Merge branch '0_15' into blending-styles

This commit is contained in:
Blaz Kristan 2024-07-18 20:26:51 +02:00
commit d88bb3c668
5 changed files with 916 additions and 82 deletions

View File

@ -0,0 +1,717 @@
/* esp8266_waveform imported from platform source code
Modified for WLED to work around a fault in the NMI handling,
which can result in the system locking up and hard WDT crashes.
Imported from https://github.com/esp8266/Arduino/blob/7e0d20e2b9034994f573a236364e0aef17fd66de/cores/esp8266/core_esp8266_waveform_pwm.cpp
*/
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds or CPU clock cycles). TIMER1
is set to 1-shot mode and is always loaded with the time until the next
edge of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP clock cycle counter, not
the timer. This allows for removing interrupt jitter and delay as the
counter always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not
TIMER1 cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include <coredecls.h>
#include "ets_sys.h"
#include "core_esp8266_waveform.h"
#include "user_interface.h"
extern "C" {
// Linker magic
void usePWMFixedNMI() {};
// Maximum delay between IRQs
#define MAXIRQUS (10000)
// Waveform generator can create tones, PWM, and servos
typedef struct {
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
uint32_t expiryCycle; // For time-limited waveform, the cycle when this waveform must stop
uint32_t timeHighCycles; // Actual running waveform period (adjusted using desiredCycles)
uint32_t timeLowCycles; //
uint32_t desiredHighCycles; // Ideal waveform period to drive the error signal
uint32_t desiredLowCycles; //
uint32_t lastEdge; // Cycle when this generator last changed
} Waveform;
class WVFState {
public:
Waveform waveform[17]; // State of all possible pins
uint32_t waveformState = 0; // Is the pin high or low, updated in NMI so no access outside the NMI code
uint32_t waveformEnabled = 0; // Is it actively running, updated in NMI so no access outside the NMI code
// Enable lock-free by only allowing updates to waveformState and waveformEnabled from IRQ service routine
uint32_t waveformToEnable = 0; // Message to the NMI handler to start a waveform on a inactive pin
uint32_t waveformToDisable = 0; // Message to the NMI handler to disable a pin from waveform generation
uint32_t waveformToChange = 0; // Mask of pin to change. One bit set in main app, cleared when effected in the NMI
uint32_t waveformNewHigh = 0;
uint32_t waveformNewLow = 0;
uint32_t (*timer1CB)() = NULL;
// Optimize the NMI inner loop by keeping track of the min and max GPIO that we
// are generating. In the common case (1 PWM) these may be the same pin and
// we can avoid looking at the other pins.
uint16_t startPin = 0;
uint16_t endPin = 0;
};
static WVFState wvfState;
// Ensure everything is read/written to RAM
#define MEMBARRIER() { __asm__ volatile("" ::: "memory"); }
// Non-speed critical bits
#pragma GCC optimize ("Os")
// Interrupt on/off control
static IRAM_ATTR void timer1Interrupt();
static bool timerRunning = false;
static __attribute__((noinline)) void initTimer() {
if (!timerRunning) {
timer1_disable();
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
ETS_FRC_TIMER1_NMI_INTR_ATTACH(timer1Interrupt);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
timerRunning = true;
timer1_write(microsecondsToClockCycles(10));
}
}
static IRAM_ATTR void forceTimerInterrupt() {
if (T1L > microsecondsToClockCycles(10)) {
T1L = microsecondsToClockCycles(10);
}
}
// PWM implementation using special purpose state machine
//
// Keep an ordered list of pins with the delta in cycles between each
// element, with a terminal entry making up the remainder of the PWM
// period. With this method sum(all deltas) == PWM period clock cycles.
//
// At t=0 set all pins high and set the timeout for the 1st edge.
// On interrupt, if we're at the last element reset to t=0 state
// Otherwise, clear that pin down and set delay for next element
// and so forth.
constexpr int maxPWMs = 8;
// PWM machine state
typedef struct PWMState {
uint32_t mask; // Bitmask of active pins
uint32_t cnt; // How many entries
uint32_t idx; // Where the state machine is along the list
uint8_t pin[maxPWMs + 1];
uint32_t delta[maxPWMs + 1];
uint32_t nextServiceCycle; // Clock cycle for next step
struct PWMState *pwmUpdate; // Set by main code, cleared by ISR
} PWMState;
static PWMState pwmState;
static uint32_t _pwmFreq = 1000;
static uint32_t _pwmPeriod = microsecondsToClockCycles(1000000UL) / _pwmFreq;
// If there are no more scheduled activities, shut down Timer 1.
// Otherwise, do nothing.
static IRAM_ATTR void disableIdleTimer() {
if (timerRunning && !wvfState.waveformEnabled && !pwmState.cnt && !wvfState.timer1CB) {
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
timer1_disable();
timer1_isr_init();
timerRunning = false;
}
}
// Notify the NMI that a new PWM state is available through the mailbox.
// Wait for mailbox to be emptied (either busy or delay() as needed)
static IRAM_ATTR void _notifyPWM(PWMState *p, bool idle) {
p->pwmUpdate = nullptr;
pwmState.pwmUpdate = p;
MEMBARRIER();
forceTimerInterrupt();
while (pwmState.pwmUpdate) {
if (idle) {
esp_yield();
}
MEMBARRIER();
}
}
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range);
// Called when analogWriteFreq() changed to update the PWM total period
//extern void _setPWMFreq_weak(uint32_t freq) __attribute__((weak));
void _setPWMFreq_weak(uint32_t freq) {
_pwmFreq = freq;
// Convert frequency into clock cycles
uint32_t cc = microsecondsToClockCycles(1000000UL) / freq;
// Simple static adjustment to bring period closer to requested due to overhead
// Empirically determined as a constant PWM delay and a function of the number of PWMs
#if F_CPU == 80000000
cc -= ((microsecondsToClockCycles(pwmState.cnt) * 13) >> 4) + 110;
#else
cc -= ((microsecondsToClockCycles(pwmState.cnt) * 10) >> 4) + 75;
#endif
if (cc == _pwmPeriod) {
return; // No change
}
_pwmPeriod = cc;
if (pwmState.cnt) {
PWMState p; // The working copy since we can't edit the one in use
p.mask = 0;
p.cnt = 0;
for (uint32_t i = 0; i < pwmState.cnt; i++) {
auto pin = pwmState.pin[i];
_addPWMtoList(p, pin, wvfState.waveform[pin].desiredHighCycles, wvfState.waveform[pin].desiredLowCycles);
}
// Update and wait for mailbox to be emptied
initTimer();
_notifyPWM(&p, true);
disableIdleTimer();
}
}
/*
static void _setPWMFreq_bound(uint32_t freq) __attribute__((weakref("_setPWMFreq_weak")));
void _setPWMFreq(uint32_t freq) {
_setPWMFreq_bound(freq);
}
*/
// Helper routine to remove an entry from the state machine
// and clean up any marked-off entries
static void _cleanAndRemovePWM(PWMState *p, int pin) {
uint32_t leftover = 0;
uint32_t in, out;
for (in = 0, out = 0; in < p->cnt; in++) {
if ((p->pin[in] != pin) && (p->mask & (1<<p->pin[in]))) {
p->pin[out] = p->pin[in];
p->delta[out] = p->delta[in] + leftover;
leftover = 0;
out++;
} else {
leftover += p->delta[in];
p->mask &= ~(1<<p->pin[in]);
}
}
p->cnt = out;
// Final pin is never used: p->pin[out] = 0xff;
p->delta[out] = p->delta[in] + leftover;
}
// Disable PWM on a specific pin (i.e. when a digitalWrite or analogWrite(0%/100%))
//extern bool _stopPWM_weak(uint8_t pin) __attribute__((weak));
IRAM_ATTR bool _stopPWM_weak(uint8_t pin) {
if (!((1<<pin) & pwmState.mask)) {
return false; // Pin not actually active
}
PWMState p; // The working copy since we can't edit the one in use
p = pwmState;
// In _stopPWM we just clear the mask but keep everything else
// untouched to save IRAM. The main startPWM will handle cleanup.
p.mask &= ~(1<<pin);
if (!p.mask) {
// If all have been stopped, then turn PWM off completely
p.cnt = 0;
}
// Update and wait for mailbox to be emptied, no delay (could be in ISR)
_notifyPWM(&p, false);
// Possibly shut down the timer completely if we're done
disableIdleTimer();
return true;
}
/*
static bool _stopPWM_bound(uint8_t pin) __attribute__((weakref("_stopPWM_weak")));
IRAM_ATTR bool _stopPWM(uint8_t pin) {
return _stopPWM_bound(pin);
}
*/
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range) {
// Stash the val and range so we can re-evaluate the fraction
// should the user change PWM frequency. This allows us to
// give as great a precision as possible. We know by construction
// that the waveform for this pin will be inactive so we can borrow
// memory from that structure.
wvfState.waveform[pin].desiredHighCycles = val; // Numerator == high
wvfState.waveform[pin].desiredLowCycles = range; // Denominator == low
uint32_t cc = (_pwmPeriod * val) / range;
// Clip to sane values in the case we go from OK to not-OK when adjusting frequencies
if (cc == 0) {
cc = 1;
} else if (cc >= _pwmPeriod) {
cc = _pwmPeriod - 1;
}
if (p.cnt == 0) {
// Starting up from scratch, special case 1st element and PWM period
p.pin[0] = pin;
p.delta[0] = cc;
// Final pin is never used: p.pin[1] = 0xff;
p.delta[1] = _pwmPeriod - cc;
} else {
uint32_t ttl = 0;
uint32_t i;
// Skip along until we're at the spot to insert
for (i=0; (i <= p.cnt) && (ttl + p.delta[i] < cc); i++) {
ttl += p.delta[i];
}
// Shift everything out by one to make space for new edge
for (int32_t j = p.cnt; j >= (int)i; j--) {
p.pin[j + 1] = p.pin[j];
p.delta[j + 1] = p.delta[j];
}
int off = cc - ttl; // The delta from the last edge to the one we're inserting
p.pin[i] = pin;
p.delta[i] = off; // Add the delta to this new pin
p.delta[i + 1] -= off; // And subtract it from the follower to keep sum(deltas) constant
}
p.cnt++;
p.mask |= 1<<pin;
}
// Called by analogWrite(1...99%) to set the PWM duty in clock cycles
//extern bool _setPWM_weak(int pin, uint32_t val, uint32_t range) __attribute__((weak));
bool _setPWM_weak(int pin, uint32_t val, uint32_t range) {
stopWaveform(pin);
PWMState p; // Working copy
p = pwmState;
// Get rid of any entries for this pin
_cleanAndRemovePWM(&p, pin);
// And add it to the list, in order
if (p.cnt >= maxPWMs) {
return false; // No space left
}
// Sanity check for all-on/off
uint32_t cc = (_pwmPeriod * val) / range;
if ((cc == 0) || (cc >= _pwmPeriod)) {
digitalWrite(pin, cc ? HIGH : LOW);
return true;
}
_addPWMtoList(p, pin, val, range);
// Set mailbox and wait for ISR to copy it over
initTimer();
_notifyPWM(&p, true);
disableIdleTimer();
// Potentially recalculate the PWM period if we've added another pin
_setPWMFreq(_pwmFreq);
return true;
}
/*
static bool _setPWM_bound(int pin, uint32_t val, uint32_t range) __attribute__((weakref("_setPWM_weak")));
bool _setPWM(int pin, uint32_t val, uint32_t range) {
return _setPWM_bound(pin, val, range);
}
*/
// Start up a waveform on a pin, or change the current one. Will change to the new
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
// first, then it will immediately begin.
//extern int startWaveformClockCycles_weak(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles, int8_t alignPhase, uint32_t phaseOffsetUS, bool autoPwm) __attribute__((weak));
int startWaveformClockCycles_weak(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles,
int8_t alignPhase, uint32_t phaseOffsetUS, bool autoPwm) {
(void) alignPhase;
(void) phaseOffsetUS;
(void) autoPwm;
if ((pin > 16) || isFlashInterfacePin(pin) || (timeHighCycles == 0)) {
return false;
}
Waveform *wave = &wvfState.waveform[pin];
wave->expiryCycle = runTimeCycles ? ESP.getCycleCount() + runTimeCycles : 0;
if (runTimeCycles && !wave->expiryCycle) {
wave->expiryCycle = 1; // expiryCycle==0 means no timeout, so avoid setting it
}
_stopPWM(pin); // Make sure there's no PWM live here
uint32_t mask = 1<<pin;
MEMBARRIER();
if (wvfState.waveformEnabled & mask) {
// Make sure no waveform changes are waiting to be applied
while (wvfState.waveformToChange) {
esp_yield(); // Wait for waveform to update
MEMBARRIER();
}
wvfState.waveformNewHigh = timeHighCycles;
wvfState.waveformNewLow = timeLowCycles;
MEMBARRIER();
wvfState.waveformToChange = mask;
// The waveform will be updated some time in the future on the next period for the signal
} else { // if (!(wvfState.waveformEnabled & mask)) {
wave->timeHighCycles = timeHighCycles;
wave->desiredHighCycles = timeHighCycles;
wave->timeLowCycles = timeLowCycles;
wave->desiredLowCycles = timeLowCycles;
wave->lastEdge = 0;
wave->nextServiceCycle = ESP.getCycleCount() + microsecondsToClockCycles(1);
wvfState.waveformToEnable |= mask;
MEMBARRIER();
initTimer();
forceTimerInterrupt();
while (wvfState.waveformToEnable) {
esp_yield(); // Wait for waveform to update
MEMBARRIER();
}
}
return true;
}
/*
static int startWaveformClockCycles_bound(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles, int8_t alignPhase, uint32_t phaseOffsetUS, bool autoPwm) __attribute__((weakref("startWaveformClockCycles_weak")));
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles, int8_t alignPhase, uint32_t phaseOffsetUS, bool autoPwm) {
return startWaveformClockCycles_bound(pin, timeHighCycles, timeLowCycles, runTimeCycles, alignPhase, phaseOffsetUS, autoPwm);
}
// This version falls-thru to the proper startWaveformClockCycles call and is invariant across waveform generators
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS,
int8_t alignPhase, uint32_t phaseOffsetUS, bool autoPwm) {
return startWaveformClockCycles_bound(pin,
microsecondsToClockCycles(timeHighUS), microsecondsToClockCycles(timeLowUS),
microsecondsToClockCycles(runTimeUS), alignPhase, microsecondsToClockCycles(phaseOffsetUS), autoPwm);
}
*/
// Set a callback. Pass in NULL to stop it
//extern void setTimer1Callback_weak(uint32_t (*fn)()) __attribute__((weak));
void setTimer1Callback_weak(uint32_t (*fn)()) {
wvfState.timer1CB = fn;
if (fn) {
initTimer();
forceTimerInterrupt();
}
disableIdleTimer();
}
/*
static void setTimer1Callback_bound(uint32_t (*fn)()) __attribute__((weakref("setTimer1Callback_weak")));
void setTimer1Callback(uint32_t (*fn)()) {
setTimer1Callback_bound(fn);
}
*/
// Stops a waveform on a pin
//extern int stopWaveform_weak(uint8_t pin) __attribute__((weak));
IRAM_ATTR int stopWaveform_weak(uint8_t pin) {
// Can't possibly need to stop anything if there is no timer active
if (!timerRunning) {
return false;
}
// If user sends in a pin >16 but <32, this will always point to a 0 bit
// If they send >=32, then the shift will result in 0 and it will also return false
uint32_t mask = 1<<pin;
if (wvfState.waveformEnabled & mask) {
wvfState.waveformToDisable = mask;
// Cancel any pending updates for this waveform, too.
if (wvfState.waveformToChange & mask) {
wvfState.waveformToChange = 0;
}
forceTimerInterrupt();
while (wvfState.waveformToDisable) {
MEMBARRIER(); // If it wasn't written yet, it has to be by now
/* no-op */ // Can't delay() since stopWaveform may be called from an IRQ
}
}
disableIdleTimer();
return true;
}
/*
static int stopWaveform_bound(uint8_t pin) __attribute__((weakref("stopWaveform_weak")));
IRAM_ATTR int stopWaveform(uint8_t pin) {
return stopWaveform_bound(pin);
}
*/
// Speed critical bits
#pragma GCC optimize ("O2")
// Normally would not want two copies like this, but due to different
// optimization levels the inline attribute gets lost if we try the
// other version.
static inline IRAM_ATTR uint32_t GetCycleCountIRQ() {
uint32_t ccount;
__asm__ __volatile__("rsr %0,ccount":"=a"(ccount));
return ccount;
}
// Find the earliest cycle as compared to right now
static inline IRAM_ATTR uint32_t earliest(uint32_t a, uint32_t b) {
uint32_t now = GetCycleCountIRQ();
int32_t da = a - now;
int32_t db = b - now;
return (da < db) ? a : b;
}
// ----- @willmmiles begin patch -----
// NMI crash workaround
// Sometimes the NMI fails to return, stalling the CPU. When this happens,
// the next NMI gets a return address /inside the NMI handler function/.
// We work around this by caching the last NMI return address, and restoring
// the epc3 and eps3 registers to the previous values if the observed epc3
// happens to be pointing to the _NMILevelVector function.
extern void _NMILevelVector();
extern void _UserExceptionVector_1(); // the next function after _NMILevelVector
static inline IRAM_ATTR void nmiCrashWorkaround() {
static uintptr_t epc3_backup, eps3_backup;
uintptr_t epc3, eps3;
__asm__ __volatile__("rsr %0,epc3; rsr %1,eps3":"=a"(epc3),"=a" (eps3));
if ((epc3 < (uintptr_t) &_NMILevelVector) || (epc3 >= (uintptr_t) &_UserExceptionVector_1)) {
// Address is good; save backup
epc3_backup = epc3;
eps3_backup = eps3;
} else {
// Address is inside the NMI handler -- restore from backup
__asm__ __volatile__("wsr %0,epc3; wsr %1,eps3"::"a"(epc3_backup),"a"(eps3_backup));
}
}
// ----- @willmmiles end patch -----
// The SDK and hardware take some time to actually get to our NMI code, so
// decrement the next IRQ's timer value by a bit so we can actually catch the
// real CPU cycle counter we want for the waveforms.
// The SDK also sometimes is running at a different speed the the Arduino core
// so the ESP cycle counter is actually running at a variable speed.
// adjust(x) takes care of adjusting a delta clock cycle amount accordingly.
#if F_CPU == 80000000
#define DELTAIRQ (microsecondsToClockCycles(9)/4)
#define adjust(x) ((x) << (turbo ? 1 : 0))
#else
#define DELTAIRQ (microsecondsToClockCycles(9)/8)
#define adjust(x) ((x) >> 0)
#endif
// When the time to the next edge is greater than this, RTI and set another IRQ to minimize CPU usage
#define MINIRQTIME microsecondsToClockCycles(6)
static IRAM_ATTR void timer1Interrupt() {
// ----- @willmmiles begin patch -----
nmiCrashWorkaround();
// ----- @willmmiles end patch -----
// Flag if the core is at 160 MHz, for use by adjust()
bool turbo = (*(uint32_t*)0x3FF00014) & 1 ? true : false;
uint32_t nextEventCycle = GetCycleCountIRQ() + microsecondsToClockCycles(MAXIRQUS);
uint32_t timeoutCycle = GetCycleCountIRQ() + microsecondsToClockCycles(14);
if (wvfState.waveformToEnable || wvfState.waveformToDisable) {
// Handle enable/disable requests from main app
wvfState.waveformEnabled = (wvfState.waveformEnabled & ~wvfState.waveformToDisable) | wvfState.waveformToEnable; // Set the requested waveforms on/off
wvfState.waveformState &= ~wvfState.waveformToEnable; // And clear the state of any just started
wvfState.waveformToEnable = 0;
wvfState.waveformToDisable = 0;
// No mem barrier. Globals must be written to RAM on ISR exit.
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t)
wvfState.startPin = __builtin_ffs(wvfState.waveformEnabled) - 1;
// Find the last bit by subtracting off GCC's count-leading-zeros (no offset in this one)
wvfState.endPin = 32 - __builtin_clz(wvfState.waveformEnabled);
} else if (!pwmState.cnt && pwmState.pwmUpdate) {
// Start up the PWM generator by copying from the mailbox
pwmState.cnt = 1;
pwmState.idx = 1; // Ensure copy this cycle, cause it to start at t=0
pwmState.nextServiceCycle = GetCycleCountIRQ(); // Do it this loop!
// No need for mem barrier here. Global must be written by IRQ exit
}
bool done = false;
if (wvfState.waveformEnabled || pwmState.cnt) {
do {
nextEventCycle = GetCycleCountIRQ() + microsecondsToClockCycles(MAXIRQUS);
// PWM state machine implementation
if (pwmState.cnt) {
int32_t cyclesToGo;
do {
cyclesToGo = pwmState.nextServiceCycle - GetCycleCountIRQ();
if (cyclesToGo < 0) {
if (pwmState.idx == pwmState.cnt) { // Start of pulses, possibly copy new
if (pwmState.pwmUpdate) {
// Do the memory copy from temp to global and clear mailbox
pwmState = *(PWMState*)pwmState.pwmUpdate;
}
GPOS = pwmState.mask; // Set all active pins high
if (pwmState.mask & (1<<16)) {
GP16O = 1;
}
pwmState.idx = 0;
} else {
do {
// Drop the pin at this edge
if (pwmState.mask & (1<<pwmState.pin[pwmState.idx])) {
GPOC = 1<<pwmState.pin[pwmState.idx];
if (pwmState.pin[pwmState.idx] == 16) {
GP16O = 0;
}
}
pwmState.idx++;
// Any other pins at this same PWM value will have delta==0, drop them too.
} while (pwmState.delta[pwmState.idx] == 0);
}
// Preserve duty cycle over PWM period by using now+xxx instead of += delta
cyclesToGo = adjust(pwmState.delta[pwmState.idx]);
pwmState.nextServiceCycle = GetCycleCountIRQ() + cyclesToGo;
}
nextEventCycle = earliest(nextEventCycle, pwmState.nextServiceCycle);
} while (pwmState.cnt && (cyclesToGo < 100));
}
for (auto i = wvfState.startPin; i <= wvfState.endPin; i++) {
uint32_t mask = 1<<i;
// If it's not on, ignore!
if (!(wvfState.waveformEnabled & mask)) {
continue;
}
Waveform *wave = &wvfState.waveform[i];
uint32_t now = GetCycleCountIRQ();
// Disable any waveforms that are done
if (wave->expiryCycle) {
int32_t expiryToGo = wave->expiryCycle - now;
if (expiryToGo < 0) {
// Done, remove!
if (i == 16) {
GP16O = 0;
}
GPOC = mask;
wvfState.waveformEnabled &= ~mask;
continue;
}
}
// Check for toggles
int32_t cyclesToGo = wave->nextServiceCycle - now;
if (cyclesToGo < 0) {
uint32_t nextEdgeCycles;
uint32_t desired = 0;
uint32_t *timeToUpdate;
wvfState.waveformState ^= mask;
if (wvfState.waveformState & mask) {
if (i == 16) {
GP16O = 1;
}
GPOS = mask;
if (wvfState.waveformToChange & mask) {
// Copy over next full-cycle timings
wave->timeHighCycles = wvfState.waveformNewHigh;
wave->desiredHighCycles = wvfState.waveformNewHigh;
wave->timeLowCycles = wvfState.waveformNewLow;
wave->desiredLowCycles = wvfState.waveformNewLow;
wave->lastEdge = 0;
wvfState.waveformToChange = 0;
}
if (wave->lastEdge) {
desired = wave->desiredLowCycles;
timeToUpdate = &wave->timeLowCycles;
}
nextEdgeCycles = wave->timeHighCycles;
} else {
if (i == 16) {
GP16O = 0;
}
GPOC = mask;
desired = wave->desiredHighCycles;
timeToUpdate = &wave->timeHighCycles;
nextEdgeCycles = wave->timeLowCycles;
}
if (desired) {
desired = adjust(desired);
int32_t err = desired - (now - wave->lastEdge);
if (abs(err) < desired) { // If we've lost > the entire phase, ignore this error signal
err /= 2;
*timeToUpdate += err;
}
}
nextEdgeCycles = adjust(nextEdgeCycles);
wave->nextServiceCycle = now + nextEdgeCycles;
wave->lastEdge = now;
}
nextEventCycle = earliest(nextEventCycle, wave->nextServiceCycle);
}
// Exit the loop if we've hit the fixed runtime limit or the next event is known to be after that timeout would occur
uint32_t now = GetCycleCountIRQ();
int32_t cycleDeltaNextEvent = nextEventCycle - now;
int32_t cyclesLeftTimeout = timeoutCycle - now;
done = (cycleDeltaNextEvent > MINIRQTIME) || (cyclesLeftTimeout < 0);
} while (!done);
} // if (wvfState.waveformEnabled)
if (wvfState.timer1CB) {
nextEventCycle = earliest(nextEventCycle, GetCycleCountIRQ() + wvfState.timer1CB());
}
int32_t nextEventCycles = nextEventCycle - GetCycleCountIRQ();
if (nextEventCycles < MINIRQTIME) {
nextEventCycles = MINIRQTIME;
}
nextEventCycles -= DELTAIRQ;
// Do it here instead of global function to save time and because we know it's edge-IRQ
T1L = nextEventCycles >> (turbo ? 1 : 0);
}
};

View File

@ -202,6 +202,7 @@ lib_deps =
#https://github.com/lorol/LITTLEFS.git
ESPAsyncTCP @ 1.2.2
ESPAsyncUDP
ESP8266PWM
${env.lib_deps}
[esp32]

View File

@ -1,6 +1,9 @@
#pragma once
#include "wled.h"
#ifdef ARDUINO_ARCH_ESP32
#include <driver/i2s.h>
#include <driver/adc.h>
@ -8,11 +11,9 @@
#error This audio reactive usermod is not compatible with DMX Out.
#endif
#ifndef ARDUINO_ARCH_ESP32
#error This audio reactive usermod does not support the ESP8266.
#endif
#if defined(WLED_DEBUG) || defined(SR_DEBUG)
#if defined(ARDUINO_ARCH_ESP32) && (defined(WLED_DEBUG) || defined(SR_DEBUG))
#include <esp_timer.h>
#endif
@ -57,6 +58,50 @@
#define MAX_PALETTES 3
static volatile bool disableSoundProcessing = false; // if true, sound processing (FFT, filters, AGC) will be suspended. "volatile" as its shared between tasks.
static uint8_t audioSyncEnabled = 0; // bit field: bit 0 - send, bit 1 - receive (config value)
static bool udpSyncConnected = false; // UDP connection status -> true if connected to multicast group
#define NUM_GEQ_CHANNELS 16 // number of frequency channels. Don't change !!
// audioreactive variables
#ifdef ARDUINO_ARCH_ESP32
static float micDataReal = 0.0f; // MicIn data with full 24bit resolution - lowest 8bit after decimal point
static float multAgc = 1.0f; // sample * multAgc = sampleAgc. Our AGC multiplier
static float sampleAvg = 0.0f; // Smoothed Average sample - sampleAvg < 1 means "quiet" (simple noise gate)
static float sampleAgc = 0.0f; // Smoothed AGC sample
static uint8_t soundAgc = 0; // Automagic gain control: 0 - none, 1 - normal, 2 - vivid, 3 - lazy (config value)
#endif
//static float volumeSmth = 0.0f; // either sampleAvg or sampleAgc depending on soundAgc; smoothed sample
static float FFT_MajorPeak = 1.0f; // FFT: strongest (peak) frequency
static float FFT_Magnitude = 0.0f; // FFT: volume (magnitude) of peak frequency
static bool samplePeak = false; // Boolean flag for peak - used in effects. Responding routine may reset this flag. Auto-reset after strip.getMinShowDelay()
static bool udpSamplePeak = false; // Boolean flag for peak. Set at the same time as samplePeak, but reset by transmitAudioData
static unsigned long timeOfPeak = 0; // time of last sample peak detection.
static uint8_t fftResult[NUM_GEQ_CHANNELS]= {0};// Our calculated freq. channel result table to be used by effects
// TODO: probably best not used by receive nodes
//static float agcSensitivity = 128; // AGC sensitivity estimation, based on agc gain (multAgc). calculated by getSensitivity(). range 0..255
// user settable parameters for limitSoundDynamics()
#ifdef UM_AUDIOREACTIVE_DYNAMICS_LIMITER_OFF
static bool limiterOn = false; // bool: enable / disable dynamics limiter
#else
static bool limiterOn = true;
#endif
static uint16_t attackTime = 80; // int: attack time in milliseconds. Default 0.08sec
static uint16_t decayTime = 1400; // int: decay time in milliseconds. Default 1.40sec
// peak detection
#ifdef ARDUINO_ARCH_ESP32
static void detectSamplePeak(void); // peak detection function (needs scaled FFT results in vReal[]) - no used for 8266 receive-only mode
#endif
static void autoResetPeak(void); // peak auto-reset function
static uint8_t maxVol = 31; // (was 10) Reasonable value for constant volume for 'peak detector', as it won't always trigger (deprecated)
static uint8_t binNum = 8; // Used to select the bin for FFT based beat detection (deprecated)
#ifdef ARDUINO_ARCH_ESP32
// use audio source class (ESP32 specific)
#include "audio_source.h"
constexpr i2s_port_t I2S_PORT = I2S_NUM_0; // I2S port to use (do not change !)
@ -74,18 +119,6 @@ static uint8_t inputLevel = 128; // UI slider value
#else
uint8_t sampleGain = SR_GAIN; // sample gain (config value)
#endif
static uint8_t soundAgc = 1; // Automagic gain control: 0 - none, 1 - normal, 2 - vivid, 3 - lazy (config value)
static uint8_t audioSyncEnabled = 0; // bit field: bit 0 - send, bit 1 - receive (config value)
static bool udpSyncConnected = false; // UDP connection status -> true if connected to multicast group
// user settable parameters for limitSoundDynamics()
#ifdef UM_AUDIOREACTIVE_DYNAMICS_LIMITER_OFF
static bool limiterOn = false; // bool: enable / disable dynamics limiter
#else
static bool limiterOn = true;
#endif
static uint16_t attackTime = 80; // int: attack time in milliseconds. Default 0.08sec
static uint16_t decayTime = 1400; // int: decay time in milliseconds. Default 1.40sec
// user settable options for FFTResult scaling
static uint8_t FFTScalingMode = 3; // 0 none; 1 optimized logarithmic; 2 optimized linear; 3 optimized square root
@ -109,25 +142,8 @@ const float agcSampleSmooth[AGC_NUM_PRESETS] = { 1/12.f, 1/6.f, 1/16.f}; //
// AGC presets end
static AudioSource *audioSource = nullptr;
static volatile bool disableSoundProcessing = false; // if true, sound processing (FFT, filters, AGC) will be suspended. "volatile" as its shared between tasks.
static bool useBandPassFilter = false; // if true, enables a bandpass filter 80Hz-16Khz to remove noise. Applies before FFT.
// audioreactive variables shared with FFT task
static float micDataReal = 0.0f; // MicIn data with full 24bit resolution - lowest 8bit after decimal point
static float multAgc = 1.0f; // sample * multAgc = sampleAgc. Our AGC multiplier
static float sampleAvg = 0.0f; // Smoothed Average sample - sampleAvg < 1 means "quiet" (simple noise gate)
static float sampleAgc = 0.0f; // Smoothed AGC sample
// peak detection
static bool samplePeak = false; // Boolean flag for peak - used in effects. Responding routine may reset this flag. Auto-reset after strip.getMinShowDelay()
static uint8_t maxVol = 31; // Reasonable value for constant volume for 'peak detector', as it won't always trigger (deprecated)
static uint8_t binNum = 8; // Used to select the bin for FFT based beat detection (deprecated)
static bool udpSamplePeak = false; // Boolean flag for peak. Set at the same time as samplePeak, but reset by transmitAudioData
static unsigned long timeOfPeak = 0; // time of last sample peak detection.
static void detectSamplePeak(void); // peak detection function (needs scaled FFT results in vReal[])
static void autoResetPeak(void); // peak auto-reset function
////////////////////
// Begin FFT Code //
////////////////////
@ -139,17 +155,12 @@ void FFTcode(void * parameter); // audio processing task: read samples, run
static void runMicFilter(uint16_t numSamples, float *sampleBuffer); // pre-filtering of raw samples (band-pass)
static void postProcessFFTResults(bool noiseGateOpen, int numberOfChannels); // post-processing and post-amp of GEQ channels
#define NUM_GEQ_CHANNELS 16 // number of frequency channels. Don't change !!
static TaskHandle_t FFT_Task = nullptr;
// Table of multiplication factors so that we can even out the frequency response.
static float fftResultPink[NUM_GEQ_CHANNELS] = { 1.70f, 1.71f, 1.73f, 1.78f, 1.68f, 1.56f, 1.55f, 1.63f, 1.79f, 1.62f, 1.80f, 2.06f, 2.47f, 3.35f, 6.83f, 9.55f };
// globals and FFT Output variables shared with animations
static float FFT_MajorPeak = 1.0f; // FFT: strongest (peak) frequency
static float FFT_Magnitude = 0.0f; // FFT: volume (magnitude) of peak frequency
static uint8_t fftResult[NUM_GEQ_CHANNELS]= {0};// Our calculated freq. channel result table to be used by effects
#if defined(WLED_DEBUG) || defined(SR_DEBUG)
static uint64_t fftTime = 0;
static uint64_t sampleTime = 0;
@ -522,6 +533,8 @@ static void detectSamplePeak(void) {
}
}
#endif
static void autoResetPeak(void) {
uint16_t MinShowDelay = MAX(50, strip.getMinShowDelay()); // Fixes private class variable compiler error. Unsure if this is the correct way of fixing the root problem. -THATDONFC
if (millis() - timeOfPeak > MinShowDelay) { // Auto-reset of samplePeak after a complete frame has passed.
@ -539,6 +552,8 @@ static void autoResetPeak(void) {
class AudioReactive : public Usermod {
private:
#ifdef ARDUINO_ARCH_ESP32
#ifndef AUDIOPIN
int8_t audioPin = -1;
#else
@ -570,20 +585,23 @@ class AudioReactive : public Usermod {
#else
int8_t mclkPin = MCLK_PIN;
#endif
#endif
// new "V2" audiosync struct - 40 Bytes
struct audioSyncPacket {
char header[6]; // 06 Bytes
float sampleRaw; // 04 Bytes - either "sampleRaw" or "rawSampleAgc" depending on soundAgc setting
float sampleSmth; // 04 Bytes - either "sampleAvg" or "sampleAgc" depending on soundAgc setting
uint8_t samplePeak; // 01 Bytes - 0 no peak; >=1 peak detected. In future, this will also provide peak Magnitude
uint8_t reserved1; // 01 Bytes - for future extensions - not used yet
uint8_t fftResult[16]; // 16 Bytes
float FFT_Magnitude; // 04 Bytes
float FFT_MajorPeak; // 04 Bytes
// new "V2" audiosync struct - 44 Bytes
struct __attribute__ ((packed)) audioSyncPacket { // "packed" ensures that there are no additional gaps
char header[6]; // 06 Bytes offset 0
uint8_t reserved1[2]; // 02 Bytes, offset 6 - gap required by the compiler - not used yet
float sampleRaw; // 04 Bytes offset 8 - either "sampleRaw" or "rawSampleAgc" depending on soundAgc setting
float sampleSmth; // 04 Bytes offset 12 - either "sampleAvg" or "sampleAgc" depending on soundAgc setting
uint8_t samplePeak; // 01 Bytes offset 16 - 0 no peak; >=1 peak detected. In future, this will also provide peak Magnitude
uint8_t reserved2; // 01 Bytes offset 17 - for future extensions - not used yet
uint8_t fftResult[16]; // 16 Bytes offset 18
uint16_t reserved3; // 02 Bytes, offset 34 - gap required by the compiler - not used yet
float FFT_Magnitude; // 04 Bytes offset 36
float FFT_MajorPeak; // 04 Bytes offset 40
};
// old "V1" audiosync struct - 83 Bytes - for backwards compatibility
// old "V1" audiosync struct - 83 Bytes payload, 88 bytes total (with padding added by compiler) - for backwards compatibility
struct audioSyncPacket_v1 {
char header[6]; // 06 Bytes
uint8_t myVals[32]; // 32 Bytes
@ -596,6 +614,8 @@ class AudioReactive : public Usermod {
double FFT_MajorPeak; // 08 Bytes
};
#define UDPSOUND_MAX_PACKET 88 // max packet size for audiosync
// set your config variables to their boot default value (this can also be done in readFromConfig() or a constructor if you prefer)
#ifdef UM_AUDIOREACTIVE_ENABLE
bool enabled = true;
@ -613,10 +633,14 @@ class AudioReactive : public Usermod {
const uint16_t delayMs = 10; // I don't want to sample too often and overload WLED
uint16_t audioSyncPort= 11988;// default port for UDP sound sync
bool updateIsRunning = false; // true during OTA.
#ifdef ARDUINO_ARCH_ESP32
// used for AGC
int last_soundAgc = -1; // used to detect AGC mode change (for resetting AGC internal error buffers)
double control_integrated = 0.0; // persistent across calls to agcAvg(); "integrator control" = accumulated error
// variables used by getSample() and agcAvg()
int16_t micIn = 0; // Current sample starts with negative values and large values, which is why it's 16 bit signed
double sampleMax = 0.0; // Max sample over a few seconds. Needed for AGC controller.
@ -625,6 +649,7 @@ class AudioReactive : public Usermod {
float sampleReal = 0.0f; // "sampleRaw" as float, to provide bits that are lost otherwise (before amplification by sampleGain or inputLevel). Needed for AGC.
int16_t sampleRaw = 0; // Current sample. Must only be updated ONCE!!! (amplified mic value by sampleGain and inputLevel)
int16_t rawSampleAgc = 0; // not smoothed AGC sample
#endif
// variables used in effects
float volumeSmth = 0.0f; // either sampleAvg or sampleAgc depending on soundAgc; smoothed sample
@ -645,7 +670,9 @@ class AudioReactive : public Usermod {
static const char _dynamics[];
static const char _frequency[];
static const char _inputLvl[];
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
static const char _analogmic[];
#endif
static const char _digitalmic[];
static const char _addPalettes[];
static const char UDP_SYNC_HEADER[];
@ -672,11 +699,13 @@ class AudioReactive : public Usermod {
//PLOT_PRINT("sampleAgc:"); PLOT_PRINT(sampleAgc); PLOT_PRINT("\t");
//PLOT_PRINT("sampleAvg:"); PLOT_PRINT(sampleAvg); PLOT_PRINT("\t");
//PLOT_PRINT("sampleReal:"); PLOT_PRINT(sampleReal); PLOT_PRINT("\t");
#ifdef ARDUINO_ARCH_ESP32
//PLOT_PRINT("micIn:"); PLOT_PRINT(micIn); PLOT_PRINT("\t");
//PLOT_PRINT("sample:"); PLOT_PRINT(sample); PLOT_PRINT("\t");
//PLOT_PRINT("sampleMax:"); PLOT_PRINT(sampleMax); PLOT_PRINT("\t");
//PLOT_PRINT("samplePeak:"); PLOT_PRINT((samplePeak!=0) ? 128:0); PLOT_PRINT("\t");
//PLOT_PRINT("multAgc:"); PLOT_PRINT(multAgc, 4); PLOT_PRINT("\t");
#endif
PLOT_PRINTLN();
#endif
@ -732,6 +761,7 @@ class AudioReactive : public Usermod {
} // logAudio()
#ifdef ARDUINO_ARCH_ESP32
//////////////////////
// Audio Processing //
//////////////////////
@ -902,6 +932,7 @@ class AudioReactive : public Usermod {
sampleAvg = fabsf(sampleAvg); // make sure we have a positive value
} // getSample()
#endif
/* Limits the dynamics of volumeSmth (= sampleAvg or sampleAgc).
* does not affect FFTResult[] or volumeRaw ( = sample or rawSampleAgc)
@ -948,12 +979,14 @@ class AudioReactive : public Usermod {
if (udpSyncConnected) return; // already connected
if (!(apActive || interfacesInited)) return; // neither AP nor other connections availeable
if (millis() - last_connection_attempt < 15000) return; // only try once in 15 seconds
if (updateIsRunning) return;
// if we arrive here, we need a UDP connection but don't have one
last_connection_attempt = millis();
connected(); // try to start UDP
}
#ifdef ARDUINO_ARCH_ESP32
void transmitAudioData()
{
if (!udpSyncConnected) return;
@ -968,7 +1001,6 @@ class AudioReactive : public Usermod {
transmitData.sampleSmth = (soundAgc) ? sampleAgc : sampleAvg;
transmitData.samplePeak = udpSamplePeak ? 1:0;
udpSamplePeak = false; // Reset udpSamplePeak after we've transmitted it
transmitData.reserved1 = 0;
for (int i = 0; i < NUM_GEQ_CHANNELS; i++) {
transmitData.fftResult[i] = (uint8_t)constrain(fftResult[i], 0, 254);
@ -984,37 +1016,44 @@ class AudioReactive : public Usermod {
return;
} // transmitAudioData()
#endif
static bool isValidUdpSyncVersion(const char *header) {
return strncmp_P(header, PSTR(UDP_SYNC_HEADER), 6) == 0;
return strncmp_P(header, UDP_SYNC_HEADER, 6) == 0;
}
static bool isValidUdpSyncVersion_v1(const char *header) {
return strncmp_P(header, PSTR(UDP_SYNC_HEADER_v1), 6) == 0;
return strncmp_P(header, UDP_SYNC_HEADER_v1, 6) == 0;
}
void decodeAudioData(int packetSize, uint8_t *fftBuff) {
audioSyncPacket *receivedPacket = reinterpret_cast<audioSyncPacket*>(fftBuff);
audioSyncPacket receivedPacket;
memset(&receivedPacket, 0, sizeof(receivedPacket)); // start clean
memcpy(&receivedPacket, fftBuff, min((unsigned)packetSize, (unsigned)sizeof(receivedPacket))); // don't violate alignment - thanks @willmmiles#
// update samples for effects
volumeSmth = fmaxf(receivedPacket->sampleSmth, 0.0f);
volumeRaw = fmaxf(receivedPacket->sampleRaw, 0.0f);
volumeSmth = fmaxf(receivedPacket.sampleSmth, 0.0f);
volumeRaw = fmaxf(receivedPacket.sampleRaw, 0.0f);
#ifdef ARDUINO_ARCH_ESP32
// update internal samples
sampleRaw = volumeRaw;
sampleAvg = volumeSmth;
rawSampleAgc = volumeRaw;
sampleAgc = volumeSmth;
multAgc = 1.0f;
#endif
// Only change samplePeak IF it's currently false.
// If it's true already, then the animation still needs to respond.
autoResetPeak();
if (!samplePeak) {
samplePeak = receivedPacket->samplePeak >0 ? true:false;
samplePeak = receivedPacket.samplePeak >0 ? true:false;
if (samplePeak) timeOfPeak = millis();
//userVar1 = samplePeak;
}
//These values are only available on the ESP32
for (int i = 0; i < NUM_GEQ_CHANNELS; i++) fftResult[i] = receivedPacket->fftResult[i];
my_magnitude = fmaxf(receivedPacket->FFT_Magnitude, 0.0f);
//These values are only computed by ESP32
for (int i = 0; i < NUM_GEQ_CHANNELS; i++) fftResult[i] = receivedPacket.fftResult[i];
my_magnitude = fmaxf(receivedPacket.FFT_Magnitude, 0.0f);
FFT_Magnitude = my_magnitude;
FFT_MajorPeak = constrain(receivedPacket->FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects
FFT_MajorPeak = constrain(receivedPacket.FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects
}
void decodeAudioData_v1(int packetSize, uint8_t *fftBuff) {
@ -1022,12 +1061,14 @@ class AudioReactive : public Usermod {
// update samples for effects
volumeSmth = fmaxf(receivedPacket->sampleAgc, 0.0f);
volumeRaw = volumeSmth; // V1 format does not have "raw" AGC sample
#ifdef ARDUINO_ARCH_ESP32
// update internal samples
sampleRaw = fmaxf(receivedPacket->sampleRaw, 0.0f);
sampleAvg = fmaxf(receivedPacket->sampleAvg, 0.0f);;
sampleAgc = volumeSmth;
rawSampleAgc = volumeRaw;
multAgc = 1.0f;
multAgc = 1.0f;
#endif
// Only change samplePeak IF it's currently false.
// If it's true already, then the animation still needs to respond.
autoResetPeak();
@ -1049,9 +1090,12 @@ class AudioReactive : public Usermod {
bool haveFreshData = false;
size_t packetSize = fftUdp.parsePacket();
if (packetSize > 5) {
#ifdef ARDUINO_ARCH_ESP32
if ((packetSize > 0) && ((packetSize < 5) || (packetSize > UDPSOUND_MAX_PACKET))) fftUdp.flush(); // discard invalid packets (too small or too big) - only works on esp32
#endif
if ((packetSize > 5) && (packetSize <= UDPSOUND_MAX_PACKET)) {
//DEBUGSR_PRINTLN("Received UDP Sync Packet");
uint8_t fftBuff[packetSize];
uint8_t fftBuff[UDPSOUND_MAX_PACKET+1] = { 0 }; // fixed-size buffer for receiving (stack), to avoid heap fragmentation caused by variable sized arrays
fftUdp.read(fftBuff, packetSize);
// VERIFY THAT THIS IS A COMPATIBLE PACKET
@ -1113,6 +1157,9 @@ class AudioReactive : public Usermod {
um_data->u_type[7] = UMT_BYTE;
}
#ifdef ARDUINO_ARCH_ESP32
// Reset I2S peripheral for good measure
i2s_driver_uninstall(I2S_NUM_0); // E (696) I2S: i2s_driver_uninstall(2006): I2S port 0 has not installed
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
@ -1190,10 +1237,12 @@ class AudioReactive : public Usermod {
delay(250); // give microphone enough time to initialise
if (!audioSource) enabled = false; // audio failed to initialise
if (enabled) onUpdateBegin(false); // create FFT task
if (FFT_Task == nullptr) enabled = false; // FFT task creation failed
if (enabled) disableSoundProcessing = false; // all good - enable audio processing
#endif
if (enabled) onUpdateBegin(false); // create FFT task, and initialize network
#ifdef ARDUINO_ARCH_ESP32
if (FFT_Task == nullptr) enabled = false; // FFT task creation failed
if((!audioSource) || (!audioSource->isInitialized())) { // audio source failed to initialize. Still stay "enabled", as there might be input arriving via UDP Sound Sync
#ifdef WLED_DEBUG
DEBUG_PRINTLN(F("AR: Failed to initialize sound input driver. Please check input PIN settings."));
@ -1202,7 +1251,8 @@ class AudioReactive : public Usermod {
#endif
disableSoundProcessing = true;
}
#endif
if (enabled) disableSoundProcessing = false; // all good - enable audio processing
if (enabled) connectUDPSoundSync();
if (enabled && addPalettes) createAudioPalettes();
initDone = true;
@ -1221,7 +1271,7 @@ class AudioReactive : public Usermod {
}
if (audioSyncPort > 0 && (audioSyncEnabled & 0x03)) {
#ifndef ESP8266
#ifdef ARDUINO_ARCH_ESP32
udpSyncConnected = fftUdp.beginMulticast(IPAddress(239, 0, 0, 1), audioSyncPort);
#else
udpSyncConnected = fftUdp.beginMulticast(WiFi.localIP(), IPAddress(239, 0, 0, 1), audioSyncPort);
@ -1260,7 +1310,7 @@ class AudioReactive : public Usermod {
||(realtimeMode == REALTIME_MODE_ADALIGHT)
||(realtimeMode == REALTIME_MODE_ARTNET) ) ) // please add other modes here if needed
{
#ifdef WLED_DEBUG
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DEBUG)
if ((disableSoundProcessing == false) && (audioSyncEnabled == 0)) { // we just switched to "disabled"
DEBUG_PRINTLN(F("[AR userLoop] realtime mode active - audio processing suspended."));
DEBUG_PRINTF_P(PSTR(" RealtimeMode = %d; RealtimeOverride = %d\n"), int(realtimeMode), int(realtimeOverride));
@ -1268,7 +1318,7 @@ class AudioReactive : public Usermod {
#endif
disableSoundProcessing = true;
} else {
#ifdef WLED_DEBUG
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DEBUG)
if ((disableSoundProcessing == true) && (audioSyncEnabled == 0) && audioSource->isInitialized()) { // we just switched to "enabled"
DEBUG_PRINTLN(F("[AR userLoop] realtime mode ended - audio processing resumed."));
DEBUG_PRINTF_P(PSTR(" RealtimeMode = %d; RealtimeOverride = %d\n"), int(realtimeMode), int(realtimeOverride));
@ -1280,6 +1330,7 @@ class AudioReactive : public Usermod {
if (audioSyncEnabled & 0x02) disableSoundProcessing = true; // make sure everything is disabled IF in audio Receive mode
if (audioSyncEnabled & 0x01) disableSoundProcessing = false; // keep running audio IF we're in audio Transmit mode
#ifdef ARDUINO_ARCH_ESP32
if (!audioSource->isInitialized()) disableSoundProcessing = true; // no audio source
@ -1319,6 +1370,7 @@ class AudioReactive : public Usermod {
limitSampleDynamics();
} // if (!disableSoundProcessing)
#endif
autoResetPeak(); // auto-reset sample peak after strip minShowDelay
if (!udpSyncConnected) udpSamplePeak = false; // reset UDP samplePeak while UDP is unconnected
@ -1352,6 +1404,7 @@ class AudioReactive : public Usermod {
#endif
// Info Page: keep max sample from last 5 seconds
#ifdef ARDUINO_ARCH_ESP32
if ((millis() - sampleMaxTimer) > CYCLE_SAMPLEMAX) {
sampleMaxTimer = millis();
maxSample5sec = (0.15f * maxSample5sec) + 0.85f *((soundAgc) ? sampleAgc : sampleAvg); // reset, and start with some smoothing
@ -1359,13 +1412,25 @@ class AudioReactive : public Usermod {
} else {
if ((sampleAvg >= 1)) maxSample5sec = fmaxf(maxSample5sec, (soundAgc) ? rawSampleAgc : sampleRaw); // follow maximum volume
}
#else // similar functionality for 8266 receive only - use VolumeSmth instead of raw sample data
if ((millis() - sampleMaxTimer) > CYCLE_SAMPLEMAX) {
sampleMaxTimer = millis();
maxSample5sec = (0.15 * maxSample5sec) + 0.85 * volumeSmth; // reset, and start with some smoothing
if (volumeSmth < 1.0f) maxSample5sec = 0; // noise gate
if (maxSample5sec < 0.0f) maxSample5sec = 0; // avoid negative values
} else {
if (volumeSmth >= 1.0f) maxSample5sec = fmaxf(maxSample5sec, volumeRaw); // follow maximum volume
}
#endif
#ifdef ARDUINO_ARCH_ESP32
//UDP Microphone Sync - transmit mode
if ((audioSyncEnabled & 0x01) && (millis() - lastTime > 20)) {
// Only run the transmit code IF we're in Transmit mode
transmitAudioData();
lastTime = millis();
}
#endif
fillAudioPalettes();
}
@ -1378,7 +1443,7 @@ class AudioReactive : public Usermod {
return true;
}
#ifdef ARDUINO_ARCH_ESP32
void onUpdateBegin(bool init) override
{
#ifdef WLED_DEBUG
@ -1427,9 +1492,32 @@ class AudioReactive : public Usermod {
}
micDataReal = 0.0f; // just to be sure
if (enabled) disableSoundProcessing = false;
updateIsRunning = init;
}
#else // reduced function for 8266
void onUpdateBegin(bool init)
{
// gracefully suspend audio (if running)
disableSoundProcessing = true;
// reset sound data
volumeRaw = 0; volumeSmth = 0;
for(int i=(init?0:1); i<NUM_GEQ_CHANNELS; i+=2) fftResult[i] = 16; // make a tiny pattern
autoResetPeak();
if (init) {
if (udpSyncConnected) { // close UDP sync connection (if open)
udpSyncConnected = false;
fftUdp.stop();
DEBUGSR_PRINTLN(F("AR onUpdateBegin(true): UDP connection closed."));
receivedFormat = 0;
}
}
if (enabled) disableSoundProcessing = init; // init = true means that OTA is just starting --> don't process audio
updateIsRunning = init;
}
#endif
#ifdef ARDUINO_ARCH_ESP32
/**
* handleButton() can be used to override default button behaviour. Returning true
* will prevent button working in a default way.
@ -1447,7 +1535,7 @@ class AudioReactive : public Usermod {
return false;
}
#endif
////////////////////////////
// Settings and Info Page //
////////////////////////////
@ -1459,7 +1547,9 @@ class AudioReactive : public Usermod {
*/
void addToJsonInfo(JsonObject& root) override
{
char myStringBuffer[16]; // buffer for snprintf()
#ifdef ARDUINO_ARCH_ESP32
char myStringBuffer[16]; // buffer for snprintf() - not used yet on 8266
#endif
JsonObject user = root["u"];
if (user.isNull()) user = root.createNestedObject("u");
@ -1477,6 +1567,7 @@ class AudioReactive : public Usermod {
infoArr.add(uiDomString);
if (enabled) {
#ifdef ARDUINO_ARCH_ESP32
// Input Level Slider
if (disableSoundProcessing == false) { // only show slider when audio processing is running
if (soundAgc > 0) {
@ -1493,7 +1584,7 @@ class AudioReactive : public Usermod {
uiDomString += F(" /><div class=\"sliderdisplay\"></div></div></div>"); //<output class=\"sliderbubble\"></output>
infoArr.add(uiDomString);
}
#endif
// The following can be used for troubleshooting user errors and is so not enclosed in #ifdef WLED_DEBUG
// current Audio input
@ -1509,6 +1600,11 @@ class AudioReactive : public Usermod {
} else {
infoArr.add(F(" - no connection"));
}
#ifndef ARDUINO_ARCH_ESP32 // substitute for 8266
} else {
infoArr.add(F("sound sync Off"));
}
#else // ESP32 only
} else {
// Analog or I2S digital input
if (audioSource && (audioSource->isInitialized())) {
@ -1553,7 +1649,7 @@ class AudioReactive : public Usermod {
infoArr.add(roundf(multAgc*100.0f) / 100.0f);
infoArr.add("x");
}
#endif
// UDP Sound Sync status
infoArr = user.createNestedArray(F("UDP Sound Sync"));
if (audioSyncEnabled) {
@ -1572,6 +1668,7 @@ class AudioReactive : public Usermod {
}
#if defined(WLED_DEBUG) || defined(SR_DEBUG)
#ifdef ARDUINO_ARCH_ESP32
infoArr = user.createNestedArray(F("Sampling time"));
infoArr.add(float(sampleTime)/100.0f);
infoArr.add(" ms");
@ -1588,6 +1685,7 @@ class AudioReactive : public Usermod {
DEBUGSR_PRINTF("AR Sampling time: %5.2f ms\n", float(sampleTime)/100.0f);
DEBUGSR_PRINTF("AR FFT time : %5.2f ms\n", float(fftTime)/100.0f);
#endif
#endif
}
}
@ -1626,9 +1724,11 @@ class AudioReactive : public Usermod {
if (!prevEnabled && enabled) createAudioPalettes();
}
}
#ifdef ARDUINO_ARCH_ESP32
if (usermod[FPSTR(_inputLvl)].is<int>()) {
inputLevel = min(255,max(0,usermod[FPSTR(_inputLvl)].as<int>()));
}
#endif
}
if (root.containsKey(F("rmcpal")) && root[F("rmcpal")].as<bool>()) {
// handle removal of custom palettes from JSON call so we don't break things
@ -1684,6 +1784,7 @@ class AudioReactive : public Usermod {
top[FPSTR(_enabled)] = enabled;
top[FPSTR(_addPalettes)] = addPalettes;
#ifdef ARDUINO_ARCH_ESP32
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
JsonObject amic = top.createNestedObject(FPSTR(_analogmic));
amic["pin"] = audioPin;
@ -1702,14 +1803,15 @@ class AudioReactive : public Usermod {
cfg[F("gain")] = sampleGain;
cfg[F("AGC")] = soundAgc;
JsonObject freqScale = top.createNestedObject(FPSTR(_frequency));
freqScale[F("scale")] = FFTScalingMode;
#endif
JsonObject dynLim = top.createNestedObject(FPSTR(_dynamics));
dynLim[F("limiter")] = limiterOn;
dynLim[F("rise")] = attackTime;
dynLim[F("fall")] = decayTime;
JsonObject freqScale = top.createNestedObject(FPSTR(_frequency));
freqScale[F("scale")] = FFTScalingMode;
JsonObject sync = top.createNestedObject("sync");
sync["port"] = audioSyncPort;
sync["mode"] = audioSyncEnabled;
@ -1741,6 +1843,7 @@ class AudioReactive : public Usermod {
configComplete &= getJsonValue(top[FPSTR(_enabled)], enabled);
configComplete &= getJsonValue(top[FPSTR(_addPalettes)], addPalettes);
#ifdef ARDUINO_ARCH_ESP32
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
configComplete &= getJsonValue(top[FPSTR(_analogmic)]["pin"], audioPin);
#else
@ -1764,12 +1867,12 @@ class AudioReactive : public Usermod {
configComplete &= getJsonValue(top[FPSTR(_config)][F("gain")], sampleGain);
configComplete &= getJsonValue(top[FPSTR(_config)][F("AGC")], soundAgc);
configComplete &= getJsonValue(top[FPSTR(_frequency)][F("scale")], FFTScalingMode);
configComplete &= getJsonValue(top[FPSTR(_dynamics)][F("limiter")], limiterOn);
configComplete &= getJsonValue(top[FPSTR(_dynamics)][F("rise")], attackTime);
configComplete &= getJsonValue(top[FPSTR(_dynamics)][F("fall")], decayTime);
configComplete &= getJsonValue(top[FPSTR(_frequency)][F("scale")], FFTScalingMode);
#endif
configComplete &= getJsonValue(top["sync"]["port"], audioSyncPort);
configComplete &= getJsonValue(top["sync"]["mode"], audioSyncEnabled);
@ -1784,6 +1887,7 @@ class AudioReactive : public Usermod {
void appendConfigData() override
{
#ifdef ARDUINO_ARCH_ESP32
oappend(SET_F("dd=addDropdown('AudioReactive','digitalmic:type');"));
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
oappend(SET_F("addOption(dd,'Generic Analog',0);"));
@ -1815,11 +1919,15 @@ class AudioReactive : public Usermod {
oappend(SET_F("addOption(dd,'Linear (Amplitude)',2);"));
oappend(SET_F("addOption(dd,'Square Root (Energy)',3);"));
oappend(SET_F("addOption(dd,'Logarithmic (Loudness)',1);"));
#endif
oappend(SET_F("dd=addDropdown('AudioReactive','sync:mode');"));
oappend(SET_F("addOption(dd,'Off',0);"));
#ifdef ARDUINO_ARCH_ESP32
oappend(SET_F("addOption(dd,'Send',1);"));
#endif
oappend(SET_F("addOption(dd,'Receive',2);"));
#ifdef ARDUINO_ARCH_ESP32
oappend(SET_F("addInfo('AudioReactive:digitalmic:type',1,'<i>requires reboot!</i>');")); // 0 is field type, 1 is actual field
oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',0,'<i>sd/data/dout</i>','I2S SD');"));
oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',1,'<i>ws/clk/lrck</i>','I2S WS');"));
@ -1829,6 +1937,7 @@ class AudioReactive : public Usermod {
#else
oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',3,'<i>master clock</i>','I2S MCLK');"));
#endif
#endif
}
@ -1907,8 +2016,8 @@ CRGB AudioReactive::getCRGBForBand(int x, int pal) {
void AudioReactive::fillAudioPalettes() {
if (!palettes) return;
size_t lastCustPalette = strip.customPalettes.size();
if (lastCustPalette >= palettes) lastCustPalette -= palettes;
for (size_t pal=0; pal<palettes; pal++) {
if (int(lastCustPalette) >= palettes) lastCustPalette -= palettes;
for (int pal=0; pal<palettes; pal++) {
uint8_t tcp[16]; // Needs to be 4 times however many colors are being used.
// 3 colors = 12, 4 colors = 16, etc.

View File

@ -484,6 +484,7 @@ mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
}
if (n==-1) {
o[--i].remove();--i;
o[i].querySelector("[name^=LT]").disabled = false;
}
gId("+").style.display = (i<maxB+maxV-1) ? "inline":"none";

View File

@ -8,6 +8,8 @@
#include "soc/rtc_cntl_reg.h"
#endif
extern "C" void usePWMFixedNMI();
/*
* Main WLED class implementation. Mostly initialization and connection logic
*/
@ -408,6 +410,10 @@ void WLED::setup()
DEBUG_PRINTF_P(PSTR("TX power: %d/%d\n"), WiFi.getTxPower(), txPower);
#endif
#ifdef ESP8266
usePWMFixedNMI(); // link the NMI fix
#endif
#if defined(WLED_DEBUG) && !defined(WLED_DEBUG_HOST)
pinManager.allocatePin(hardwareTX, true, PinOwner::DebugOut); // TX (GPIO1 on ESP32) reserved for debug output
#endif