mirror of
https://github.com/wled/WLED.git
synced 2025-04-23 22:37:18 +00:00
changed randomness and added optimizations
-added fully random palette function ('the old way', currently just used for initialization) -changed randomness values to make it a little less random -added 10% chance for pastel color palette -now using swap() from std library for shuffeling -changed function name -moved update check from loadPalette() to handleRandomPalette() saving CPU cycles
This commit is contained in:
parent
ef6fe43251
commit
ca05aa84ff
@ -77,8 +77,8 @@ uint16_t Segment::_usedSegmentData = 0U; // amount of RAM all segments use for t
|
||||
uint16_t Segment::maxWidth = DEFAULT_LED_COUNT;
|
||||
uint16_t Segment::maxHeight = 1;
|
||||
|
||||
CRGBPalette16 Segment::_randomPalette = generateRandomPalette(_randomPalette);
|
||||
CRGBPalette16 Segment::_newRandomPalette = generateRandomPalette(_randomPalette);
|
||||
CRGBPalette16 Segment::_randomPalette = generateRandomPalette();
|
||||
CRGBPalette16 Segment::_newRandomPalette = generateRandomPalette();
|
||||
uint16_t Segment::_lastPaletteChange = 0; // perhaps it should be per segment
|
||||
uint16_t Segment::_lastPaletteBlend = 0; //in millis (lowest 16 bits only)
|
||||
|
||||
@ -222,13 +222,7 @@ CRGBPalette16 IRAM_ATTR &Segment::loadPalette(CRGBPalette16 &targetPalette, uint
|
||||
case 0: //default palette. Exceptions for specific effects above
|
||||
targetPalette = PartyColors_p; break;
|
||||
case 1: {//periodically replace palette with a random one
|
||||
if ((millis()/1000U) - _lastPaletteChange > randomPaletteChangeTime) {
|
||||
_newRandomPalette = generateRandomPalette(_randomPalette);
|
||||
_lastPaletteChange = millis()/1000U;
|
||||
_lastPaletteBlend = (uint16_t)(millis()&0xFFFF)-512; //starts blending immediately
|
||||
handleRandomPalette(); // do a 1st pass of blend
|
||||
}
|
||||
targetPalette = _randomPalette;
|
||||
targetPalette = _randomPalette; //random palette is generated at intervals in handleRandomPalette()
|
||||
break;}
|
||||
case 2: {//primary color only
|
||||
CRGB prim = gamma32(colors[0]);
|
||||
@ -463,11 +457,17 @@ void Segment::handleRandomPalette() {
|
||||
// just do a blend; if the palettes are identical it will just compare 48 bytes (same as _randomPalette == _newRandomPalette)
|
||||
// this will slowly blend _newRandomPalette into _randomPalette every 15ms or 8ms (depending on MIN_SHOW_DELAY)
|
||||
// if palette transitions is enabled, blend it according to Transition Time (if longer than minimum given by service calls)
|
||||
if(strip.paletteFade)
|
||||
|
||||
if ((millis()/1000U) - _lastPaletteChange > randomPaletteChangeTime) {
|
||||
_newRandomPalette = generateHarmonicRandomPalette(_randomPalette);
|
||||
_lastPaletteChange = millis()/1000U;
|
||||
_lastPaletteBlend = (uint16_t)(millis()&0xFFFF)-512; //starts blending immediately
|
||||
}
|
||||
|
||||
if (strip.paletteFade)
|
||||
{
|
||||
if((millis()&0xFFFF) - _lastPaletteBlend < strip.getTransition()>>7) //assumes that 128 updates are needed to blend a palette, so shift by 7 (can be more, can be less)
|
||||
{
|
||||
return; //not time to fade yet
|
||||
if ((millis() & 0xFFFF) - _lastPaletteBlend < strip.getTransition() >> 7) {//assumes that 128 updates are needed to blend a palette, so shift by 7 (can be more, can be less)
|
||||
return; //not time to fade yet, delay the update
|
||||
}
|
||||
_lastPaletteBlend = millis();
|
||||
}
|
||||
|
@ -92,42 +92,33 @@ void setRandomColor(byte* rgb)
|
||||
}
|
||||
|
||||
/*
|
||||
*generates a random palette based on color theory
|
||||
*generates a random palette based on harmonic color theory
|
||||
*takes a base palette as the input, it will choose one color of the base palette and keep it
|
||||
*/
|
||||
|
||||
CRGBPalette16 generateRandomPalette(CRGBPalette16 &basepalette)
|
||||
CRGBPalette16 generateHarmonicRandomPalette(CRGBPalette16 &basepalette)
|
||||
{
|
||||
CHSV palettecolors[4]; //array of colors for the new palette
|
||||
uint8_t keepcolorposition = random8(4); //color position of current random palette to keep
|
||||
palettecolors[keepcolorposition] = rgb2hsv_approximate(basepalette.entries[keepcolorposition*5]); //read one of the base colors of the current palette
|
||||
palettecolors[keepcolorposition].hue += random8(20)-10; // +/- 10 randomness
|
||||
palettecolors[keepcolorposition].hue += random8(10)-5; // +/- 5 randomness of base color
|
||||
//generate 4 saturation and brightness value numbers
|
||||
//only one saturation is allowed to be below 200 creating mostly vibrant colors
|
||||
//only one brightness value number is allowed below 200, creating mostly bright palettes
|
||||
|
||||
for (int i = 0; i<3; i++) { //generate three high values
|
||||
palettecolors[i].saturation = random8(180,255);
|
||||
palettecolors[i].value = random8(180,255);
|
||||
for (int i = 0; i < 3; i++) { //generate three high values
|
||||
palettecolors[i].saturation = random8(200,255);
|
||||
palettecolors[i].value = random8(220,255);
|
||||
}
|
||||
//allow one to be lower
|
||||
palettecolors[3].saturation = random8(80,255);
|
||||
palettecolors[3].value = random8(50,255);
|
||||
palettecolors[3].value = random8(80,255);
|
||||
|
||||
//shuffle the arrays using Fisher-Yates algorithm
|
||||
for (int i = 3; i > 0; i--) {
|
||||
uint8_t j = random8(0, i + 1);
|
||||
//swap [i] and [j]
|
||||
uint8_t temp = palettecolors[i].saturation;
|
||||
palettecolors[i].saturation = palettecolors[j].saturation;
|
||||
palettecolors[j].saturation = temp;
|
||||
}
|
||||
|
||||
//shuffle the arrays
|
||||
for (int i = 3; i > 0; i--) {
|
||||
uint8_t j = random8(0, i + 1);
|
||||
//swap [i] and [j]
|
||||
uint8_t temp = palettecolors[i].value;
|
||||
palettecolors[i].value = palettecolors[j].value;
|
||||
palettecolors[j].value = temp;
|
||||
std::swap(palettecolors[i].saturation, palettecolors[random8(i + 1)].saturation);
|
||||
std::swap(palettecolors[i].value, palettecolors[random8(i + 1)].value);
|
||||
}
|
||||
|
||||
//now generate three new hues based off of the hue of the chosen current color
|
||||
@ -143,50 +134,58 @@ CRGBPalette16 generateRandomPalette(CRGBPalette16 &basepalette)
|
||||
break;
|
||||
|
||||
case 1: // triadic
|
||||
harmonics[0] = basehue + 110 + random8(20);
|
||||
harmonics[1] = basehue + 230 + random8(20);
|
||||
harmonics[2] = basehue + random8(30)-15;
|
||||
harmonics[0] = basehue + 113 + random8(15);
|
||||
harmonics[1] = basehue + 233 + random8(15);
|
||||
harmonics[2] = basehue -7 + random8(15);
|
||||
break;
|
||||
|
||||
case 2: // split-complementary
|
||||
harmonics[0] = basehue + 140 + random8(20);
|
||||
harmonics[1] = basehue + 200 + random8(20);
|
||||
harmonics[2] = basehue + random8(30)-15;
|
||||
harmonics[0] = basehue + 145 + random8(10);
|
||||
harmonics[1] = basehue + 205 + random8(10);
|
||||
harmonics[2] = basehue - 5 + random8(10);
|
||||
break;
|
||||
|
||||
case 3: // square
|
||||
harmonics[0] = basehue + 85 + random8(10);
|
||||
harmonics[1] = basehue + 175 + random8(10);
|
||||
harmonics[2] = basehue + 265 + random8(10);
|
||||
break;
|
||||
|
||||
case 3: // tetradic
|
||||
case 4: // tetradic
|
||||
harmonics[0] = basehue + 80 + random8(20);
|
||||
harmonics[1] = basehue + 170 + random8(20);
|
||||
harmonics[2] = basehue + random8(30)-15;
|
||||
break;
|
||||
|
||||
case 4: // square
|
||||
harmonics[0] = basehue + 80 + random8(20);
|
||||
harmonics[1] = basehue + 170 + random8(20);
|
||||
harmonics[2] = basehue + 260 + random8(20);
|
||||
break;
|
||||
break;
|
||||
}
|
||||
|
||||
//shuffle the hues:
|
||||
for (int i = 2; i > 0; i--) {
|
||||
uint8_t j = random8(0, i + 1);
|
||||
//swap [i] and [j]
|
||||
uint8_t temp = harmonics[i];
|
||||
harmonics[i] = harmonics[j];
|
||||
harmonics[j] = temp;
|
||||
|
||||
if (random8() < 128) //50:50 chance of shuffeling hues or keep the color order
|
||||
{
|
||||
//shuffle the hues:
|
||||
for (int i = 2; i > 0; i--) {
|
||||
std::swap(harmonics[i], harmonics[random8(i + 1)]);
|
||||
}
|
||||
}
|
||||
|
||||
//now set the hues
|
||||
int j=0;
|
||||
for (int i = 0; i<4; i++) {
|
||||
int j = 0;
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if(i==keepcolorposition) continue; //skip the base color
|
||||
palettecolors[i].hue = harmonics[j];
|
||||
j++;
|
||||
}
|
||||
|
||||
//apply gamma correction
|
||||
bool makepastelpalette = false;
|
||||
if (random8() < 25) {//~10% chance of desaturated 'pastel' colors
|
||||
makepastelpalette = true;
|
||||
}
|
||||
|
||||
//apply saturation & gamma correction
|
||||
CRGB RGBpalettecolors[4];
|
||||
for (int i = 0; i<4; i++) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if(makepastelpalette && palettecolors[i].saturation > 180) {
|
||||
palettecolors[i].saturation -= 160; //desaturate all four colors
|
||||
}
|
||||
RGBpalettecolors[i] = (CRGB)palettecolors[i]; //convert to RGB
|
||||
RGBpalettecolors[i] = gamma32((uint32_t)RGBpalettecolors[i]);
|
||||
}
|
||||
@ -195,7 +194,17 @@ CRGBPalette16 generateRandomPalette(CRGBPalette16 &basepalette)
|
||||
RGBpalettecolors[1],
|
||||
RGBpalettecolors[2],
|
||||
RGBpalettecolors[3]);
|
||||
}
|
||||
|
||||
CRGBPalette16 generateRandomPalette(void) //generate fully random palette
|
||||
{
|
||||
CRGBPalette16 random = CRGBPalette16(
|
||||
CHSV(random8(), random8(160, 255), random8(128, 255)),
|
||||
CHSV(random8(), random8(160, 255), random8(128, 255)),
|
||||
CHSV(random8(), random8(160, 255), random8(128, 255)),
|
||||
CHSV(random8(), random8(160, 255), random8(128, 255)));
|
||||
|
||||
return generateHarmonicRandomPalette(random);
|
||||
}
|
||||
|
||||
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb) //hue, sat to rgb
|
||||
|
@ -65,7 +65,8 @@ class NeoGammaWLEDMethod {
|
||||
uint32_t color_blend(uint32_t,uint32_t,uint16_t,bool b16=false);
|
||||
uint32_t color_add(uint32_t,uint32_t, bool fast=false);
|
||||
uint32_t color_fade(uint32_t c1, uint8_t amount, bool video=false);
|
||||
CRGBPalette16 generateRandomPalette(CRGBPalette16 &basepalette);
|
||||
CRGBPalette16 generateHarmonicRandomPalette(CRGBPalette16 &basepalette);
|
||||
CRGBPalette16 generateRandomPalette(void);
|
||||
inline uint32_t colorFromRgbw(byte* rgbw) { return uint32_t((byte(rgbw[3]) << 24) | (byte(rgbw[0]) << 16) | (byte(rgbw[1]) << 8) | (byte(rgbw[2]))); }
|
||||
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb); //hue, sat to rgb
|
||||
void colorKtoRGB(uint16_t kelvin, byte* rgb);
|
||||
|
Loading…
x
Reference in New Issue
Block a user