled status
|
||||
* is auto-off enabled, true/false
|
||||
*/
|
||||
@ -671,7 +683,7 @@ class UsermodBattery : public Usermod
|
||||
return autoOffEnabled;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set auto-off feature status
|
||||
*/
|
||||
void setAutoOffEnabled(bool enabled)
|
||||
@ -679,7 +691,7 @@ class UsermodBattery : public Usermod
|
||||
autoOffEnabled = enabled;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get auto-off threshold in percent (0-100)
|
||||
*/
|
||||
int8_t getAutoOffThreshold()
|
||||
@ -687,7 +699,7 @@ class UsermodBattery : public Usermod
|
||||
return autoOffThreshold;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set auto-off threshold in percent (0-100)
|
||||
*/
|
||||
void setAutoOffThreshold(int8_t threshold)
|
||||
@ -697,8 +709,7 @@ class UsermodBattery : public Usermod
|
||||
autoOffThreshold = lowPowerIndicatorEnabled /*&& autoOffEnabled*/ ? min(lowPowerIndicatorThreshold-1, (int)autoOffThreshold) : autoOffThreshold;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get low-power-indicator feature enabled status
|
||||
* is the low-power-indicator enabled, true/false
|
||||
*/
|
||||
@ -707,7 +718,7 @@ class UsermodBattery : public Usermod
|
||||
return lowPowerIndicatorEnabled;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set low-power-indicator feature status
|
||||
*/
|
||||
void setLowPowerIndicatorEnabled(bool enabled)
|
||||
@ -715,7 +726,7 @@ class UsermodBattery : public Usermod
|
||||
lowPowerIndicatorEnabled = enabled;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get low-power-indicator preset to activate when low power is detected
|
||||
*/
|
||||
int8_t getLowPowerIndicatorPreset()
|
||||
@ -723,7 +734,7 @@ class UsermodBattery : public Usermod
|
||||
return lowPowerIndicatorPreset;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set low-power-indicator preset to activate when low power is detected
|
||||
*/
|
||||
void setLowPowerIndicatorPreset(int8_t presetId)
|
||||
@ -741,7 +752,7 @@ class UsermodBattery : public Usermod
|
||||
return lowPowerIndicatorThreshold;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set low-power-indicator threshold in percent (0-100)
|
||||
*/
|
||||
void setLowPowerIndicatorThreshold(int8_t threshold)
|
||||
@ -751,7 +762,7 @@ class UsermodBattery : public Usermod
|
||||
lowPowerIndicatorThreshold = autoOffEnabled /*&& lowPowerIndicatorEnabled*/ ? max(autoOffThreshold+1, (int)lowPowerIndicatorThreshold) : max(5, (int)lowPowerIndicatorThreshold);
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Get low-power-indicator duration in seconds
|
||||
*/
|
||||
int8_t getLowPowerIndicatorDuration()
|
||||
@ -759,7 +770,7 @@ class UsermodBattery : public Usermod
|
||||
return lowPowerIndicatorDuration;
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* Set low-power-indicator duration in seconds
|
||||
*/
|
||||
void setLowPowerIndicatorDuration(int8_t duration)
|
||||
@ -767,9 +778,8 @@ class UsermodBattery : public Usermod
|
||||
lowPowerIndicatorDuration = duration;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Get low-power-indicator status when the indication is done thsi returns true
|
||||
/**
|
||||
* Get low-power-indicator status when the indication is done this returns true
|
||||
*/
|
||||
bool getLowPowerIndicatorDone()
|
||||
{
|
||||
|
@ -282,6 +282,7 @@ void FFTcode(void * parameter)
|
||||
//FFT.windowing(FFTWindow::Blackman_Harris, FFTDirection::Forward); // Weigh data using "Blackman- Harris" window - sharp peaks due to excellent sideband rejection
|
||||
FFT.compute( FFTDirection::Forward ); // Compute FFT
|
||||
FFT.complexToMagnitude(); // Compute magnitudes
|
||||
vReal[0] = 0; // The remaining DC offset on the signal produces a strong spike on position 0 that should be eliminated to avoid issues.
|
||||
|
||||
FFT.majorPeak(&FFT_MajorPeak, &FFT_Magnitude); // let the effects know which freq was most dominant
|
||||
FFT_MajorPeak = constrain(FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects
|
||||
|
@ -2506,7 +2506,7 @@ uint16_t ripple_base()
|
||||
uint16_t cx = rippleorigin >> 8;
|
||||
uint16_t cy = rippleorigin & 0xFF;
|
||||
uint8_t mag = scale8(sin8((propF>>2)), amp);
|
||||
if (propI > 0) SEGMENT.draw_circle(cx, cy, propI, color_blend(SEGMENT.getPixelColorXY(cx + propI, cy), col, mag));
|
||||
if (propI > 0) SEGMENT.drawCircle(cx, cy, propI, color_blend(SEGMENT.getPixelColorXY(cx + propI, cy), col, mag), true);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
@ -6056,7 +6056,7 @@ uint16_t mode_2Dfloatingblobs(void) {
|
||||
}
|
||||
}
|
||||
uint32_t c = SEGMENT.color_from_palette(blob->color[i], false, false, 0);
|
||||
if (blob->r[i] > 1.f) SEGMENT.fill_circle(roundf(blob->x[i]), roundf(blob->y[i]), roundf(blob->r[i]), c);
|
||||
if (blob->r[i] > 1.f) SEGMENT.fillCircle(roundf(blob->x[i]), roundf(blob->y[i]), roundf(blob->r[i]), c);
|
||||
else SEGMENT.setPixelColorXY((int)roundf(blob->x[i]), (int)roundf(blob->y[i]), c);
|
||||
// move x
|
||||
if (blob->x[i] + blob->r[i] >= cols - 1) blob->x[i] += (blob->sX[i] * ((cols - 1 - blob->x[i]) / blob->r[i] + 0.005f));
|
||||
@ -6643,7 +6643,6 @@ static const char _data_FX_MODE_GRAVIMETER[] PROGMEM = "Gravimeter@Rate of fall,
|
||||
// * JUGGLES //
|
||||
//////////////////////
|
||||
uint16_t mode_juggles(void) { // Juggles. By Andrew Tuline.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
um_data_t *um_data;
|
||||
if (!usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
|
||||
// add support for no audio
|
||||
@ -6655,12 +6654,13 @@ uint16_t mode_juggles(void) { // Juggles. By Andrew Tuline.
|
||||
uint16_t my_sampleAgc = fmax(fmin(volumeSmth, 255.0), 0);
|
||||
|
||||
for (size_t i=0; i<SEGMENT.intensity/32+1U; i++) {
|
||||
// if SEGLEN equals 1, we will always set color to the first and only pixel, but the effect is still good looking
|
||||
SEGMENT.setPixelColor(beatsin16(SEGMENT.speed/4+i*2,0,SEGLEN-1), color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(strip.now/4+i*2, false, PALETTE_SOLID_WRAP, 0), my_sampleAgc));
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_juggles()
|
||||
static const char _data_FX_MODE_JUGGLES[] PROGMEM = "Juggles@!,# of balls;!,!;!;1v;m12=0,si=0"; // Pixels, Beatsin
|
||||
static const char _data_FX_MODE_JUGGLES[] PROGMEM = "Juggles@!,# of balls;!,!;!;01v;m12=0,si=0"; // Pixels, Beatsin
|
||||
|
||||
|
||||
//////////////////////
|
||||
@ -6761,7 +6761,7 @@ uint16_t mode_noisefire(void) { // Noisefire. By Andrew Tuline.
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_noisefire()
|
||||
static const char _data_FX_MODE_NOISEFIRE[] PROGMEM = "Noisefire@!,!;;;1v;m12=2,si=0"; // Circle, Beatsin
|
||||
static const char _data_FX_MODE_NOISEFIRE[] PROGMEM = "Noisefire@!,!;;;01v;m12=2,si=0"; // Circle, Beatsin
|
||||
|
||||
|
||||
///////////////////////
|
||||
@ -6871,7 +6871,7 @@ uint16_t mode_plasmoid(void) { // Plasmoid. By Andrew Tuline.
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_plasmoid()
|
||||
static const char _data_FX_MODE_PLASMOID[] PROGMEM = "Plasmoid@Phase,# of pixels;!,!;!;1v;sx=128,ix=128,m12=0,si=0"; // Pixels, Beatsin
|
||||
static const char _data_FX_MODE_PLASMOID[] PROGMEM = "Plasmoid@Phase,# of pixels;!,!;!;01v;sx=128,ix=128,m12=0,si=0"; // Pixels, Beatsin
|
||||
|
||||
|
||||
///////////////////////
|
||||
@ -7026,7 +7026,7 @@ static const char _data_FX_MODE_BLURZ[] PROGMEM = "Blurz@Fade rate,Blur;!,Color
|
||||
// ** DJLight //
|
||||
/////////////////////////
|
||||
uint16_t mode_DJLight(void) { // Written by ??? Adapted by Will Tatam.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
// No need to prevent from executing on single led strips, only mid will be set (mid = 0)
|
||||
const int mid = SEGLEN / 2;
|
||||
|
||||
um_data_t *um_data;
|
||||
@ -7047,13 +7047,14 @@ uint16_t mode_DJLight(void) { // Written by ??? Adapted by Wil
|
||||
CRGB color = CRGB(fftResult[15]/2, fftResult[5]/2, fftResult[0]/2); // 16-> 15 as 16 is out of bounds
|
||||
SEGMENT.setPixelColor(mid, color.fadeToBlackBy(map(fftResult[4], 0, 255, 255, 4))); // TODO - Update
|
||||
|
||||
// if SEGLEN equals 1 these loops won't execute
|
||||
for (int i = SEGLEN - 1; i > mid; i--) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i-1)); // move to the left
|
||||
for (int i = 0; i < mid; i++) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i+1)); // move to the right
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_DJLight()
|
||||
static const char _data_FX_MODE_DJLIGHT[] PROGMEM = "DJ Light@Speed;;;1f;m12=2,si=0"; // Circle, Beatsin
|
||||
static const char _data_FX_MODE_DJLIGHT[] PROGMEM = "DJ Light@Speed;;;01f;m12=2,si=0"; // Circle, Beatsin
|
||||
|
||||
|
||||
////////////////////
|
||||
@ -7097,7 +7098,7 @@ static const char _data_FX_MODE_FREQMAP[] PROGMEM = "Freqmap@Fade rate,Starting
|
||||
// ** Freqmatrix //
|
||||
///////////////////////
|
||||
uint16_t mode_freqmatrix(void) { // Freqmatrix. By Andreas Pleschung.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
// No need to prevent from executing on single led strips, we simply change pixel 0 each time and avoid the shift
|
||||
um_data_t *um_data;
|
||||
if (!usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
|
||||
// add support for no audio
|
||||
@ -7140,12 +7141,13 @@ uint16_t mode_freqmatrix(void) { // Freqmatrix. By Andreas Plesch
|
||||
|
||||
// shift the pixels one pixel up
|
||||
SEGMENT.setPixelColor(0, color);
|
||||
// if SEGLEN equals 1 this loop won't execute
|
||||
for (int i = SEGLEN - 1; i > 0; i--) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i-1)); //move to the left
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_freqmatrix()
|
||||
static const char _data_FX_MODE_FREQMATRIX[] PROGMEM = "Freqmatrix@Speed,Sound effect,Low bin,High bin,Sensitivity;;;1f;m12=3,si=0"; // Corner, Beatsin
|
||||
static const char _data_FX_MODE_FREQMATRIX[] PROGMEM = "Freqmatrix@Speed,Sound effect,Low bin,High bin,Sensitivity;;;01f;m12=3,si=0"; // Corner, Beatsin
|
||||
|
||||
|
||||
//////////////////////
|
||||
@ -7202,7 +7204,7 @@ static const char _data_FX_MODE_FREQPIXELS[] PROGMEM = "Freqpixels@Fade rate,Sta
|
||||
// As a compromise between speed and accuracy we are currently sampling with 10240Hz, from which we can then determine with a 512bin FFT our max frequency is 5120Hz.
|
||||
// Depending on the music stream you have you might find it useful to change the frequency mapping.
|
||||
uint16_t mode_freqwave(void) { // Freqwave. By Andreas Pleschung.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
// As before, this effect can also work on single pixels, we just lose the shifting effect
|
||||
um_data_t *um_data;
|
||||
if (!usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
|
||||
// add support for no audio
|
||||
@ -7246,13 +7248,14 @@ uint16_t mode_freqwave(void) { // Freqwave. By Andreas Pleschun
|
||||
SEGMENT.setPixelColor(SEGLEN/2, color);
|
||||
|
||||
// shift the pixels one pixel outwards
|
||||
// if SEGLEN equals 1 these loops won't execute
|
||||
for (int i = SEGLEN - 1; i > SEGLEN/2; i--) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i-1)); //move to the left
|
||||
for (int i = 0; i < SEGLEN/2; i++) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i+1)); // move to the right
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_freqwave()
|
||||
static const char _data_FX_MODE_FREQWAVE[] PROGMEM = "Freqwave@Speed,Sound effect,Low bin,High bin,Pre-amp;;;1f;m12=2,si=0"; // Circle, Beatsin
|
||||
static const char _data_FX_MODE_FREQWAVE[] PROGMEM = "Freqwave@Speed,Sound effect,Low bin,High bin,Pre-amp;;;01f;m12=2,si=0"; // Circle, Beatsin
|
||||
|
||||
|
||||
///////////////////////
|
||||
@ -7311,7 +7314,6 @@ static const char _data_FX_MODE_GRAVFREQ[] PROGMEM = "Gravfreq@Rate of fall,Sens
|
||||
// ** Noisemove //
|
||||
//////////////////////
|
||||
uint16_t mode_noisemove(void) { // Noisemove. By: Andrew Tuline
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
um_data_t *um_data;
|
||||
if (!usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
|
||||
// add support for no audio
|
||||
@ -7325,20 +7327,20 @@ uint16_t mode_noisemove(void) { // Noisemove. By: Andrew Tuli
|
||||
uint8_t numBins = map(SEGMENT.intensity,0,255,0,16); // Map slider to fftResult bins.
|
||||
for (int i=0; i<numBins; i++) { // How many active bins are we using.
|
||||
uint16_t locn = inoise16(strip.now*SEGMENT.speed+i*50000, strip.now*SEGMENT.speed); // Get a new pixel location from moving noise.
|
||||
// if SEGLEN equals 1 locn will be always 0, hence we set the first pixel only
|
||||
locn = map(locn, 7500, 58000, 0, SEGLEN-1); // Map that to the length of the strand, and ensure we don't go over.
|
||||
SEGMENT.setPixelColor(locn, color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(i*64, false, PALETTE_SOLID_WRAP, 0), fftResult[i % 16]*4));
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_noisemove()
|
||||
static const char _data_FX_MODE_NOISEMOVE[] PROGMEM = "Noisemove@Speed of perlin movement,Fade rate;!,!;!;1f;m12=0,si=0"; // Pixels, Beatsin
|
||||
static const char _data_FX_MODE_NOISEMOVE[] PROGMEM = "Noisemove@Speed of perlin movement,Fade rate;!,!;!;01f;m12=0,si=0"; // Pixels, Beatsin
|
||||
|
||||
|
||||
//////////////////////
|
||||
// ** Rocktaves //
|
||||
//////////////////////
|
||||
uint16_t mode_rocktaves(void) { // Rocktaves. Same note from each octave is same colour. By: Andrew Tuline
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
um_data_t *um_data;
|
||||
if (!usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
|
||||
// add support for no audio
|
||||
@ -7366,12 +7368,13 @@ uint16_t mode_rocktaves(void) { // Rocktaves. Same note from eac
|
||||
frTemp = fabsf(frTemp * 2.1f); // Fudge factors to compress octave range starting at 0 and going to 255;
|
||||
|
||||
uint16_t i = map(beatsin8(8+octCount*4, 0, 255, 0, octCount*8), 0, 255, 0, SEGLEN-1);
|
||||
// i will be always constrained between 0 and 0 if SEGLEN equals 1
|
||||
i = constrain(i, 0, SEGLEN-1);
|
||||
SEGMENT.addPixelColor(i, color_blend(SEGCOLOR(1), SEGMENT.color_from_palette((uint8_t)frTemp, false, PALETTE_SOLID_WRAP, 0), volTemp));
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_rocktaves()
|
||||
static const char _data_FX_MODE_ROCKTAVES[] PROGMEM = "Rocktaves@;!,!;!;1f;m12=1,si=0"; // Bar, Beatsin
|
||||
static const char _data_FX_MODE_ROCKTAVES[] PROGMEM = "Rocktaves@;!,!;!;01f;m12=1,si=0"; // Bar, Beatsin
|
||||
|
||||
|
||||
///////////////////////
|
||||
@ -7379,8 +7382,8 @@ static const char _data_FX_MODE_ROCKTAVES[] PROGMEM = "Rocktaves@;!,!;!;1f;m12=1
|
||||
///////////////////////
|
||||
// Combines peak detection with FFT_MajorPeak and FFT_Magnitude.
|
||||
uint16_t mode_waterfall(void) { // Waterfall. By: Andrew Tuline
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
|
||||
// effect can work on single pixels, we just lose the shifting effect
|
||||
|
||||
um_data_t *um_data;
|
||||
if (!usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
|
||||
// add support for no audio
|
||||
@ -7417,12 +7420,13 @@ uint16_t mode_waterfall(void) { // Waterfall. By: Andrew Tulin
|
||||
} else {
|
||||
SEGMENT.setPixelColor(SEGLEN-1, color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(pixCol+SEGMENT.intensity, false, PALETTE_SOLID_WRAP, 0), (int)my_magnitude));
|
||||
}
|
||||
// loop will not execute if SEGLEN equals 1
|
||||
for (int i = 0; i < SEGLEN-1; i++) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i+1)); // shift left
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
} // mode_waterfall()
|
||||
static const char _data_FX_MODE_WATERFALL[] PROGMEM = "Waterfall@!,Adjust color,Select bin,Volume (min);!,!;!;1f;c2=0,m12=2,si=0"; // Circles, Beatsin
|
||||
static const char _data_FX_MODE_WATERFALL[] PROGMEM = "Waterfall@!,Adjust color,Select bin,Volume (min);!,!;!;01f;c2=0,m12=2,si=0"; // Circles, Beatsin
|
||||
|
||||
|
||||
#ifndef WLED_DISABLE_2D
|
||||
|
27
wled00/FX.h
27
wled00/FX.h
@ -106,6 +106,10 @@
|
||||
#define PURPLE (uint32_t)0x400080
|
||||
#define ORANGE (uint32_t)0xFF3000
|
||||
#define PINK (uint32_t)0xFF1493
|
||||
#define GREY (uint32_t)0x808080
|
||||
#define GRAY GREY
|
||||
#define DARKGREY (uint32_t)0x333333
|
||||
#define DARKGRAY DARKGREY
|
||||
#define ULTRAWHITE (uint32_t)0xFFFFFFFF
|
||||
#define DARKSLATEGRAY (uint32_t)0x2F4F4F
|
||||
#define DARKSLATEGREY DARKSLATEGRAY
|
||||
@ -606,6 +610,7 @@ typedef struct Segment {
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) { setPixelColorXY(int(x), int(y), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColorXY(int x, int y, CRGB c) { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0)); }
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, CRGB c) { setPixelColorXY(int(x), int(y), RGBW32(c.r,c.g,c.b,0)); }
|
||||
#ifdef WLED_USE_AA_PIXELS
|
||||
void setPixelColorXY(float x, float y, uint32_t c, bool aa = true);
|
||||
inline void setPixelColorXY(float x, float y, byte r, byte g, byte b, byte w = 0, bool aa = true) { setPixelColorXY(x, y, RGBW32(r,g,b,w), aa); }
|
||||
@ -625,24 +630,25 @@ typedef struct Segment {
|
||||
void moveX(int8_t delta, bool wrap = false);
|
||||
void moveY(int8_t delta, bool wrap = false);
|
||||
void move(uint8_t dir, uint8_t delta, bool wrap = false);
|
||||
void draw_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c);
|
||||
void fill_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c);
|
||||
void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c);
|
||||
inline void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, CRGB c) { drawLine(x0, y0, x1, y1, RGBW32(c.r,c.g,c.b,0)); } // automatic inline
|
||||
void drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t c, bool soft = false);
|
||||
inline void drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c, bool soft = false) { drawCircle(cx, cy, radius, RGBW32(c.r,c.g,c.b,0), soft); }
|
||||
void fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t c, bool soft = false);
|
||||
inline void fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c, bool soft = false) { fillCircle(cx, cy, radius, RGBW32(c.r,c.g,c.b,0), soft); }
|
||||
void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft = false);
|
||||
inline void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, CRGB c, bool soft = false) { drawLine(x0, y0, x1, y1, RGBW32(c.r,c.g,c.b,0), soft); } // automatic inline
|
||||
void drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t col2 = 0, int8_t rotate = 0);
|
||||
inline void drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, CRGB c) { drawCharacter(chr, x, y, w, h, RGBW32(c.r,c.g,c.b,0)); } // automatic inline
|
||||
inline void drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, CRGB c, CRGB c2, int8_t rotate = 0) { drawCharacter(chr, x, y, w, h, RGBW32(c.r,c.g,c.b,0), RGBW32(c2.r,c2.g,c2.b,0), rotate); } // automatic inline
|
||||
void wu_pixel(uint32_t x, uint32_t y, CRGB c);
|
||||
void blur1d(fract8 blur_amount); // blur all rows in 1 dimension
|
||||
inline void blur2d(fract8 blur_amount) { blur(blur_amount); }
|
||||
inline void fill_solid(CRGB c) { fill(RGBW32(c.r,c.g,c.b,0)); }
|
||||
void nscale8(uint8_t scale);
|
||||
#else
|
||||
inline uint16_t XY(uint16_t x, uint16_t y) { return x; }
|
||||
inline void setPixelColorXY(int x, int y, uint32_t c) { setPixelColor(x, c); }
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) { setPixelColor(int(x), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColor(x, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColorXY(int x, int y, CRGB c) { setPixelColor(x, RGBW32(c.r,c.g,c.b,0)); }
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, CRGB c) { setPixelColor(int(x), RGBW32(c.r,c.g,c.b,0)); }
|
||||
#ifdef WLED_USE_AA_PIXELS
|
||||
inline void setPixelColorXY(float x, float y, uint32_t c, bool aa = true) { setPixelColor(x, c, aa); }
|
||||
inline void setPixelColorXY(float x, float y, byte r, byte g, byte b, byte w = 0, bool aa = true) { setPixelColor(x, RGBW32(r,g,b,w), aa); }
|
||||
@ -661,9 +667,12 @@ typedef struct Segment {
|
||||
inline void moveX(int8_t delta, bool wrap = false) {}
|
||||
inline void moveY(int8_t delta, bool wrap = false) {}
|
||||
inline void move(uint8_t dir, uint8_t delta, bool wrap = false) {}
|
||||
inline void fill_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c) {}
|
||||
inline void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c) {}
|
||||
inline void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, CRGB c) {}
|
||||
inline void drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t c, bool soft = false) {}
|
||||
inline void drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c, bool soft = false) {}
|
||||
inline void fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t c, bool soft = false) {}
|
||||
inline void fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB c, bool soft = false) {}
|
||||
inline void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft = false) {}
|
||||
inline void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, CRGB c, bool soft = false) {}
|
||||
inline void drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t = 0, int8_t = 0) {}
|
||||
inline void drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, CRGB color) {}
|
||||
inline void drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, CRGB c, CRGB c2, int8_t rotate = 0) {}
|
||||
|
@ -342,55 +342,36 @@ void Segment::blurCol(uint32_t col, fract8 blur_amount, bool smear) {
|
||||
// 1D Box blur (with added weight - blur_amount: [0=no blur, 255=max blur])
|
||||
void Segment::box_blur(uint16_t i, bool vertical, fract8 blur_amount) {
|
||||
if (!isActive() || blur_amount == 0) return; // not active
|
||||
const unsigned cols = virtualWidth();
|
||||
const unsigned rows = virtualHeight();
|
||||
const unsigned dim1 = vertical ? rows : cols;
|
||||
const unsigned dim2 = vertical ? cols : rows;
|
||||
const int cols = virtualWidth();
|
||||
const int rows = virtualHeight();
|
||||
const int dim1 = vertical ? rows : cols;
|
||||
const int dim2 = vertical ? cols : rows;
|
||||
if (i >= dim2) return;
|
||||
const float seep = blur_amount/255.f;
|
||||
const float keep = 3.f - 2.f*seep;
|
||||
// 1D box blur
|
||||
CRGB tmp[dim1];
|
||||
for (unsigned j = 0; j < dim1; j++) {
|
||||
unsigned x = vertical ? i : j;
|
||||
unsigned y = vertical ? j : i;
|
||||
int xp = vertical ? x : x-1; // "signed" to prevent underflow
|
||||
int yp = vertical ? y-1 : y; // "signed" to prevent underflow
|
||||
unsigned xn = vertical ? x : x+1;
|
||||
unsigned yn = vertical ? y+1 : y;
|
||||
CRGB curr = getPixelColorXY(x,y);
|
||||
CRGB prev = (xp<0 || yp<0) ? CRGB::Black : getPixelColorXY(xp,yp);
|
||||
CRGB next = ((vertical && yn>=dim1) || (!vertical && xn>=dim1)) ? CRGB::Black : getPixelColorXY(xn,yn);
|
||||
unsigned r, g, b;
|
||||
r = (curr.r*keep + (prev.r + next.r)*seep) / 3;
|
||||
g = (curr.g*keep + (prev.g + next.g)*seep) / 3;
|
||||
b = (curr.b*keep + (prev.b + next.b)*seep) / 3;
|
||||
tmp[j] = CRGB(r,g,b);
|
||||
uint32_t out[dim1], in[dim1];
|
||||
for (int j = 0; j < dim1; j++) {
|
||||
int x = vertical ? i : j;
|
||||
int y = vertical ? j : i;
|
||||
in[j] = getPixelColorXY(x, y);
|
||||
}
|
||||
for (unsigned j = 0; j < dim1; j++) {
|
||||
unsigned x = vertical ? i : j;
|
||||
unsigned y = vertical ? j : i;
|
||||
setPixelColorXY(x, y, tmp[j]);
|
||||
for (int j = 0; j < dim1; j++) {
|
||||
uint32_t curr = in[j];
|
||||
uint32_t prev = j > 0 ? in[j-1] : BLACK;
|
||||
uint32_t next = j < dim1-1 ? in[j+1] : BLACK;
|
||||
uint8_t r, g, b, w;
|
||||
r = (R(curr)*keep + (R(prev) + R(next))*seep) / 3;
|
||||
g = (G(curr)*keep + (G(prev) + G(next))*seep) / 3;
|
||||
b = (B(curr)*keep + (B(prev) + B(next))*seep) / 3;
|
||||
w = (W(curr)*keep + (W(prev) + W(next))*seep) / 3;
|
||||
out[j] = RGBW32(r,g,b,w);
|
||||
}
|
||||
for (int j = 0; j < dim1; j++) {
|
||||
int x = vertical ? i : j;
|
||||
int y = vertical ? j : i;
|
||||
setPixelColorXY(x, y, out[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// blur1d: one-dimensional blur filter. Spreads light to 2 line neighbors.
|
||||
// blur2d: two-dimensional blur filter. Spreads light to 8 XY neighbors.
|
||||
//
|
||||
// 0 = no spread at all
|
||||
// 64 = moderate spreading
|
||||
// 172 = maximum smooth, even spreading
|
||||
//
|
||||
// 173..255 = wider spreading, but increasing flicker
|
||||
//
|
||||
// Total light is NOT entirely conserved, so many repeated
|
||||
// calls to 'blur' will also result in the light fading,
|
||||
// eventually all the way to black; this is by design so that
|
||||
// it can be used to (slowly) clear the LEDs to black.
|
||||
|
||||
void Segment::blur1d(fract8 blur_amount) {
|
||||
const unsigned rows = virtualHeight();
|
||||
for (unsigned y = 0; y < rows; y++) blurRow(y, blur_amount);
|
||||
}
|
||||
|
||||
void Segment::moveX(int8_t delta, bool wrap) {
|
||||
@ -447,33 +428,67 @@ void Segment::move(uint8_t dir, uint8_t delta, bool wrap) {
|
||||
}
|
||||
}
|
||||
|
||||
void Segment::draw_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB col) {
|
||||
void Segment::drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) {
|
||||
if (!isActive() || radius == 0) return; // not active
|
||||
// Bresenham’s Algorithm
|
||||
int d = 3 - (2*radius);
|
||||
int y = radius, x = 0;
|
||||
while (y >= x) {
|
||||
setPixelColorXY(cx+x, cy+y, col);
|
||||
setPixelColorXY(cx-x, cy+y, col);
|
||||
setPixelColorXY(cx+x, cy-y, col);
|
||||
setPixelColorXY(cx-x, cy-y, col);
|
||||
setPixelColorXY(cx+y, cy+x, col);
|
||||
setPixelColorXY(cx-y, cy+x, col);
|
||||
setPixelColorXY(cx+y, cy-x, col);
|
||||
setPixelColorXY(cx-y, cy-x, col);
|
||||
x++;
|
||||
if (d > 0) {
|
||||
y--;
|
||||
d += 4 * (x - y) + 10;
|
||||
} else {
|
||||
d += 4 * x + 6;
|
||||
if (soft) {
|
||||
// Xiaolin Wu’s algorithm
|
||||
int rsq = radius*radius;
|
||||
int x = 0;
|
||||
int y = radius;
|
||||
unsigned oldFade = 0;
|
||||
while (x < y) {
|
||||
float yf = sqrtf(float(rsq - x*x)); // needs to be floating point
|
||||
unsigned fade = float(0xFFFF) * (ceilf(yf) - yf); // how much color to keep
|
||||
if (oldFade > fade) y--;
|
||||
oldFade = fade;
|
||||
setPixelColorXY(cx+x, cy+y, color_blend(col, getPixelColorXY(cx+x, cy+y), fade, true));
|
||||
setPixelColorXY(cx-x, cy+y, color_blend(col, getPixelColorXY(cx-x, cy+y), fade, true));
|
||||
setPixelColorXY(cx+x, cy-y, color_blend(col, getPixelColorXY(cx+x, cy-y), fade, true));
|
||||
setPixelColorXY(cx-x, cy-y, color_blend(col, getPixelColorXY(cx-x, cy-y), fade, true));
|
||||
setPixelColorXY(cx+y, cy+x, color_blend(col, getPixelColorXY(cx+y, cy+x), fade, true));
|
||||
setPixelColorXY(cx-y, cy+x, color_blend(col, getPixelColorXY(cx-y, cy+x), fade, true));
|
||||
setPixelColorXY(cx+y, cy-x, color_blend(col, getPixelColorXY(cx+y, cy-x), fade, true));
|
||||
setPixelColorXY(cx-y, cy-x, color_blend(col, getPixelColorXY(cx-y, cy-x), fade, true));
|
||||
setPixelColorXY(cx+x, cy+y-1, color_blend(getPixelColorXY(cx+x, cy+y-1), col, fade, true));
|
||||
setPixelColorXY(cx-x, cy+y-1, color_blend(getPixelColorXY(cx-x, cy+y-1), col, fade, true));
|
||||
setPixelColorXY(cx+x, cy-y+1, color_blend(getPixelColorXY(cx+x, cy-y+1), col, fade, true));
|
||||
setPixelColorXY(cx-x, cy-y+1, color_blend(getPixelColorXY(cx-x, cy-y+1), col, fade, true));
|
||||
setPixelColorXY(cx+y-1, cy+x, color_blend(getPixelColorXY(cx+y-1, cy+x), col, fade, true));
|
||||
setPixelColorXY(cx-y+1, cy+x, color_blend(getPixelColorXY(cx-y+1, cy+x), col, fade, true));
|
||||
setPixelColorXY(cx+y-1, cy-x, color_blend(getPixelColorXY(cx+y-1, cy-x), col, fade, true));
|
||||
setPixelColorXY(cx-y+1, cy-x, color_blend(getPixelColorXY(cx-y+1, cy-x), col, fade, true));
|
||||
x++;
|
||||
}
|
||||
} else {
|
||||
// Bresenham’s Algorithm
|
||||
int d = 3 - (2*radius);
|
||||
int y = radius, x = 0;
|
||||
while (y >= x) {
|
||||
setPixelColorXY(cx+x, cy+y, col);
|
||||
setPixelColorXY(cx-x, cy+y, col);
|
||||
setPixelColorXY(cx+x, cy-y, col);
|
||||
setPixelColorXY(cx-x, cy-y, col);
|
||||
setPixelColorXY(cx+y, cy+x, col);
|
||||
setPixelColorXY(cx-y, cy+x, col);
|
||||
setPixelColorXY(cx+y, cy-x, col);
|
||||
setPixelColorXY(cx-y, cy-x, col);
|
||||
x++;
|
||||
if (d > 0) {
|
||||
y--;
|
||||
d += 4 * (x - y) + 10;
|
||||
} else {
|
||||
d += 4 * x + 6;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// by stepko, taken from https://editor.soulmatelights.com/gallery/573-blobs
|
||||
void Segment::fill_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB col) {
|
||||
void Segment::fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) {
|
||||
if (!isActive() || radius == 0) return; // not active
|
||||
// draw soft bounding circle
|
||||
if (soft) drawCircle(cx, cy, radius, col, soft);
|
||||
// fill it
|
||||
const int cols = virtualWidth();
|
||||
const int rows = virtualHeight();
|
||||
for (int y = -radius; y <= radius; y++) {
|
||||
@ -486,30 +501,58 @@ void Segment::fill_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB col) {
|
||||
}
|
||||
}
|
||||
|
||||
void Segment::nscale8(uint8_t scale) {
|
||||
if (!isActive()) return; // not active
|
||||
const unsigned cols = virtualWidth();
|
||||
const unsigned rows = virtualHeight();
|
||||
for (unsigned y = 0; y < rows; y++) for (unsigned x = 0; x < cols; x++) {
|
||||
setPixelColorXY(x, y, CRGB(getPixelColorXY(x, y)).nscale8(scale));
|
||||
}
|
||||
}
|
||||
|
||||
//line function
|
||||
void Segment::drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c) {
|
||||
void Segment::drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft) {
|
||||
if (!isActive()) return; // not active
|
||||
const unsigned cols = virtualWidth();
|
||||
const unsigned rows = virtualHeight();
|
||||
const int cols = virtualWidth();
|
||||
const int rows = virtualHeight();
|
||||
if (x0 >= cols || x1 >= cols || y0 >= rows || y1 >= rows) return;
|
||||
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
|
||||
const int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1;
|
||||
int err = (dx>dy ? dx : -dy)/2, e2;
|
||||
for (;;) {
|
||||
setPixelColorXY(x0,y0,c);
|
||||
if (x0==x1 && y0==y1) break;
|
||||
e2 = err;
|
||||
if (e2 >-dx) { err -= dy; x0 += sx; }
|
||||
if (e2 < dy) { err += dx; y0 += sy; }
|
||||
|
||||
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; // x distance & step
|
||||
const int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; // y distance & step
|
||||
|
||||
// single pixel (line length == 0)
|
||||
if (dx+dy == 0) {
|
||||
setPixelColorXY(x0, y0, c);
|
||||
return;
|
||||
}
|
||||
|
||||
if (soft) {
|
||||
// Xiaolin Wu’s algorithm
|
||||
const bool steep = dy > dx;
|
||||
if (steep) {
|
||||
// we need to go along longest dimension
|
||||
std::swap(x0,y0);
|
||||
std::swap(x1,y1);
|
||||
}
|
||||
if (x0 > x1) {
|
||||
// we need to go in increasing fashion
|
||||
std::swap(x0,x1);
|
||||
std::swap(y0,y1);
|
||||
}
|
||||
float gradient = x1-x0 == 0 ? 1.0f : float(y1-y0) / float(x1-x0);
|
||||
float intersectY = y0;
|
||||
for (int x = x0; x <= x1; x++) {
|
||||
unsigned keep = float(0xFFFF) * (intersectY-int(intersectY)); // how much color to keep
|
||||
unsigned seep = 0xFFFF - keep; // how much background to keep
|
||||
int y = int(intersectY);
|
||||
if (steep) std::swap(x,y); // temporaryly swap if steep
|
||||
// pixel coverage is determined by fractional part of y co-ordinate
|
||||
setPixelColorXY(x, y, color_blend(c, getPixelColorXY(x, y), keep, true));
|
||||
setPixelColorXY(x+int(steep), y+int(!steep), color_blend(c, getPixelColorXY(x+int(steep), y+int(!steep)), seep, true));
|
||||
intersectY += gradient;
|
||||
if (steep) std::swap(x,y); // restore if steep
|
||||
}
|
||||
} else {
|
||||
// Bresenham's algorithm
|
||||
int err = (dx>dy ? dx : -dy)/2; // error direction
|
||||
for (;;) {
|
||||
setPixelColorXY(x0, y0, c);
|
||||
if (x0==x1 && y0==y1) break;
|
||||
int e2 = err;
|
||||
if (e2 >-dx) { err -= dy; x0 += sx; }
|
||||
if (e2 < dy) { err += dx; y0 += sy; }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -74,11 +74,16 @@
|
||||
#define I_8266_U1_APA106_3 82
|
||||
#define I_8266_DM_APA106_3 83
|
||||
#define I_8266_BB_APA106_3 84
|
||||
//WS2805
|
||||
//WS2805 (RGBCW)
|
||||
#define I_8266_U0_2805_5 89
|
||||
#define I_8266_U1_2805_5 90
|
||||
#define I_8266_DM_2805_5 91
|
||||
#define I_8266_BB_2805_5 92
|
||||
//TM1914 (RGB)
|
||||
#define I_8266_U0_TM1914_3 99
|
||||
#define I_8266_U1_TM1914_3 100
|
||||
#define I_8266_DM_TM1914_3 101
|
||||
#define I_8266_BB_TM1914_3 102
|
||||
|
||||
/*** ESP32 Neopixel methods ***/
|
||||
//RGB
|
||||
@ -117,10 +122,14 @@
|
||||
#define I_32_RN_APA106_3 85
|
||||
#define I_32_I0_APA106_3 86
|
||||
#define I_32_I1_APA106_3 87
|
||||
//WS2805
|
||||
//WS2805 (RGBCW)
|
||||
#define I_32_RN_2805_5 93
|
||||
#define I_32_I0_2805_5 94
|
||||
#define I_32_I1_2805_5 95
|
||||
//TM1914 (RGB)
|
||||
#define I_32_RN_TM1914_3 96
|
||||
#define I_32_I0_TM1914_3 97
|
||||
#define I_32_I1_TM1914_3 98
|
||||
|
||||
|
||||
//APA102
|
||||
@ -170,10 +179,10 @@
|
||||
#define B_8266_DM_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp8266DmaTm1814Method, NeoGammaNullMethod>
|
||||
#define B_8266_BB_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp8266BitBangTm1814Method, NeoGammaNullMethod>
|
||||
//TM1829 (RGB)
|
||||
#define B_8266_U0_TM2_4 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266Uart0Tm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_U1_TM2_4 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266Uart1Tm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_DM_TM2_4 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266DmaTm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_BB_TM2_4 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266BitBangTm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_U0_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266Uart0Tm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_U1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266Uart1Tm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_DM_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266DmaTm1829Method, NeoGammaNullMethod>
|
||||
#define B_8266_BB_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp8266BitBangTm1829Method, NeoGammaNullMethod>
|
||||
//UCS8903
|
||||
#define B_8266_U0_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp8266Uart0Ws2813Method, NeoGammaNullMethod> //3 chan, esp8266, gpio1
|
||||
#define B_8266_U1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp8266Uart1Ws2813Method, NeoGammaNullMethod> //3 chan, esp8266, gpio2
|
||||
@ -199,6 +208,11 @@
|
||||
#define B_8266_U1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266Uart1Ws2805Method, NeoGammaNullMethod> //esp8266, gpio2
|
||||
#define B_8266_DM_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266DmaWs2805Method, NeoGammaNullMethod> //esp8266, gpio3
|
||||
#define B_8266_BB_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp8266BitBangWs2805Method, NeoGammaNullMethod> //esp8266, bb
|
||||
//TM1914 (RGB)
|
||||
#define B_8266_U0_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266Uart0Tm1914Method, NeoGammaNullMethod>
|
||||
#define B_8266_U1_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266Uart1Tm1914Method, NeoGammaNullMethod>
|
||||
#define B_8266_DM_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266DmaTm1914Method, NeoGammaNullMethod>
|
||||
#define B_8266_BB_TM1914_3 NeoPixelBusLg<NeoRgbTm1914Feature, NeoEsp8266BitBangTm1914Method, NeoGammaNullMethod>
|
||||
#endif
|
||||
|
||||
/*** ESP32 Neopixel methods ***/
|
||||
@ -210,8 +224,11 @@
|
||||
//#define B_32_I0_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1Ws2812xMethod, NeoGammaNullMethod>
|
||||
//#define B_32_I1_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_NEO_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Ws2812xMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//RGBW
|
||||
#define B_32_RN_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32RmtNSk6812Method, NeoGammaNullMethod>
|
||||
@ -220,8 +237,11 @@
|
||||
//#define B_32_I0_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s0X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1Sk6812Method, NeoGammaNullMethod>
|
||||
//#define B_32_I1_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_NEO_4 NeoPixelBusLg<NeoGrbwFeature, NeoEsp32I2s1X8Sk6812Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//400Kbps
|
||||
#define B_32_RN_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtN400KbpsMethod, NeoGammaNullMethod>
|
||||
@ -230,8 +250,11 @@
|
||||
//#define B_32_I0_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1400KbpsMethod, NeoGammaNullMethod>
|
||||
//#define B_32_I1_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_400_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8400KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//TM1814 (RGBW)
|
||||
#define B_32_RN_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32RmtNTm1814Method, NeoGammaNullMethod>
|
||||
@ -240,8 +263,11 @@
|
||||
//#define B_32_I0_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s0X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1Tm1814Method, NeoGammaNullMethod>
|
||||
//#define B_32_I1_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_TM1_4 NeoPixelBusLg<NeoWrgbTm1814Feature, NeoEsp32I2s1X8Tm1814Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//TM1829 (RGB)
|
||||
#define B_32_RN_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32RmtNTm1829Method, NeoGammaNullMethod>
|
||||
@ -250,8 +276,11 @@
|
||||
//#define B_32_I0_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s0X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1Tm1829Method, NeoGammaNullMethod>
|
||||
//#define B_32_I1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_TM2_3 NeoPixelBusLg<NeoBrgFeature, NeoEsp32I2s1X8Tm1829Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//UCS8903
|
||||
#define B_32_RN_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
|
||||
@ -260,8 +289,11 @@
|
||||
//#define B_32_I0_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s0X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
|
||||
//#define B_32_I1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_UCS_3 NeoPixelBusLg<NeoRgbUcs8903Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//UCS8904
|
||||
#define B_32_RN_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
|
||||
@ -270,8 +302,11 @@
|
||||
//#define B_32_I0_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s0X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
|
||||
//#define B_32_I1_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
|
||||
#else
|
||||
#define B_32_I1_UCS_4 NeoPixelBusLg<NeoRgbwUcs8904Feature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod>// parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
#define B_32_RN_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32RmtNApa106Method, NeoGammaNullMethod>
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
@ -279,8 +314,11 @@
|
||||
//#define B_32_I0_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s0X8Apa106Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1Apa106Method, NeoGammaNullMethod>
|
||||
//#define B_32_I1_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Apa106Method, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_APA106_3 NeoPixelBusLg<NeoGrbFeature, NeoEsp32I2s1X8Apa106Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//FW1906 GRBCW
|
||||
#define B_32_RN_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32RmtNWs2812xMethod, NeoGammaNullMethod>
|
||||
@ -289,8 +327,11 @@
|
||||
//#define B_32_I0_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s0X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1800KbpsMethod, NeoGammaNullMethod>
|
||||
//#define B_32_I1_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_FW6_5 NeoPixelBusLg<NeoGrbcwxFeature, NeoEsp32I2s1X8800KbpsMethod, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//WS2805 RGBWC
|
||||
#define B_32_RN_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32RmtNWs2805Method, NeoGammaNullMethod>
|
||||
@ -299,8 +340,24 @@
|
||||
//#define B_32_I0_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s0X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1Ws2805Method, NeoGammaNullMethod>
|
||||
//#define B_32_I1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
|
||||
#else
|
||||
#define B_32_I1_2805_5 NeoPixelBusLg<NeoGrbwwFeature, NeoEsp32I2s1X8Ws2805Method, NeoGammaNullMethod> // parallel I2S
|
||||
#endif
|
||||
#endif
|
||||
//TM1914 (RGB)
|
||||
#define B_32_RN_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32RmtNTm1914Method, NeoGammaNullMethod>
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
#define B_32_I0_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s0Tm1914Method, NeoGammaNullMethod>
|
||||
//#define B_32_I0_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s0X8Tm1914Method, NeoGammaNullMethod>
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define B_32_I1_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s1Tm1914Method, NeoGammaNullMethod>
|
||||
#else
|
||||
#define B_32_I1_TM1914_3 NeoPixelBusLg<NeoGrbTm1914Feature, NeoEsp32I2s1X8Tm1914Method, NeoGammaNullMethod>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@ -363,6 +420,13 @@ class PolyBus {
|
||||
tm1814_strip->SetPixelSettings(NeoTm1814Settings(/*R*/225, /*G*/225, /*B*/225, /*W*/225));
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static void beginTM1914(void* busPtr) {
|
||||
T tm1914_strip = static_cast<T>(busPtr);
|
||||
tm1914_strip->Begin();
|
||||
tm1914_strip->SetPixelSettings(NeoTm1914Settings()); //NeoTm1914_Mode_DinFdinAutoSwitch, NeoTm1914_Mode_DinOnly, NeoTm1914_Mode_FdinOnly
|
||||
}
|
||||
|
||||
static void begin(void* busPtr, uint8_t busType, uint8_t* pins, uint16_t clock_kHz = 0U) {
|
||||
switch (busType) {
|
||||
case I_NONE: break;
|
||||
@ -383,10 +447,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: beginTM1814<B_8266_U1_TM1_4*>(busPtr); break;
|
||||
case I_8266_DM_TM1_4: beginTM1814<B_8266_DM_TM1_4*>(busPtr); break;
|
||||
case I_8266_BB_TM1_4: beginTM1814<B_8266_BB_TM1_4*>(busPtr); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_4*>(busPtr))->Begin(); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_4*>(busPtr))->Begin(); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_4*>(busPtr))->Begin(); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_4*>(busPtr))->Begin(); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_3*>(busPtr))->Begin(); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_3*>(busPtr))->Begin(); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_3*>(busPtr))->Begin(); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_3*>(busPtr))->Begin(); break;
|
||||
case I_HS_DOT_3: beginDotStar<B_HS_DOT_3*>(busPtr, -1, -1, -1, -1, clock_kHz); break;
|
||||
case I_HS_LPD_3: beginDotStar<B_HS_LPD_3*>(busPtr, -1, -1, -1, -1, clock_kHz); break;
|
||||
case I_HS_LPO_3: beginDotStar<B_HS_LPO_3*>(busPtr, -1, -1, -1, -1, clock_kHz); break;
|
||||
@ -412,6 +476,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: (static_cast<B_8266_U1_2805_5*>(busPtr))->Begin(); break;
|
||||
case I_8266_DM_2805_5: (static_cast<B_8266_DM_2805_5*>(busPtr))->Begin(); break;
|
||||
case I_8266_BB_2805_5: (static_cast<B_8266_BB_2805_5*>(busPtr))->Begin(); break;
|
||||
case I_8266_U0_TM1914_3: beginTM1914<B_8266_U0_TM1914_3*>(busPtr); break;
|
||||
case I_8266_U1_TM1914_3: beginTM1914<B_8266_U1_TM1914_3*>(busPtr); break;
|
||||
case I_8266_DM_TM1914_3: beginTM1914<B_8266_DM_TM1914_3*>(busPtr); break;
|
||||
case I_8266_BB_TM1914_3: beginTM1914<B_8266_BB_TM1914_3*>(busPtr); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: (static_cast<B_32_RN_NEO_3*>(busPtr))->Begin(); break;
|
||||
@ -480,6 +548,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: (static_cast<B_32_I1_2805_5*>(busPtr))->Begin(); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: beginTM1914<B_32_RN_TM1914_3*>(busPtr); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: beginTM1914<B_32_I0_TM1914_3*>(busPtr); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: beginTM1914<B_32_I1_TM1914_3*>(busPtr); break;
|
||||
#endif
|
||||
// ESP32 can (and should, to avoid inadvertantly driving the chip select signal) specify the pins used for SPI, but only in begin()
|
||||
case I_HS_DOT_3: beginDotStar<B_HS_DOT_3*>(busPtr, pins[1], -1, pins[0], -1, clock_kHz); break;
|
||||
case I_HS_LPD_3: beginDotStar<B_HS_LPD_3*>(busPtr, pins[1], -1, pins[0], -1, clock_kHz); break;
|
||||
@ -499,7 +574,11 @@ class PolyBus {
|
||||
#if defined(ARDUINO_ARCH_ESP32) && !(defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
|
||||
// NOTE: "channel" is only used on ESP32 (and its variants) for RMT channel allocation
|
||||
// since 0.15.0-b3 I2S1 is favoured for classic ESP32 and moved to position 0 (channel 0) so we need to subtract 1 for correct RMT allocation
|
||||
#ifdef WLED_USE_PARALLEL_I2S
|
||||
if (channel > 7) channel -= 8; // accommodate parallel I2S1 which is used 1st on classic ESP32
|
||||
#else
|
||||
if (channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
|
||||
#endif
|
||||
#endif
|
||||
void* busPtr = nullptr;
|
||||
switch (busType) {
|
||||
@ -521,10 +600,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: busPtr = new B_8266_U1_TM1_4(len, pins[0]); break;
|
||||
case I_8266_DM_TM1_4: busPtr = new B_8266_DM_TM1_4(len, pins[0]); break;
|
||||
case I_8266_BB_TM1_4: busPtr = new B_8266_BB_TM1_4(len, pins[0]); break;
|
||||
case I_8266_U0_TM2_3: busPtr = new B_8266_U0_TM2_4(len, pins[0]); break;
|
||||
case I_8266_U1_TM2_3: busPtr = new B_8266_U1_TM2_4(len, pins[0]); break;
|
||||
case I_8266_DM_TM2_3: busPtr = new B_8266_DM_TM2_4(len, pins[0]); break;
|
||||
case I_8266_BB_TM2_3: busPtr = new B_8266_BB_TM2_4(len, pins[0]); break;
|
||||
case I_8266_U0_TM2_3: busPtr = new B_8266_U0_TM2_3(len, pins[0]); break;
|
||||
case I_8266_U1_TM2_3: busPtr = new B_8266_U1_TM2_3(len, pins[0]); break;
|
||||
case I_8266_DM_TM2_3: busPtr = new B_8266_DM_TM2_3(len, pins[0]); break;
|
||||
case I_8266_BB_TM2_3: busPtr = new B_8266_BB_TM2_3(len, pins[0]); break;
|
||||
case I_8266_U0_UCS_3: busPtr = new B_8266_U0_UCS_3(len, pins[0]); break;
|
||||
case I_8266_U1_UCS_3: busPtr = new B_8266_U1_UCS_3(len, pins[0]); break;
|
||||
case I_8266_DM_UCS_3: busPtr = new B_8266_DM_UCS_3(len, pins[0]); break;
|
||||
@ -545,6 +624,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: busPtr = new B_8266_U1_2805_5(len, pins[0]); break;
|
||||
case I_8266_DM_2805_5: busPtr = new B_8266_DM_2805_5(len, pins[0]); break;
|
||||
case I_8266_BB_2805_5: busPtr = new B_8266_BB_2805_5(len, pins[0]); break;
|
||||
case I_8266_U0_TM1914_3: busPtr = new B_8266_U0_TM1914_3(len, pins[0]); break;
|
||||
case I_8266_U1_TM1914_3: busPtr = new B_8266_U1_TM1914_3(len, pins[0]); break;
|
||||
case I_8266_DM_TM1914_3: busPtr = new B_8266_DM_TM1914_3(len, pins[0]); break;
|
||||
case I_8266_BB_TM1914_3: busPtr = new B_8266_BB_TM1914_3(len, pins[0]); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: busPtr = new B_32_RN_NEO_3(len, pins[0], (NeoBusChannel)channel); break;
|
||||
@ -613,6 +696,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: busPtr = new B_32_I1_2805_5(len, pins[0]); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: busPtr = new B_32_RN_TM1914_3(len, pins[0], (NeoBusChannel)channel); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: busPtr = new B_32_I0_TM1914_3(len, pins[0]); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: busPtr = new B_32_I1_TM1914_3(len, pins[0]); break;
|
||||
#endif
|
||||
#endif
|
||||
// for 2-wire: pins[1] is clk, pins[0] is dat. begin expects (len, clk, dat)
|
||||
case I_HS_DOT_3: busPtr = new B_HS_DOT_3(len, pins[1], pins[0]); break;
|
||||
@ -650,10 +740,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: (static_cast<B_8266_U1_TM1_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_DM_TM1_4: (static_cast<B_8266_DM_TM1_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_BB_TM1_4: (static_cast<B_8266_BB_TM1_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_4*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U0_UCS_3: (static_cast<B_8266_U0_UCS_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U1_UCS_3: (static_cast<B_8266_U1_UCS_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_DM_UCS_3: (static_cast<B_8266_DM_UCS_3*>(busPtr))->Show(consistent); break;
|
||||
@ -674,6 +764,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: (static_cast<B_8266_U1_2805_5*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_DM_2805_5: (static_cast<B_8266_DM_2805_5*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_BB_2805_5: (static_cast<B_8266_BB_2805_5*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U0_TM1914_3: (static_cast<B_8266_U0_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_U1_TM1914_3: (static_cast<B_8266_U1_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_DM_TM1914_3: (static_cast<B_8266_DM_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
case I_8266_BB_TM1914_3: (static_cast<B_8266_BB_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: (static_cast<B_32_RN_NEO_3*>(busPtr))->Show(consistent); break;
|
||||
@ -742,6 +836,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: (static_cast<B_32_I1_2805_5*>(busPtr))->Show(consistent); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: (static_cast<B_32_I1_TM1914_3*>(busPtr))->Show(consistent); break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->Show(consistent); break;
|
||||
case I_SS_DOT_3: (static_cast<B_SS_DOT_3*>(busPtr))->Show(consistent); break;
|
||||
@ -776,10 +877,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: return (static_cast<B_8266_U1_TM1_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_TM1_4: return (static_cast<B_8266_DM_TM1_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_BB_TM1_4: return (static_cast<B_8266_BB_TM1_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U0_TM2_3: return (static_cast<B_8266_U0_TM2_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U1_TM2_3: return (static_cast<B_8266_U1_TM2_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_TM2_3: return (static_cast<B_8266_DM_TM2_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_BB_TM2_3: return (static_cast<B_8266_BB_TM2_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U0_TM2_3: return (static_cast<B_8266_U0_TM2_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U1_TM2_3: return (static_cast<B_8266_U1_TM2_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_TM2_3: return (static_cast<B_8266_DM_TM2_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_BB_TM2_3: return (static_cast<B_8266_BB_TM2_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U0_UCS_3: return (static_cast<B_8266_U0_UCS_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U1_UCS_3: return (static_cast<B_8266_U1_UCS_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_UCS_3: return (static_cast<B_8266_DM_UCS_3*>(busPtr))->CanShow(); break;
|
||||
@ -799,6 +900,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: return (static_cast<B_8266_U1_2805_5*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_2805_5: return (static_cast<B_8266_DM_2805_5*>(busPtr))->CanShow(); break;
|
||||
case I_8266_BB_2805_5: return (static_cast<B_8266_BB_2805_5*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U0_TM1914_3: return (static_cast<B_8266_U0_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U1_TM1914_3: return (static_cast<B_8266_U1_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_TM1914_3: return (static_cast<B_8266_DM_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_BB_TM1914_3: return (static_cast<B_8266_BB_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: return (static_cast<B_32_RN_NEO_3*>(busPtr))->CanShow(); break;
|
||||
@ -867,6 +972,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: return (static_cast<B_32_I1_2805_5*>(busPtr))->CanShow(); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: return (static_cast<B_32_RN_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: return (static_cast<B_32_I0_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: return (static_cast<B_32_I1_TM1914_3*>(busPtr))->CanShow(); break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: return (static_cast<B_HS_DOT_3*>(busPtr))->CanShow(); break;
|
||||
case I_SS_DOT_3: return (static_cast<B_SS_DOT_3*>(busPtr))->CanShow(); break;
|
||||
@ -926,10 +1038,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: (static_cast<B_8266_U1_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
|
||||
case I_8266_DM_TM1_4: (static_cast<B_8266_DM_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
|
||||
case I_8266_BB_TM1_4: (static_cast<B_8266_BB_TM1_4*>(busPtr))->SetPixelColor(pix, col); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_4*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_U0_UCS_3: (static_cast<B_8266_U0_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
|
||||
case I_8266_U1_UCS_3: (static_cast<B_8266_U1_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
|
||||
case I_8266_DM_UCS_3: (static_cast<B_8266_DM_UCS_3*>(busPtr))->SetPixelColor(pix, Rgb48Color(RgbColor(col))); break;
|
||||
@ -950,6 +1062,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: (static_cast<B_8266_U1_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
|
||||
case I_8266_DM_2805_5: (static_cast<B_8266_DM_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
|
||||
case I_8266_BB_2805_5: (static_cast<B_8266_BB_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
|
||||
case I_8266_U0_TM1914_3: (static_cast<B_8266_U0_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_U1_TM1914_3: (static_cast<B_8266_U1_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_DM_TM1914_3: (static_cast<B_8266_DM_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_8266_BB_TM1914_3: (static_cast<B_8266_BB_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: (static_cast<B_32_RN_NEO_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
@ -1018,6 +1134,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: (static_cast<B_32_I1_2805_5*>(busPtr))->SetPixelColor(pix, RgbwwColor(col.R, col.G, col.B, cctWW, cctCW)); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: (static_cast<B_32_I1_TM1914_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
case I_SS_DOT_3: (static_cast<B_SS_DOT_3*>(busPtr))->SetPixelColor(pix, RgbColor(col)); break;
|
||||
@ -1052,10 +1175,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: (static_cast<B_8266_U1_TM1_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_DM_TM1_4: (static_cast<B_8266_DM_TM1_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_BB_TM1_4: (static_cast<B_8266_BB_TM1_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_4*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U0_TM2_3: (static_cast<B_8266_U0_TM2_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U1_TM2_3: (static_cast<B_8266_U1_TM2_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_DM_TM2_3: (static_cast<B_8266_DM_TM2_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_BB_TM2_3: (static_cast<B_8266_BB_TM2_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U0_UCS_3: (static_cast<B_8266_U0_UCS_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U1_UCS_3: (static_cast<B_8266_U1_UCS_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_DM_UCS_3: (static_cast<B_8266_DM_UCS_3*>(busPtr))->SetLuminance(b); break;
|
||||
@ -1076,6 +1199,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: (static_cast<B_8266_U1_2805_5*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_DM_2805_5: (static_cast<B_8266_DM_2805_5*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_BB_2805_5: (static_cast<B_8266_BB_2805_5*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U0_TM1914_3: (static_cast<B_8266_U0_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_U1_TM1914_3: (static_cast<B_8266_U1_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_DM_TM1914_3: (static_cast<B_8266_DM_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_8266_BB_TM1914_3: (static_cast<B_8266_BB_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: (static_cast<B_32_RN_NEO_3*>(busPtr))->SetLuminance(b); break;
|
||||
@ -1144,6 +1271,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: (static_cast<B_32_I1_2805_5*>(busPtr))->SetLuminance(b); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: (static_cast<B_32_RN_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: (static_cast<B_32_I0_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: (static_cast<B_32_I1_TM1914_3*>(busPtr))->SetLuminance(b); break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: (static_cast<B_HS_DOT_3*>(busPtr))->SetLuminance(b); break;
|
||||
case I_SS_DOT_3: (static_cast<B_SS_DOT_3*>(busPtr))->SetLuminance(b); break;
|
||||
@ -1179,10 +1313,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: col = (static_cast<B_8266_U1_TM1_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_DM_TM1_4: col = (static_cast<B_8266_DM_TM1_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_BB_TM1_4: col = (static_cast<B_8266_BB_TM1_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_U0_TM2_3: col = (static_cast<B_8266_U0_TM2_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_U1_TM2_3: col = (static_cast<B_8266_U1_TM2_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_DM_TM2_3: col = (static_cast<B_8266_DM_TM2_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_BB_TM2_3: col = (static_cast<B_8266_BB_TM2_4*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_U0_TM2_3: col = (static_cast<B_8266_U0_TM2_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_U1_TM2_3: col = (static_cast<B_8266_U1_TM2_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_DM_TM2_3: col = (static_cast<B_8266_DM_TM2_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_BB_TM2_3: col = (static_cast<B_8266_BB_TM2_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_U0_UCS_3: { Rgb48Color c = (static_cast<B_8266_U0_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R>>8,c.G>>8,c.B>>8,0); } break;
|
||||
case I_8266_U1_UCS_3: { Rgb48Color c = (static_cast<B_8266_U1_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R>>8,c.G>>8,c.B>>8,0); } break;
|
||||
case I_8266_DM_UCS_3: { Rgb48Color c = (static_cast<B_8266_DM_UCS_3*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R>>8,c.G>>8,c.B>>8,0); } break;
|
||||
@ -1203,6 +1337,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: { RgbwwColor c = (static_cast<B_8266_U1_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
|
||||
case I_8266_DM_2805_5: { RgbwwColor c = (static_cast<B_8266_DM_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
|
||||
case I_8266_BB_2805_5: { RgbwwColor c = (static_cast<B_8266_BB_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
|
||||
case I_8266_U0_TM1914_3: col = (static_cast<B_8266_U0_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_U1_TM1914_3: col = (static_cast<B_8266_U1_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_DM_TM1914_3: col = (static_cast<B_8266_DM_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_8266_BB_TM1914_3: col = (static_cast<B_8266_BB_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: col = (static_cast<B_32_RN_NEO_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
@ -1271,6 +1409,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: { RgbwwColor c = (static_cast<B_32_I1_2805_5*>(busPtr))->GetPixelColor(pix); col = RGBW32(c.R,c.G,c.B,max(c.WW,c.CW)); } break; // will not return original W
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: col = (static_cast<B_32_RN_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: col = (static_cast<B_32_I0_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: col = (static_cast<B_32_I1_TM1914_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: col = (static_cast<B_HS_DOT_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
case I_SS_DOT_3: col = (static_cast<B_SS_DOT_3*>(busPtr))->GetPixelColor(pix); break;
|
||||
@ -1324,10 +1469,10 @@ class PolyBus {
|
||||
case I_8266_U1_TM1_4: delete (static_cast<B_8266_U1_TM1_4*>(busPtr)); break;
|
||||
case I_8266_DM_TM1_4: delete (static_cast<B_8266_DM_TM1_4*>(busPtr)); break;
|
||||
case I_8266_BB_TM1_4: delete (static_cast<B_8266_BB_TM1_4*>(busPtr)); break;
|
||||
case I_8266_U0_TM2_3: delete (static_cast<B_8266_U0_TM2_4*>(busPtr)); break;
|
||||
case I_8266_U1_TM2_3: delete (static_cast<B_8266_U1_TM2_4*>(busPtr)); break;
|
||||
case I_8266_DM_TM2_3: delete (static_cast<B_8266_DM_TM2_4*>(busPtr)); break;
|
||||
case I_8266_BB_TM2_3: delete (static_cast<B_8266_BB_TM2_4*>(busPtr)); break;
|
||||
case I_8266_U0_TM2_3: delete (static_cast<B_8266_U0_TM2_3*>(busPtr)); break;
|
||||
case I_8266_U1_TM2_3: delete (static_cast<B_8266_U1_TM2_3*>(busPtr)); break;
|
||||
case I_8266_DM_TM2_3: delete (static_cast<B_8266_DM_TM2_3*>(busPtr)); break;
|
||||
case I_8266_BB_TM2_3: delete (static_cast<B_8266_BB_TM2_3*>(busPtr)); break;
|
||||
case I_8266_U0_UCS_3: delete (static_cast<B_8266_U0_UCS_3*>(busPtr)); break;
|
||||
case I_8266_U1_UCS_3: delete (static_cast<B_8266_U1_UCS_3*>(busPtr)); break;
|
||||
case I_8266_DM_UCS_3: delete (static_cast<B_8266_DM_UCS_3*>(busPtr)); break;
|
||||
@ -1348,6 +1493,10 @@ class PolyBus {
|
||||
case I_8266_U1_2805_5: delete (static_cast<B_8266_U1_2805_5*>(busPtr)); break;
|
||||
case I_8266_DM_2805_5: delete (static_cast<B_8266_DM_2805_5*>(busPtr)); break;
|
||||
case I_8266_BB_2805_5: delete (static_cast<B_8266_BB_2805_5*>(busPtr)); break;
|
||||
case I_8266_U0_TM1914_3: delete (static_cast<B_8266_U0_TM1914_3*>(busPtr)); break;
|
||||
case I_8266_U1_TM1914_3: delete (static_cast<B_8266_U1_TM1914_3*>(busPtr)); break;
|
||||
case I_8266_DM_TM1914_3: delete (static_cast<B_8266_DM_TM1914_3*>(busPtr)); break;
|
||||
case I_8266_BB_TM1914_3: delete (static_cast<B_8266_BB_TM1914_3*>(busPtr)); break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
case I_32_RN_NEO_3: delete (static_cast<B_32_RN_NEO_3*>(busPtr)); break;
|
||||
@ -1416,6 +1565,13 @@ class PolyBus {
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_2805_5: delete (static_cast<B_32_I1_2805_5*>(busPtr)); break;
|
||||
#endif
|
||||
case I_32_RN_TM1914_3: delete (static_cast<B_32_RN_TM1914_3*>(busPtr)); break;
|
||||
#ifndef WLED_NO_I2S0_PIXELBUS
|
||||
case I_32_I0_TM1914_3: delete (static_cast<B_32_I0_TM1914_3*>(busPtr)); break;
|
||||
#endif
|
||||
#ifndef WLED_NO_I2S1_PIXELBUS
|
||||
case I_32_I1_TM1914_3: delete (static_cast<B_32_I1_TM1914_3*>(busPtr)); break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: delete (static_cast<B_HS_DOT_3*>(busPtr)); break;
|
||||
case I_SS_DOT_3: delete (static_cast<B_SS_DOT_3*>(busPtr)); break;
|
||||
@ -1481,6 +1637,8 @@ class PolyBus {
|
||||
return I_8266_U0_FW6_5 + offset;
|
||||
case TYPE_WS2805:
|
||||
return I_8266_U0_2805_5 + offset;
|
||||
case TYPE_TM1914:
|
||||
return I_8266_U0_TM1914_3 + offset;
|
||||
}
|
||||
#else //ESP32
|
||||
uint8_t offset = 0; // 0 = RMT (num 1-8), 1 = I2S0 (used by Audioreactive), 2 = I2S1
|
||||
@ -1498,9 +1656,15 @@ class PolyBus {
|
||||
//if (num > 3) offset = num -4; // I2S not supported yet
|
||||
#else
|
||||
// standard ESP32 has 8 RMT and 2 I2S channels
|
||||
#ifdef WLED_USE_PARALLEL_I2S
|
||||
if (num > 16) return I_NONE;
|
||||
if (num < 8) offset = 2; // prefer 8 parallel I2S1 channels
|
||||
if (num == 16) offset = 1;
|
||||
#else
|
||||
if (num > 9) return I_NONE;
|
||||
if (num > 8) offset = 1;
|
||||
if (num == 0) offset = 2; // prefer I2S1 for 1st bus (less flickering but more RAM needed)
|
||||
#endif
|
||||
#endif
|
||||
switch (busType) {
|
||||
case TYPE_WS2812_1CH_X3:
|
||||
@ -1526,6 +1690,8 @@ class PolyBus {
|
||||
return I_32_RN_FW6_5 + offset;
|
||||
case TYPE_WS2805:
|
||||
return I_32_RN_2805_5 + offset;
|
||||
case TYPE_TM1914:
|
||||
return I_32_RN_TM1914_3 + offset;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -124,7 +124,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
|
||||
CJSON(strip.panels, matrix[F("mpc")]);
|
||||
strip.panel.clear();
|
||||
JsonArray panels = matrix[F("panels")];
|
||||
uint8_t s = 0;
|
||||
int s = 0;
|
||||
if (!panels.isNull()) {
|
||||
strip.panel.reserve(max(1U,min((size_t)strip.panels,(size_t)WLED_MAX_PANELS))); // pre-allocate memory for panels
|
||||
for (JsonObject pnl : panels) {
|
||||
@ -156,7 +156,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
|
||||
JsonArray ins = hw_led["ins"];
|
||||
|
||||
if (fromFS || !ins.isNull()) {
|
||||
uint8_t s = 0; // bus iterator
|
||||
int s = 0; // bus iterator
|
||||
if (fromFS) BusManager::removeAll(); // can't safely manipulate busses directly in network callback
|
||||
uint32_t mem = 0, globalBufMem = 0;
|
||||
uint16_t maxlen = 0;
|
||||
@ -790,7 +790,7 @@ void serializeConfig() {
|
||||
JsonObject matrix = hw_led.createNestedObject(F("matrix"));
|
||||
matrix[F("mpc")] = strip.panels;
|
||||
JsonArray panels = matrix.createNestedArray(F("panels"));
|
||||
for (uint8_t i=0; i<strip.panel.size(); i++) {
|
||||
for (int i = 0; i < strip.panel.size(); i++) {
|
||||
JsonObject pnl = panels.createNestedObject();
|
||||
pnl["b"] = strip.panel[i].bottomStart;
|
||||
pnl["r"] = strip.panel[i].rightStart;
|
||||
@ -806,7 +806,7 @@ void serializeConfig() {
|
||||
|
||||
JsonArray hw_led_ins = hw_led.createNestedArray("ins");
|
||||
|
||||
for (uint8_t s = 0; s < BusManager::getNumBusses(); s++) {
|
||||
for (int s = 0; s < BusManager::getNumBusses(); s++) {
|
||||
Bus *bus = BusManager::getBus(s);
|
||||
if (!bus || bus->getLength()==0) break;
|
||||
JsonObject ins = hw_led_ins.createNestedObject();
|
||||
@ -815,7 +815,7 @@ void serializeConfig() {
|
||||
JsonArray ins_pin = ins.createNestedArray("pin");
|
||||
uint8_t pins[5];
|
||||
uint8_t nPins = bus->getPins(pins);
|
||||
for (uint8_t i = 0; i < nPins; i++) ins_pin.add(pins[i]);
|
||||
for (int i = 0; i < nPins; i++) ins_pin.add(pins[i]);
|
||||
ins[F("order")] = bus->getColorOrder();
|
||||
ins["rev"] = bus->isReversed();
|
||||
ins[F("skip")] = bus->skippedLeds();
|
||||
@ -829,7 +829,7 @@ void serializeConfig() {
|
||||
|
||||
JsonArray hw_com = hw.createNestedArray(F("com"));
|
||||
const ColorOrderMap& com = BusManager::getColorOrderMap();
|
||||
for (uint8_t s = 0; s < com.count(); s++) {
|
||||
for (int s = 0; s < com.count(); s++) {
|
||||
const ColorOrderMapEntry *entry = com.get(s);
|
||||
if (!entry) break;
|
||||
|
||||
@ -846,7 +846,7 @@ void serializeConfig() {
|
||||
JsonArray hw_btn_ins = hw_btn.createNestedArray("ins");
|
||||
|
||||
// configuration for all buttons
|
||||
for (uint8_t i=0; i<WLED_MAX_BUTTONS; i++) {
|
||||
for (int i = 0; i < WLED_MAX_BUTTONS; i++) {
|
||||
JsonObject hw_btn_ins_0 = hw_btn_ins.createNestedObject();
|
||||
hw_btn_ins_0["type"] = buttonType[i];
|
||||
JsonArray hw_btn_ins_0_pin = hw_btn_ins_0.createNestedArray("pin");
|
||||
|
@ -60,8 +60,12 @@
|
||||
#define WLED_MAX_BUSSES 6 // will allow 4 digital & 2 analog
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 4
|
||||
#else
|
||||
// the 10th digital bus (I2S0) will prevent Audioreactive usermod from functioning (it is last used though)
|
||||
// the last digital bus (I2S0) will prevent Audioreactive usermod from functioning
|
||||
#ifndef WLED_USE_PARALLEL_I2S
|
||||
#define WLED_MAX_BUSSES 10
|
||||
#else
|
||||
#define WLED_MAX_BUSSES 17
|
||||
#endif
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 0
|
||||
#endif
|
||||
#endif
|
||||
@ -268,6 +272,7 @@
|
||||
#define TYPE_SK6812_RGBW 30
|
||||
#define TYPE_TM1814 31
|
||||
#define TYPE_WS2805 32 //RGB + WW + CW
|
||||
#define TYPE_TM1914 33 //RGB
|
||||
//"Analog" types (40-47)
|
||||
#define TYPE_ONOFF 40 //binary output (relays etc.; NOT PWM)
|
||||
#define TYPE_ANALOG_1CH 41 //single channel PWM. Uses value of brightest RGBW channel
|
||||
|
@ -5,12 +5,12 @@
|
||||
<meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" name="viewport">
|
||||
<title>LED Settings</title>
|
||||
<script>
|
||||
var d=document,laprev=55,maxB=1,maxV=0,maxM=4000,maxPB=4096,maxL=1333,maxLbquot=0; //maximum bytes for LED allocation: 4kB for 8266, 32kB for 32
|
||||
var d=document,laprev=55,maxB=1,maxV=0,maxM=4000,maxPB=4096,maxL=1333,maxCO=10,maxLbquot=0; //maximum bytes for LED allocation: 4kB for 8266, 32kB for 32
|
||||
d.um_p = [];
|
||||
d.rsvd = [];
|
||||
d.ro_gpio = [];
|
||||
d.max_gpio = 50;
|
||||
var customStarts=false,startsDirty=[],maxCOOverrides=5;
|
||||
var customStarts=false,startsDirty=[];
|
||||
var loc = false, locip, locproto = "http:";
|
||||
function H(){window.open("https://kno.wled.ge/features/settings/#led-settings");}
|
||||
function B(){window.open(getURL("/settings"),"_self");}
|
||||
@ -57,8 +57,8 @@
|
||||
x.style.animation = 'none';
|
||||
timeout = setTimeout(function(){ x.className = x.className.replace("show", ""); }, 2900);
|
||||
}
|
||||
function bLimits(b,v,p,m,l) {
|
||||
maxB = b; maxV = v; maxM = m; maxPB = p; maxL = l;
|
||||
function bLimits(b,v,p,m,l,o) {
|
||||
maxB = b; maxV = v; maxM = m; maxPB = p; maxL = l; maxCO = o;
|
||||
}
|
||||
function pinsOK() {
|
||||
var ok = true;
|
||||
@ -138,7 +138,8 @@
|
||||
gId("psuMA").style.display = ppl ? 'none' : 'inline';
|
||||
gId("ppldis").style.display = ppl ? 'inline' : 'none';
|
||||
// set PPL minimum value and clear actual PPL limit if ABL disabled
|
||||
d.Sf.querySelectorAll("#mLC input[name^=MA]").forEach((i,n)=>{
|
||||
d.Sf.querySelectorAll("#mLC input[name^=MA]").forEach((i,x)=>{
|
||||
var n = String.fromCharCode((x<10?48:55)+x);
|
||||
gId("PSU"+n).style.display = ppl ? "inline" : "none";
|
||||
const t = parseInt(d.Sf["LT"+n].value); // LED type SELECT
|
||||
const c = parseInt(d.Sf["LC"+n].value); //get LED count
|
||||
@ -164,8 +165,9 @@
|
||||
if (parseInt(i.value) > 0) d.Sf.ABL.checked = true;
|
||||
});
|
||||
// select appropriate LED current
|
||||
d.Sf.querySelectorAll("#mLC select[name^=LAsel]").forEach((sel,n)=>{
|
||||
d.Sf.querySelectorAll("#mLC select[name^=LAsel]").forEach((sel,x)=>{
|
||||
sel.value = 0; // set custom
|
||||
var n = String.fromCharCode((x<10?48:55)+x);
|
||||
switch (parseInt(d.Sf["LA"+n].value)) {
|
||||
case 0: break; // disable ABL
|
||||
case 15: sel.value = 15; break;
|
||||
@ -361,7 +363,7 @@
|
||||
if (i<1) return 0;
|
||||
v = parseInt(d.getElementsByName("LS"+(i-1))[0].value) + parseInt(d.getElementsByName("LC"+(i-1))[0].value);
|
||||
var t = parseInt(d.getElementsByName("LT"+(i-1))[0].value);
|
||||
if (t > 31 && t < 48) v = 1; //PWM busses
|
||||
if (isPWM(t)) v = 1; //PWM busses
|
||||
if (isNaN(v)) return 0;
|
||||
return v;
|
||||
}
|
||||
@ -371,6 +373,7 @@
|
||||
var i = o.length;
|
||||
|
||||
if ((n==1 && i>=maxB+maxV) || (n==-1 && i==0)) return;
|
||||
var s = String.fromCharCode((n<10?48:55)+n);
|
||||
|
||||
var f = gId("mLC");
|
||||
if (n==1) {
|
||||
@ -378,7 +381,7 @@
|
||||
var cn = `<div class="iST">
|
||||
<hr class="sml">
|
||||
${i+1}:
|
||||
<select name="LT${i}" onchange="UI(true)">${i>=maxB ? '' :
|
||||
<select name="LT${s}" onchange="UI(true)">${i>=maxB ? '' :
|
||||
'<option value="22" selected>WS281x</option>\
|
||||
<option value="30">SK6812/WS2814 RGBW</option>\
|
||||
<option value="31">TM1814</option>\
|
||||
@ -386,6 +389,7 @@ ${i+1}:
|
||||
<option value="25">TM1829</option>\
|
||||
<option value="26">UCS8903</option>\
|
||||
<option value="27">APA106/PL9823</option>\
|
||||
<option value="33">TM1914</option>\
|
||||
<option value="28">FW1906 GRBCW</option>\
|
||||
<option value="29">UCS8904 RGBW</option>\
|
||||
<option value="32">WS2805 RGBCW</option>\
|
||||
@ -408,8 +412,8 @@ ${i+1}:
|
||||
<option value="88">DDP RGBW (network)</option>
|
||||
<option value="89">Art-Net RGBW (network)</option>
|
||||
</select><br>
|
||||
<div id="abl${i}">
|
||||
mA/LED: <select name="LAsel${i}" onchange="enLA(this,${i});UI();">
|
||||
<div id="abl${s}">
|
||||
mA/LED: <select name="LAsel${s}" onchange="enLA(this,${s});UI();">
|
||||
<option value="55" selected>55mA (typ. 5V WS281x)</option>
|
||||
<option value="35">35mA (eco WS2812)</option>
|
||||
<option value="30">30mA (typ. 12V)</option>
|
||||
@ -417,11 +421,11 @@ mA/LED: <select name="LAsel${i}" onchange="enLA(this,${i});UI();">
|
||||
<option value="15">15mA (seed/fairy pixels)</option>
|
||||
<option value="0">Custom</option>
|
||||
</select><br>
|
||||
<div id="LAdis${i}" style="display: none;">max. mA/LED: <input name="LA${i}" type="number" min="1" max="255" oninput="UI()"> mA<br></div>
|
||||
<div id="PSU${i}">PSU: <input name="MA${i}" type="number" class="xl" min="250" max="65000" oninput="UI()" value="250"> mA<br></div>
|
||||
<div id="LAdis${s}" style="display: none;">max. mA/LED: <input name="LA${s}" type="number" min="1" max="255" oninput="UI()"> mA<br></div>
|
||||
<div id="PSU${s}">PSU: <input name="MA${s}" type="number" class="xl" min="250" max="65000" oninput="UI()" value="250"> mA<br></div>
|
||||
</div>
|
||||
<div id="co${i}" style="display:inline">Color Order:
|
||||
<select name="CO${i}">
|
||||
<div id="co${s}" style="display:inline">Color Order:
|
||||
<select name="CO${s}">
|
||||
<option value="0">GRB</option>
|
||||
<option value="1">RGB</option>
|
||||
<option value="2">BRG</option>
|
||||
@ -429,21 +433,21 @@ mA/LED: <select name="LAsel${i}" onchange="enLA(this,${i});UI();">
|
||||
<option value="4">BGR</option>
|
||||
<option value="5">GBR</option>
|
||||
</select></div>
|
||||
<div id="dig${i}w" style="display:none">Swap: <select name="WO${i}"><option value="0">None</option><option value="1">W & B</option><option value="2">W & G</option><option value="3">W & R</option></select></div>
|
||||
<div id="dig${i}l" style="display:none">Clock: <select name="SP${i}"><option value="0">Slowest</option><option value="1">Slow</option><option value="2">Normal</option><option value="3">Fast</option><option value="4">Fastest</option></select></div>
|
||||
<div id="dig${s}w" style="display:none">Swap: <select name="WO${s}"><option value="0">None</option><option value="1">W & B</option><option value="2">W & G</option><option value="3">W & R</option></select></div>
|
||||
<div id="dig${s}l" style="display:none">Clock: <select name="SP${s}"><option value="0">Slowest</option><option value="1">Slow</option><option value="2">Normal</option><option value="3">Fast</option><option value="4">Fastest</option></select></div>
|
||||
<div>
|
||||
<span id="psd${i}">Start:</span> <input type="number" name="LS${i}" id="ls${i}" class="l starts" min="0" max="8191" value="${lastEnd(i)}" oninput="startsDirty[${i}]=true;UI();" required />
|
||||
<div id="dig${i}c" style="display:inline">Length: <input type="number" name="LC${i}" class="l" min="1" max="${maxPB}" value="1" required oninput="UI()" /></div><br>
|
||||
<span id="psd${s}">Start:</span> <input type="number" name="LS${s}" id="ls${s}" class="l starts" min="0" max="8191" value="${lastEnd(i)}" oninput="startsDirty[${i}]=true;UI();" required />
|
||||
<div id="dig${s}c" style="display:inline">Length: <input type="number" name="LC${s}" class="l" min="1" max="${maxPB}" value="1" required oninput="UI()" /></div><br>
|
||||
</div>
|
||||
<span id="p0d${i}">GPIO:</span><input type="number" name="L0${i}" required class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p1d${i}"></span><input type="number" name="L1${i}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p2d${i}"></span><input type="number" name="L2${i}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p3d${i}"></span><input type="number" name="L3${i}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p4d${i}"></span><input type="number" name="L4${i}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<div id="dig${i}r" style="display:inline"><br><span id="rev${i}">Reversed</span>: <input type="checkbox" name="CV${i}"></div>
|
||||
<div id="dig${i}s" style="display:inline"><br>Skip first LEDs: <input type="number" name="SL${i}" min="0" max="255" value="0" oninput="UI()"></div>
|
||||
<div id="dig${i}f" style="display:inline"><br>Off Refresh: <input id="rf${i}" type="checkbox" name="RF${i}"></div>
|
||||
<div id="dig${i}a" style="display:inline"><br>Auto-calculate white channel from RGB:<br><select name="AW${i}"><option value=0>None</option><option value=1>Brighter</option><option value=2>Accurate</option><option value=3>Dual</option><option value=4>Max</option></select> </div>
|
||||
<span id="p0d${s}">GPIO:</span><input type="number" name="L0${s}" required class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p1d${s}"></span><input type="number" name="L1${s}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p2d${s}"></span><input type="number" name="L2${s}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p3d${s}"></span><input type="number" name="L3${s}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<span id="p4d${s}"></span><input type="number" name="L4${s}" class="s" onchange="UI();pinUpd(this);"/>
|
||||
<div id="dig${s}r" style="display:inline"><br><span id="rev${s}">Reversed</span>: <input type="checkbox" name="CV${s}"></div>
|
||||
<div id="dig${s}s" style="display:inline"><br>Skip first LEDs: <input type="number" name="SL${s}" min="0" max="255" value="0" oninput="UI()"></div>
|
||||
<div id="dig${s}f" style="display:inline"><br>Off Refresh: <input id="rf${s}" type="checkbox" name="RF${s}"></div>
|
||||
<div id="dig${s}a" style="display:inline"><br>Auto-calculate white channel from RGB:<br><select name="AW${s}"><option value=0>None</option><option value=1>Brighter</option><option value=2>Accurate</option><option value=3>Dual</option><option value=4>Max</option></select> </div>
|
||||
</div>`;
|
||||
f.insertAdjacentHTML("beforeend", cn);
|
||||
}
|
||||
@ -461,14 +465,14 @@ mA/LED: <select name="LAsel${i}" onchange="enLA(this,${i});UI();">
|
||||
|
||||
function addCOM(start=0,len=1,co=0) {
|
||||
var i = d.getElementsByClassName("com_entry").length;
|
||||
if (i >= 10) return;
|
||||
|
||||
if (i >= maxCO) return;
|
||||
var s = String.fromCharCode((i<10?48:55)+i);
|
||||
var b = `<div class="com_entry">
|
||||
<hr class="sml">
|
||||
${i+1}: Start: <input type="number" name="XS${i}" id="xs${i}" class="l starts" min="0" max="65535" value="${start}" oninput="UI();" required="">
|
||||
Length: <input type="number" name="XC${i}" id="xc${i}" class="l" min="1" max="65535" value="${len}" required="" oninput="UI()">
|
||||
${i+1}: Start: <input type="number" name="XS${s}" id="xs${s}" class="l starts" min="0" max="65535" value="${start}" oninput="UI();" required="">
|
||||
Length: <input type="number" name="XC${s}" id="xc${s}" class="l" min="1" max="65535" value="${len}" required="" oninput="UI()">
|
||||
<div>Color Order:
|
||||
<select id="xo${i}" name="XO${i}">
|
||||
<select id="xo${s}" name="XO${s}">
|
||||
<option value="0">GRB</option>
|
||||
<option value="1">RGB</option>
|
||||
<option value="2">BRG</option>
|
||||
@ -476,7 +480,7 @@ Length: <input type="number" name="XC${i}" id="xc${i}" class="l" min="1" max="65
|
||||
<option value="4">BGR</option>
|
||||
<option value="5">GBR</option>
|
||||
</select>
|
||||
Swap: <select id="xw${i}" name="XW${i}">
|
||||
Swap: <select id="xw${s}" name="XW${s}">
|
||||
<option value="0">Use global</option>
|
||||
<option value="1">W & B</option>
|
||||
<option value="2">W & G</option>
|
||||
@ -484,8 +488,8 @@ Swap: <select id="xw${i}" name="XW${i}">
|
||||
</select>
|
||||
</div></div>`;
|
||||
gId("com_entries").insertAdjacentHTML("beforeend", b);
|
||||
gId("xo"+i).value = co & 0x0F;
|
||||
gId("xw"+i).value = co >> 4;
|
||||
gId("xo"+s).value = co & 0x0F;
|
||||
gId("xw"+s).value = co >> 4;
|
||||
btnCOM(i+1);
|
||||
UI();
|
||||
}
|
||||
@ -501,7 +505,7 @@ Swap: <select id="xw${i}" name="XW${i}">
|
||||
|
||||
function resetCOM(_newMaxCOOverrides=undefined) {
|
||||
if (_newMaxCOOverrides) {
|
||||
maxCOOverrides = _newMaxCOOverrides;
|
||||
maxCO = _newMaxCOOverrides;
|
||||
}
|
||||
for (let e of d.getElementsByClassName("com_entry")) {
|
||||
e.remove();
|
||||
@ -510,16 +514,15 @@ Swap: <select id="xw${i}" name="XW${i}">
|
||||
}
|
||||
|
||||
function btnCOM(i) {
|
||||
gId("com_add").style.display = (i<maxCOOverrides) ? "inline":"none";
|
||||
gId("com_add").style.display = (i<maxCO) ? "inline":"none";
|
||||
gId("com_rem").style.display = (i>0) ? "inline":"none";
|
||||
}
|
||||
|
||||
function addBtn(i,p,t) {
|
||||
var c = gId("btns").innerHTML;
|
||||
var bt = "BT" + String.fromCharCode((i<10?48:55)+i);
|
||||
var be = "BE" + String.fromCharCode((i<10?48:55)+i);
|
||||
c += `Button ${i} GPIO: <input type="number" name="${bt}" onchange="UI()" class="xs" value="${p}">`;
|
||||
c += ` <select name="${be}">`
|
||||
var s = String.fromCharCode((i<10?48:55)+i);
|
||||
c += `Button ${i} GPIO: <input type="number" name="BT${s}" onchange="UI()" class="xs" value="${p}">`;
|
||||
c += ` <select name="BE${s}">`
|
||||
c += `<option value="0" ${t==0?"selected":""}>Disabled</option>`;
|
||||
c += `<option value="2" ${t==2?"selected":""}>Pushbutton</option>`;
|
||||
c += `<option value="3" ${t==3?"selected":""}>Push inverted</option>`;
|
||||
@ -530,7 +533,7 @@ Swap: <select id="xw${i}" name="XW${i}">
|
||||
c += `<option value="8" ${t==8?"selected":""}>Analog inverted</option>`;
|
||||
c += `<option value="9" ${t==9?"selected":""}>Touch (switch)</option>`;
|
||||
c += `</select>`;
|
||||
c += `<span style="cursor: pointer;" onclick="off('${bt}')"> ✕</span><br>`;
|
||||
c += `<span style="cursor: pointer;" onclick="off('BT${s}')"> ✕</span><br>`;
|
||||
gId("btns").innerHTML = c;
|
||||
}
|
||||
function tglSi(cs) {
|
||||
|
@ -398,7 +398,7 @@ void clearEEPROM();
|
||||
#endif
|
||||
|
||||
//wled_math.cpp
|
||||
#ifndef WLED_USE_REAL_MATH
|
||||
#if defined(ESP8266) && !defined(WLED_USE_REAL_MATH)
|
||||
template <typename T> T atan_t(T x);
|
||||
float cos_t(float phi);
|
||||
float sin_t(float x);
|
||||
@ -409,14 +409,14 @@ void clearEEPROM();
|
||||
float fmod_t(float num, float denom);
|
||||
#else
|
||||
#include <math.h>
|
||||
#define sin_t sin
|
||||
#define cos_t cos
|
||||
#define tan_t tan
|
||||
#define asin_t asin
|
||||
#define acos_t acos
|
||||
#define atan_t atan
|
||||
#define fmod_t fmod
|
||||
#define floor_t floor
|
||||
#define sin_t sinf
|
||||
#define cos_t cosf
|
||||
#define tan_t tanf
|
||||
#define asin_t asinf
|
||||
#define acos_t acosf
|
||||
#define atan_t atanf
|
||||
#define fmod_t fmodf
|
||||
#define floor_t floorf
|
||||
#endif
|
||||
|
||||
//wled_serial.cpp
|
||||
|
@ -2,20 +2,8 @@
|
||||
#include "wled.h"
|
||||
#include "fcn_declare.h"
|
||||
|
||||
// on esp8266, building with `-D WLED_USE_UNREAL_MATH` saves around 7Kb flash and 1KB RAM
|
||||
// warning: causes errors in sunset calculations, see #3400
|
||||
#if defined(WLED_USE_UNREAL_MATH)
|
||||
#define sinf sin_t
|
||||
#define asinf asin_t
|
||||
#define cosf cos_t
|
||||
#define acosf acos_t
|
||||
#define tanf tan_t
|
||||
#define atanf atan_t
|
||||
#define fmodf fmod_t
|
||||
#define floorf floor_t
|
||||
#else
|
||||
#include <math.h>
|
||||
#endif
|
||||
// WARNING: may cause errors in sunset calculations on ESP8266, see #3400
|
||||
// building with `-D WLED_USE_REAL_MATH` will prevent those errors at the expense of flash and RAM
|
||||
|
||||
/*
|
||||
* Acquires time from NTP server
|
||||
@ -439,7 +427,7 @@ static int getSunriseUTC(int year, int month, int day, float lat, float lon, boo
|
||||
//1. first calculate the day of the year
|
||||
float N1 = 275 * month / 9;
|
||||
float N2 = (month + 9) / 12;
|
||||
float N3 = (1.0f + floorf((year - 4 * floorf(year / 4) + 2.0f) / 3.0f));
|
||||
float N3 = (1.0f + floor_t((year - 4 * floor_t(year / 4) + 2.0f) / 3.0f));
|
||||
float N = N1 - (N2 * N3) + day - 30.0f;
|
||||
|
||||
//2. convert the longitude to hour value and calculate an approximate time
|
||||
@ -450,37 +438,37 @@ static int getSunriseUTC(int year, int month, int day, float lat, float lon, boo
|
||||
float M = (0.9856f * t) - 3.289f;
|
||||
|
||||
//4. calculate the Sun's true longitude
|
||||
float L = fmodf(M + (1.916f * sinf(DEG_TO_RAD*M)) + (0.02f * sinf(2*DEG_TO_RAD*M)) + 282.634f, 360.0f);
|
||||
float L = fmod_t(M + (1.916f * sin_t(DEG_TO_RAD*M)) + (0.02f * sin_t(2*DEG_TO_RAD*M)) + 282.634f, 360.0f);
|
||||
|
||||
//5a. calculate the Sun's right ascension
|
||||
float RA = fmodf(RAD_TO_DEG*atanf(0.91764f * tanf(DEG_TO_RAD*L)), 360.0f);
|
||||
float RA = fmod_t(RAD_TO_DEG*atan_t(0.91764f * tan_t(DEG_TO_RAD*L)), 360.0f);
|
||||
|
||||
//5b. right ascension value needs to be in the same quadrant as L
|
||||
float Lquadrant = floorf( L/90) * 90;
|
||||
float RAquadrant = floorf(RA/90) * 90;
|
||||
float Lquadrant = floor_t( L/90) * 90;
|
||||
float RAquadrant = floor_t(RA/90) * 90;
|
||||
RA = RA + (Lquadrant - RAquadrant);
|
||||
|
||||
//5c. right ascension value needs to be converted into hours
|
||||
RA /= 15.0f;
|
||||
|
||||
//6. calculate the Sun's declination
|
||||
float sinDec = 0.39782f * sinf(DEG_TO_RAD*L);
|
||||
float cosDec = cosf(asinf(sinDec));
|
||||
float sinDec = 0.39782f * sin_t(DEG_TO_RAD*L);
|
||||
float cosDec = cos_t(asin_t(sinDec));
|
||||
|
||||
//7a. calculate the Sun's local hour angle
|
||||
float cosH = (sinf(DEG_TO_RAD*ZENITH) - (sinDec * sinf(DEG_TO_RAD*lat))) / (cosDec * cosf(DEG_TO_RAD*lat));
|
||||
float cosH = (sin_t(DEG_TO_RAD*ZENITH) - (sinDec * sin_t(DEG_TO_RAD*lat))) / (cosDec * cos_t(DEG_TO_RAD*lat));
|
||||
if ((cosH > 1.0f) && !sunset) return INT16_MAX; // the sun never rises on this location (on the specified date)
|
||||
if ((cosH < -1.0f) && sunset) return INT16_MAX; // the sun never sets on this location (on the specified date)
|
||||
|
||||
//7b. finish calculating H and convert into hours
|
||||
float H = sunset ? RAD_TO_DEG*acosf(cosH) : 360 - RAD_TO_DEG*acosf(cosH);
|
||||
float H = sunset ? RAD_TO_DEG*acos_t(cosH) : 360 - RAD_TO_DEG*acos_t(cosH);
|
||||
H /= 15.0f;
|
||||
|
||||
//8. calculate local mean time of rising/setting
|
||||
float T = H + RA - (0.06571f * t) - 6.622f;
|
||||
|
||||
//9. adjust back to UTC
|
||||
float UT = fmodf(T - lngHour, 24.0f);
|
||||
float UT = fmod_t(T - lngHour, 24.0f);
|
||||
|
||||
// return in minutes from midnight
|
||||
return UT*60;
|
||||
|
@ -136,27 +136,28 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
|
||||
useGlobalLedBuffer = request->hasArg(F("LD"));
|
||||
|
||||
bool busesChanged = false;
|
||||
for (uint8_t s = 0; s < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; s++) {
|
||||
char lp[4] = "L0"; lp[2] = 48+s; lp[3] = 0; //ascii 0-9 //strip data pin
|
||||
char lc[4] = "LC"; lc[2] = 48+s; lc[3] = 0; //strip length
|
||||
char co[4] = "CO"; co[2] = 48+s; co[3] = 0; //strip color order
|
||||
char lt[4] = "LT"; lt[2] = 48+s; lt[3] = 0; //strip type
|
||||
char ls[4] = "LS"; ls[2] = 48+s; ls[3] = 0; //strip start LED
|
||||
char cv[4] = "CV"; cv[2] = 48+s; cv[3] = 0; //strip reverse
|
||||
char sl[4] = "SL"; sl[2] = 48+s; sl[3] = 0; //skip first N LEDs
|
||||
char rf[4] = "RF"; rf[2] = 48+s; rf[3] = 0; //refresh required
|
||||
char aw[4] = "AW"; aw[2] = 48+s; aw[3] = 0; //auto white mode
|
||||
char wo[4] = "WO"; wo[2] = 48+s; wo[3] = 0; //channel swap
|
||||
char sp[4] = "SP"; sp[2] = 48+s; sp[3] = 0; //bus clock speed (DotStar & PWM)
|
||||
char la[4] = "LA"; la[2] = 48+s; la[3] = 0; //LED mA
|
||||
char ma[4] = "MA"; ma[2] = 48+s; ma[3] = 0; //max mA
|
||||
for (int s = 0; s < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; s++) {
|
||||
int offset = s < 10 ? 48 : 55;
|
||||
char lp[4] = "L0"; lp[2] = offset+s; lp[3] = 0; //ascii 0-9 //strip data pin
|
||||
char lc[4] = "LC"; lc[2] = offset+s; lc[3] = 0; //strip length
|
||||
char co[4] = "CO"; co[2] = offset+s; co[3] = 0; //strip color order
|
||||
char lt[4] = "LT"; lt[2] = offset+s; lt[3] = 0; //strip type
|
||||
char ls[4] = "LS"; ls[2] = offset+s; ls[3] = 0; //strip start LED
|
||||
char cv[4] = "CV"; cv[2] = offset+s; cv[3] = 0; //strip reverse
|
||||
char sl[4] = "SL"; sl[2] = offset+s; sl[3] = 0; //skip first N LEDs
|
||||
char rf[4] = "RF"; rf[2] = offset+s; rf[3] = 0; //refresh required
|
||||
char aw[4] = "AW"; aw[2] = offset+s; aw[3] = 0; //auto white mode
|
||||
char wo[4] = "WO"; wo[2] = offset+s; wo[3] = 0; //channel swap
|
||||
char sp[4] = "SP"; sp[2] = offset+s; sp[3] = 0; //bus clock speed (DotStar & PWM)
|
||||
char la[4] = "LA"; la[2] = offset+s; la[3] = 0; //LED mA
|
||||
char ma[4] = "MA"; ma[2] = offset+s; ma[3] = 0; //max mA
|
||||
if (!request->hasArg(lp)) {
|
||||
DEBUG_PRINT(F("No data for "));
|
||||
DEBUG_PRINTLN(s);
|
||||
break;
|
||||
}
|
||||
for (uint8_t i = 0; i < 5; i++) {
|
||||
lp[1] = 48+i;
|
||||
for (int i = 0; i < 5; i++) {
|
||||
lp[1] = offset+i;
|
||||
if (!request->hasArg(lp)) break;
|
||||
pins[i] = (request->arg(lp).length() > 0) ? request->arg(lp).toInt() : 255;
|
||||
}
|
||||
@ -210,11 +211,12 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
|
||||
//doInitBusses = busesChanged; // we will do that below to ensure all input data is processed
|
||||
|
||||
ColorOrderMap com = {};
|
||||
for (uint8_t s = 0; s < WLED_MAX_COLOR_ORDER_MAPPINGS; s++) {
|
||||
char xs[4] = "XS"; xs[2] = 48+s; xs[3] = 0; //start LED
|
||||
char xc[4] = "XC"; xc[2] = 48+s; xc[3] = 0; //strip length
|
||||
char xo[4] = "XO"; xo[2] = 48+s; xo[3] = 0; //color order
|
||||
char xw[4] = "XW"; xw[2] = 48+s; xw[3] = 0; //W swap
|
||||
for (int s = 0; s < WLED_MAX_COLOR_ORDER_MAPPINGS; s++) {
|
||||
int offset = s < 10 ? 48 : 55;
|
||||
char xs[4] = "XS"; xs[2] = offset+s; xs[3] = 0; //start LED
|
||||
char xc[4] = "XC"; xc[2] = offset+s; xc[3] = 0; //strip length
|
||||
char xo[4] = "XO"; xo[2] = offset+s; xo[3] = 0; //color order
|
||||
char xw[4] = "XW"; xw[2] = offset+s; xw[3] = 0; //W swap
|
||||
if (request->hasArg(xs)) {
|
||||
start = request->arg(xs).toInt();
|
||||
length = request->arg(xc).toInt();
|
||||
@ -249,9 +251,10 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
|
||||
|
||||
disablePullUp = (bool)request->hasArg(F("IP"));
|
||||
touchThreshold = request->arg(F("TT")).toInt();
|
||||
for (uint8_t i=0; i<WLED_MAX_BUTTONS; i++) {
|
||||
char bt[4] = "BT"; bt[2] = (i<10?48:55)+i; bt[3] = 0; // button pin (use A,B,C,... if WLED_MAX_BUTTONS>10)
|
||||
char be[4] = "BE"; be[2] = (i<10?48:55)+i; be[3] = 0; // button type (use A,B,C,... if WLED_MAX_BUTTONS>10)
|
||||
for (int i = 0; i < WLED_MAX_BUTTONS; i++) {
|
||||
int offset = i < 10 ? 48 : 55;
|
||||
char bt[4] = "BT"; bt[2] = offset+i; bt[3] = 0; // button pin (use A,B,C,... if WLED_MAX_BUTTONS>10)
|
||||
char be[4] = "BE"; be[2] = offset+i; be[3] = 0; // button type (use A,B,C,... if WLED_MAX_BUTTONS>10)
|
||||
int hw_btn_pin = request->arg(bt).toInt();
|
||||
if (hw_btn_pin >= 0 && pinManager.allocatePin(hw_btn_pin,false,PinOwner::Button)) {
|
||||
btnPin[i] = hw_btn_pin;
|
||||
|
@ -206,9 +206,9 @@ bool sendLiveLedsWs(uint32_t wsClient)
|
||||
uint8_t g = G(c);
|
||||
uint8_t b = B(c);
|
||||
uint8_t w = W(c);
|
||||
buffer[pos++] = scale8(qadd8(w, r), strip.getBrightness()); //R, add white channel to RGB channels as a simple RGBW -> RGB map
|
||||
buffer[pos++] = scale8(qadd8(w, g), strip.getBrightness()); //G
|
||||
buffer[pos++] = scale8(qadd8(w, b), strip.getBrightness()); //B
|
||||
buffer[pos++] = bri ? qadd8(w, r) : 0; //R, add white channel to RGB channels as a simple RGBW -> RGB map
|
||||
buffer[pos++] = bri ? qadd8(w, g) : 0; //G
|
||||
buffer[pos++] = bri ? qadd8(w, b) : 0; //B
|
||||
}
|
||||
|
||||
wsc->binary(std::move(wsBuf));
|
||||
|
@ -350,7 +350,8 @@ void getSettingsJS(byte subPage, char* dest)
|
||||
oappend(itoa(WLED_MIN_VIRTUAL_BUSSES,nS,10)); oappend(",");
|
||||
oappend(itoa(MAX_LEDS_PER_BUS,nS,10)); oappend(",");
|
||||
oappend(itoa(MAX_LED_MEMORY,nS,10)); oappend(",");
|
||||
oappend(itoa(MAX_LEDS,nS,10));
|
||||
oappend(itoa(MAX_LEDS,nS,10)); oappend(",");
|
||||
oappend(itoa(WLED_MAX_COLOR_ORDER_MAPPINGS,nS,10));
|
||||
oappend(SET_F(");"));
|
||||
|
||||
sappend('c',SET_F("MS"),autoSegments);
|
||||
@ -362,28 +363,29 @@ void getSettingsJS(byte subPage, char* dest)
|
||||
sappend('v',SET_F("AW"),Bus::getGlobalAWMode());
|
||||
sappend('c',SET_F("LD"),useGlobalLedBuffer);
|
||||
|
||||
uint16_t sumMa = 0;
|
||||
for (uint8_t s=0; s < BusManager::getNumBusses(); s++) {
|
||||
unsigned sumMa = 0;
|
||||
for (int s = 0; s < BusManager::getNumBusses(); s++) {
|
||||
Bus* bus = BusManager::getBus(s);
|
||||
if (bus == nullptr) continue;
|
||||
char lp[4] = "L0"; lp[2] = 48+s; lp[3] = 0; //ascii 0-9 //strip data pin
|
||||
char lc[4] = "LC"; lc[2] = 48+s; lc[3] = 0; //strip length
|
||||
char co[4] = "CO"; co[2] = 48+s; co[3] = 0; //strip color order
|
||||
char lt[4] = "LT"; lt[2] = 48+s; lt[3] = 0; //strip type
|
||||
char ls[4] = "LS"; ls[2] = 48+s; ls[3] = 0; //strip start LED
|
||||
char cv[4] = "CV"; cv[2] = 48+s; cv[3] = 0; //strip reverse
|
||||
char sl[4] = "SL"; sl[2] = 48+s; sl[3] = 0; //skip 1st LED
|
||||
char rf[4] = "RF"; rf[2] = 48+s; rf[3] = 0; //off refresh
|
||||
char aw[4] = "AW"; aw[2] = 48+s; aw[3] = 0; //auto white mode
|
||||
char wo[4] = "WO"; wo[2] = 48+s; wo[3] = 0; //swap channels
|
||||
char sp[4] = "SP"; sp[2] = 48+s; sp[3] = 0; //bus clock speed
|
||||
char la[4] = "LA"; la[2] = 48+s; la[3] = 0; //LED current
|
||||
char ma[4] = "MA"; ma[2] = 48+s; ma[3] = 0; //max per-port PSU current
|
||||
int offset = s < 10 ? 48 : 55;
|
||||
char lp[4] = "L0"; lp[2] = offset+s; lp[3] = 0; //ascii 0-9 //strip data pin
|
||||
char lc[4] = "LC"; lc[2] = offset+s; lc[3] = 0; //strip length
|
||||
char co[4] = "CO"; co[2] = offset+s; co[3] = 0; //strip color order
|
||||
char lt[4] = "LT"; lt[2] = offset+s; lt[3] = 0; //strip type
|
||||
char ls[4] = "LS"; ls[2] = offset+s; ls[3] = 0; //strip start LED
|
||||
char cv[4] = "CV"; cv[2] = offset+s; cv[3] = 0; //strip reverse
|
||||
char sl[4] = "SL"; sl[2] = offset+s; sl[3] = 0; //skip 1st LED
|
||||
char rf[4] = "RF"; rf[2] = offset+s; rf[3] = 0; //off refresh
|
||||
char aw[4] = "AW"; aw[2] = offset+s; aw[3] = 0; //auto white mode
|
||||
char wo[4] = "WO"; wo[2] = offset+s; wo[3] = 0; //swap channels
|
||||
char sp[4] = "SP"; sp[2] = offset+s; sp[3] = 0; //bus clock speed
|
||||
char la[4] = "LA"; la[2] = offset+s; la[3] = 0; //LED current
|
||||
char ma[4] = "MA"; ma[2] = offset+s; ma[3] = 0; //max per-port PSU current
|
||||
oappend(SET_F("addLEDs(1);"));
|
||||
uint8_t pins[5];
|
||||
uint8_t nPins = bus->getPins(pins);
|
||||
for (uint8_t i = 0; i < nPins; i++) {
|
||||
lp[1] = 48+i;
|
||||
int nPins = bus->getPins(pins);
|
||||
for (int i = 0; i < nPins; i++) {
|
||||
lp[1] = offset+i;
|
||||
if (pinManager.isPinOk(pins[i]) || IS_VIRTUAL(bus->getType())) sappend('v',lp,pins[i]);
|
||||
}
|
||||
sappend('v',lc,bus->getLength());
|
||||
@ -395,7 +397,7 @@ void getSettingsJS(byte subPage, char* dest)
|
||||
sappend('c',rf,bus->isOffRefreshRequired());
|
||||
sappend('v',aw,bus->getAutoWhiteMode());
|
||||
sappend('v',wo,bus->getColorOrder() >> 4);
|
||||
uint16_t speed = bus->getFrequency();
|
||||
unsigned speed = bus->getFrequency();
|
||||
if (IS_PWM(bus->getType())) {
|
||||
switch (speed) {
|
||||
case WLED_PWM_FREQ/2 : speed = 0; break;
|
||||
@ -428,7 +430,7 @@ void getSettingsJS(byte subPage, char* dest)
|
||||
oappend(itoa(WLED_MAX_COLOR_ORDER_MAPPINGS,nS,10));
|
||||
oappend(SET_F(");"));
|
||||
const ColorOrderMap& com = BusManager::getColorOrderMap();
|
||||
for (uint8_t s=0; s < com.count(); s++) {
|
||||
for (int s = 0; s < com.count(); s++) {
|
||||
const ColorOrderMapEntry* entry = com.get(s);
|
||||
if (entry == nullptr) break;
|
||||
oappend(SET_F("addCOM("));
|
||||
@ -459,7 +461,7 @@ void getSettingsJS(byte subPage, char* dest)
|
||||
sappend('v',SET_F("RL"),rlyPin);
|
||||
sappend('c',SET_F("RM"),rlyMde);
|
||||
sappend('c',SET_F("RO"),rlyOpenDrain);
|
||||
for (uint8_t i=0; i<WLED_MAX_BUTTONS; i++) {
|
||||
for (int i = 0; i < WLED_MAX_BUTTONS; i++) {
|
||||
oappend(SET_F("addBtn("));
|
||||
oappend(itoa(i,nS,10)); oappend(",");
|
||||
oappend(itoa(btnPin[i],nS,10)); oappend(",");
|
||||
|
Loading…
x
Reference in New Issue
Block a user