diff --git a/usermods/audioreactive/audio_reactive.cpp b/usermods/audioreactive/audio_reactive.cpp index ee88287b5..4b3520562 100644 --- a/usermods/audioreactive/audio_reactive.cpp +++ b/usermods/audioreactive/audio_reactive.cpp @@ -869,7 +869,7 @@ class AudioReactive : public Usermod { const int AGC_preset = (soundAgc > 0)? (soundAgc-1): 0; // make sure the _compiler_ knows this value will not change while we are inside the function #ifdef WLED_DISABLE_SOUND - micIn = inoise8(millis(), millis()); // Simulated analog read + micIn = perlin8(millis(), millis()); // Simulated analog read micDataReal = micIn; #else #ifdef ARDUINO_ARCH_ESP32 diff --git a/wled00/FX.cpp b/wled00/FX.cpp index 4d17b81f5..832c2e404 100644 --- a/wled00/FX.cpp +++ b/wled00/FX.cpp @@ -2182,7 +2182,7 @@ static const char _data_FX_MODE_BPM[] PROGMEM = "Bpm@!;!;!;;sx=64"; uint16_t mode_fillnoise8() { if (SEGENV.call == 0) SEGENV.step = hw_random(); for (unsigned i = 0; i < SEGLEN; i++) { - unsigned index = inoise8(i * SEGLEN, SEGENV.step + i * SEGLEN); + unsigned index = perlin8(i * SEGLEN, SEGENV.step + i * SEGLEN); SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(index, false, PALETTE_SOLID_WRAP, 0)); } SEGENV.step += beatsin8_t(SEGMENT.speed, 1, 6); //10,1,4 @@ -2202,7 +2202,7 @@ uint16_t mode_noise16_1() { unsigned real_x = (i + shift_x) * scale; // the x position of the noise field swings @ 17 bpm unsigned real_y = (i + shift_y) * scale; // the y position becomes slowly incremented uint32_t real_z = SEGENV.step; // the z position becomes quickly incremented - unsigned noise = inoise16(real_x, real_y, real_z) >> 8; // get the noise data and scale it down + unsigned noise = perlin16(real_x, real_y, real_z) >> 8; // get the noise data and scale it down unsigned index = sin8_t(noise * 3); // map LED color based on noise data SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(index, false, PALETTE_SOLID_WRAP, 0)); @@ -2220,7 +2220,7 @@ uint16_t mode_noise16_2() { for (unsigned i = 0; i < SEGLEN; i++) { unsigned shift_x = SEGENV.step >> 6; // x as a function of time uint32_t real_x = (i + shift_x) * scale; // calculate the coordinates within the noise field - unsigned noise = inoise16(real_x, 0, 4223) >> 8; // get the noise data and scale it down + unsigned noise = perlin16(real_x, 0, 4223) >> 8; // get the noise data and scale it down unsigned index = sin8_t(noise * 3); // map led color based on noise data SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(index, false, PALETTE_SOLID_WRAP, 0, noise)); @@ -2241,7 +2241,7 @@ uint16_t mode_noise16_3() { uint32_t real_x = (i + shift_x) * scale; // calculate the coordinates within the noise field uint32_t real_y = (i + shift_y) * scale; // based on the precalculated positions uint32_t real_z = SEGENV.step*8; - unsigned noise = inoise16(real_x, real_y, real_z) >> 8; // get the noise data and scale it down + unsigned noise = perlin16(real_x, real_y, real_z) >> 8; // get the noise data and scale it down unsigned index = sin8_t(noise * 3); // map led color based on noise data SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(index, false, PALETTE_SOLID_WRAP, 0, noise)); @@ -2256,7 +2256,7 @@ static const char _data_FX_MODE_NOISE16_3[] PROGMEM = "Noise 3@!;!;!;;pal=35"; uint16_t mode_noise16_4() { uint32_t stp = (strip.now * SEGMENT.speed) >> 7; for (unsigned i = 0; i < SEGLEN; i++) { - int index = inoise16(uint32_t(i) << 12, stp); + int index = perlin16(uint32_t(i) << 12, stp); SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(index, false, PALETTE_SOLID_WRAP, 0)); } return FRAMETIME; @@ -4118,7 +4118,7 @@ static uint16_t phased_base(uint8_t moder) { // We're making si *phase += SEGMENT.speed/32.0; // You can change the speed of the wave. AKA SPEED (was .4) for (unsigned i = 0; i < SEGLEN; i++) { - if (moder == 1) modVal = (inoise8(i*10 + i*10) /16); // Let's randomize our mod length with some Perlin noise. + if (moder == 1) modVal = (perlin8(i*10 + i*10) /16); // Let's randomize our mod length with some Perlin noise. unsigned val = (i+1) * allfreq; // This sets the frequency of the waves. The +1 makes sure that led 0 is used. if (modVal == 0) modVal = 1; val += *phase * (i % modVal +1) /2; // This sets the varying phase change of the waves. By Andrew Tuline. @@ -4187,7 +4187,7 @@ uint16_t mode_noisepal(void) { // Slow noise if (SEGMENT.palette > 0) palettes[0] = SEGPALETTE; for (unsigned i = 0; i < SEGLEN; i++) { - unsigned index = inoise8(i*scale, SEGENV.aux0+i*scale); // Get a value from the noise function. I'm using both x and y axis. + unsigned index = perlin8(i*scale, SEGENV.aux0+i*scale); // Get a value from the noise function. I'm using both x and y axis. SEGMENT.setPixelColor(i, ColorFromPalette(palettes[0], index, 255, LINEARBLEND)); // Use my own palette. } @@ -4798,7 +4798,7 @@ uint16_t mode_perlinmove(void) { if (SEGLEN <= 1) return mode_static(); SEGMENT.fade_out(255-SEGMENT.custom1); for (int i = 0; i < SEGMENT.intensity/16 + 1; i++) { - unsigned locn = inoise16(strip.now*128/(260-SEGMENT.speed)+i*15000, strip.now*128/(260-SEGMENT.speed)); // Get a new pixel location from moving noise. + unsigned locn = perlin16(strip.now*128/(260-SEGMENT.speed)+i*15000, strip.now*128/(260-SEGMENT.speed)); // Get a new pixel location from moving noise. unsigned pixloc = map(locn, 50*256, 192*256, 0, SEGLEN-1); // Map that to the length of the strand, and ensure we don't go over. SEGMENT.setPixelColor(pixloc, SEGMENT.color_from_palette(pixloc%255, false, PALETTE_SOLID_WRAP, 0)); } @@ -5056,7 +5056,7 @@ uint16_t mode_2Dfirenoise(void) { // firenoise2d. By Andrew Tuline CRGBPalette16 pal = SEGMENT.check1 ? SEGPALETTE : SEGMENT.loadPalette(pal, 35); for (int j=0; j < cols; j++) { for (int i=0; i < rows; i++) { - indexx = inoise8(j*yscale*rows/255, i*xscale+strip.now/4); // We're moving along our Perlin map. + indexx = perlin8(j*yscale*rows/255, i*xscale+strip.now/4); // We're moving along our Perlin map. SEGMENT.setPixelColorXY(j, i, ColorFromPalette(pal, min(i*indexx/11, 225U), i*255/rows, LINEARBLEND)); // With that value, look up the 8 bit colour palette value and assign it to the current LED. } // for i } // for j @@ -5449,11 +5449,11 @@ uint16_t mode_2Dmetaballs(void) { // Metaballs by Stefan Petrick. Cannot have float speed = 0.25f * (1+(SEGMENT.speed>>6)); // get some 2 random moving points - int x2 = map(inoise8(strip.now * speed, 25355, 685), 0, 255, 0, cols-1); - int y2 = map(inoise8(strip.now * speed, 355, 11685), 0, 255, 0, rows-1); + int x2 = map(perlin8(strip.now * speed, 25355, 685), 0, 255, 0, cols-1); + int y2 = map(perlin8(strip.now * speed, 355, 11685), 0, 255, 0, rows-1); - int x3 = map(inoise8(strip.now * speed, 55355, 6685), 0, 255, 0, cols-1); - int y3 = map(inoise8(strip.now * speed, 25355, 22685), 0, 255, 0, rows-1); + int x3 = map(perlin8(strip.now * speed, 55355, 6685), 0, 255, 0, cols-1); + int y3 = map(perlin8(strip.now * speed, 25355, 22685), 0, 255, 0, rows-1); // and one Lissajou function int x1 = beatsin8_t(23 * speed, 0, cols-1); @@ -5509,7 +5509,7 @@ uint16_t mode_2Dnoise(void) { // By Andrew Tuline for (int y = 0; y < rows; y++) { for (int x = 0; x < cols; x++) { - uint8_t pixelHue8 = inoise8(x * scale, y * scale, strip.now / (16 - SEGMENT.speed/16)); + uint8_t pixelHue8 = perlin8(x * scale, y * scale, strip.now / (16 - SEGMENT.speed/16)); SEGMENT.setPixelColorXY(x, y, ColorFromPalette(SEGPALETTE, pixelHue8)); } } @@ -5531,10 +5531,10 @@ uint16_t mode_2DPlasmaball(void) { // By: Stepko https://edito SEGMENT.fadeToBlackBy(SEGMENT.custom1>>2); uint_fast32_t t = (strip.now * 8) / (256 - SEGMENT.speed); // optimized to avoid float for (int i = 0; i < cols; i++) { - unsigned thisVal = inoise8(i * 30, t, t); + unsigned thisVal = perlin8(i * 30, t, t); unsigned thisMax = map(thisVal, 0, 255, 0, cols-1); for (int j = 0; j < rows; j++) { - unsigned thisVal_ = inoise8(t, j * 30, t); + unsigned thisVal_ = perlin8(t, j * 30, t); unsigned thisMax_ = map(thisVal_, 0, 255, 0, rows-1); int x = (i + thisMax_ - cols / 2); int y = (j + thisMax - cols / 2); @@ -5579,7 +5579,7 @@ uint16_t mode_2DPolarLights(void) { // By: Kostyantyn Matviyevskyy https for (int x = 0; x < cols; x++) { for (int y = 0; y < rows; y++) { SEGENV.step++; - uint8_t palindex = qsub8(inoise8((SEGENV.step%2) + x * _scale, y * 16 + SEGENV.step % 16, SEGENV.step / _speed), fabsf((float)rows / 2.0f - (float)y) * adjustHeight); + uint8_t palindex = qsub8(perlin8((SEGENV.step%2) + x * _scale, y * 16 + SEGENV.step % 16, SEGENV.step / _speed), fabsf((float)rows / 2.0f - (float)y) * adjustHeight); uint8_t palbrightness = palindex; if(SEGMENT.check1) palindex = 255 - palindex; //flip palette SEGMENT.setPixelColorXY(x, y, SEGMENT.color_from_palette(palindex, false, false, 255, palbrightness)); @@ -5696,7 +5696,8 @@ uint16_t mode_2DSunradiation(void) { // By: ldirko https://edi uint8_t someVal = SEGMENT.speed/4; // Was 25. for (int j = 0; j < (rows + 2); j++) { for (int i = 0; i < (cols + 2); i++) { - byte col = (inoise8_raw(i * someVal, j * someVal, t)) / 2; + //byte col = (inoise8_raw(i * someVal, j * someVal, t)) / 2; + byte col = ((int16_t)perlin8(i * someVal, j * someVal, t) - 0x7F) / 3; bump[index++] = col; } } @@ -6394,10 +6395,10 @@ uint16_t mode_2DWaverly(void) { long t = strip.now / 2; for (int i = 0; i < cols; i++) { - unsigned thisVal = (1 + SEGMENT.intensity/64) * inoise8(i * 45 , t , t)/2; + unsigned thisVal = (1 + SEGMENT.intensity/64) * perlin8(i * 45 , t , t)/2; // use audio if available if (um_data) { - thisVal /= 32; // reduce intensity of inoise8() + thisVal /= 32; // reduce intensity of perlin8() thisVal *= volumeSmth; } int thisMax = map(thisVal, 0, 512, 0, rows); @@ -6476,7 +6477,7 @@ uint16_t mode_gravcenter_base(unsigned mode) { } else if(mode == 2) { //Gravimeter for (int i=0; itopLED > 0) { @@ -6498,7 +6499,7 @@ uint16_t mode_gravcenter_base(unsigned mode) { } else { //Gravcenter for (int i=0; iSEGLEN/2) maxLen = SEGLEN/2; for (unsigned i=(SEGLEN/2-maxLen); i<(SEGLEN/2+maxLen); i++) { - uint8_t index = inoise8(i*volumeSmth+SEGENV.aux0, SEGENV.aux1+i*volumeSmth); // Get a value from the noise function. I'm using both x and y axis. + uint8_t index = perlin8(i*volumeSmth+SEGENV.aux0, SEGENV.aux1+i*volumeSmth); // Get a value from the noise function. I'm using both x and y axis. SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(index, false, PALETTE_SOLID_WRAP, 0)); } @@ -6648,7 +6649,7 @@ uint16_t mode_noisefire(void) { // Noisefire. By Andrew Tuline. if (SEGENV.call == 0) SEGMENT.fill(BLACK); for (unsigned i = 0; i < SEGLEN; i++) { - unsigned index = inoise8(i*SEGMENT.speed/64,strip.now*SEGMENT.speed/64*SEGLEN/255); // X location is constant, but we move along the Y at the rate of millis(). By Andrew Tuline. + unsigned index = perlin8(i*SEGMENT.speed/64,strip.now*SEGMENT.speed/64*SEGLEN/255); // X location is constant, but we move along the Y at the rate of millis(). By Andrew Tuline. index = (255 - i*256/SEGLEN) * index/(256-SEGMENT.intensity); // Now we need to scale index so that it gets blacker as we get close to one of the ends. // This is a simple y=mx+b equation that's been scaled. index/128 is another scaling. @@ -6679,7 +6680,7 @@ uint16_t mode_noisemeter(void) { // Noisemeter. By Andrew Tuline. if (maxLen > SEGLEN) maxLen = SEGLEN; for (unsigned i=0; i> 8; + uint8_t data = perlin16(noisecoord[0] + ioffset, noisecoord[1] + joffset, noisecoord[2]) >> 8; noise3d[XY(i,j)] = scale8(noise3d[XY(i,j)], smoothness) + scale8(data, 255 - smoothness); } } @@ -8050,7 +8051,7 @@ uint16_t mode_particlefire(void) { if (SEGMENT.call % 10 == 0) SEGENV.aux1++; // move in noise y direction so noise does not repeat as often // add wind force to all particles - int8_t windspeed = ((int16_t)(inoise8(SEGENV.aux0, SEGENV.aux1) - 127) * SEGMENT.custom2) >> 7; + int8_t windspeed = ((int16_t)(perlin8(SEGENV.aux0, SEGENV.aux1) - 127) * SEGMENT.custom2) >> 7; PartSys->applyForce(windspeed, 0); } SEGENV.step++; @@ -8059,7 +8060,7 @@ uint16_t mode_particlefire(void) { if (SEGMENT.call % map(firespeed, 0, 255, 4, 15) == 0) { for (i = 0; i < PartSys->usedParticles; i++) { if (PartSys->particles[i].y < PartSys->maxY / 4) { // do not apply turbulance everywhere -> bottom quarter seems a good balance - int32_t curl = ((int32_t)inoise8(PartSys->particles[i].x, PartSys->particles[i].y, SEGENV.step << 4) - 127); + int32_t curl = ((int32_t)perlin8(PartSys->particles[i].x, PartSys->particles[i].y, SEGENV.step << 4) - 127); PartSys->particles[i].vx += (curl * (firespeed + 10)) >> 9; } } @@ -8276,8 +8277,8 @@ uint16_t mode_particlebox(void) { SEGENV.aux0 -= increment; if (SEGMENT.check1) { // random, use perlin noise - xgravity = ((int16_t)inoise8(SEGENV.aux0) - 127); - ygravity = ((int16_t)inoise8(SEGENV.aux0 + 10000) - 127); + xgravity = ((int16_t)perlin8(SEGENV.aux0) - 127); + ygravity = ((int16_t)perlin8(SEGENV.aux0 + 10000) - 127); // scale the gravity force xgravity = (xgravity * SEGMENT.custom1) / 128; ygravity = (ygravity * SEGMENT.custom1) / 128; @@ -8348,11 +8349,11 @@ uint16_t mode_particleperlin(void) { uint32_t scale = 16 - ((31 - SEGMENT.custom3) >> 1); uint16_t xnoise = PartSys->particles[i].x / scale; // position in perlin noise, scaled by slider uint16_t ynoise = PartSys->particles[i].y / scale; - int16_t baseheight = inoise8(xnoise, ynoise, SEGENV.aux0); // noise value at particle position + int16_t baseheight = perlin8(xnoise, ynoise, SEGENV.aux0); // noise value at particle position PartSys->particles[i].hue = baseheight; // color particles to perlin noise value if (SEGMENT.call % 8 == 0) { // do not apply the force every frame, is too chaotic - int8_t xslope = (baseheight + (int16_t)inoise8(xnoise - 10, ynoise, SEGENV.aux0)); - int8_t yslope = (baseheight + (int16_t)inoise8(xnoise, ynoise - 10, SEGENV.aux0)); + int8_t xslope = (baseheight + (int16_t)perlin8(xnoise - 10, ynoise, SEGENV.aux0)); + int8_t yslope = (baseheight + (int16_t)perlin8(xnoise, ynoise - 10, SEGENV.aux0)); PartSys->applyForce(i, xslope, yslope); } } @@ -9720,7 +9721,7 @@ uint16_t mode_particleBalance(void) { int32_t increment = (SEGMENT.speed >> 6) + 1; SEGENV.aux0 += increment; if (SEGMENT.check3) // random, use perlin noise - xgravity = ((int16_t)inoise8(SEGENV.aux0) - 128); + xgravity = ((int16_t)perlin8(SEGENV.aux0) - 128); else // sinusoidal xgravity = (int16_t)cos8(SEGENV.aux0) - 128;//((int32_t)(SEGMENT.custom3 << 2) * cos8(SEGENV.aux0) // scale the force @@ -10072,7 +10073,7 @@ uint16_t mode_particle1Dsonicstream(void) { else PartSys->particles[i].ttl = 0; } if (SEGMENT.check1) // modulate colors by mid frequencies - PartSys->particles[i].hue += (mids * inoise8(PartSys->particles[i].x << 2, SEGMENT.step << 2)) >> 9; // color by perlin noise from mid frequencies + PartSys->particles[i].hue += (mids * perlin8(PartSys->particles[i].x << 2, SEGMENT.step << 2)) >> 9; // color by perlin noise from mid frequencies } if (loudness > threshold) { diff --git a/wled00/fcn_declare.h b/wled00/fcn_declare.h index 497a775ee..bb7114ed5 100644 --- a/wled00/fcn_declare.h +++ b/wled00/fcn_declare.h @@ -486,6 +486,8 @@ void userLoop(); #include "soc/wdev_reg.h" #define HW_RND_REGISTER REG_READ(WDEV_RND_REG) #endif +#define inoise8 perlin8 // fastled legacy alias +#define inoise16 perlin16 // fastled legacy alias #define hex2int(a) (((a)>='0' && (a)<='9') ? (a)-'0' : ((a)>='A' && (a)<='F') ? (a)-'A'+10 : ((a)>='a' && (a)<='f') ? (a)-'a'+10 : 0) [[gnu::pure]] int getNumVal(const String* req, uint16_t pos); void parseNumber(const char* str, byte* val, byte minv=0, byte maxv=255); @@ -514,6 +516,15 @@ void enumerateLedmaps(); [[gnu::hot]] uint8_t get_random_wheel_index(uint8_t pos); [[gnu::hot, gnu::pure]] float mapf(float x, float in_min, float in_max, float out_min, float out_max); uint32_t hashInt(uint32_t s); +int32_t perlin1D_raw(uint32_t x, bool is16bit = false); +int32_t perlin2D_raw(uint32_t x, uint32_t y, bool is16bit = false); +int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z, bool is16bit = false); +uint16_t perlin16(uint32_t x); +uint16_t perlin16(uint32_t x, uint32_t y); +uint16_t perlin16(uint32_t x, uint32_t y, uint32_t z); +uint8_t perlin8(uint16_t x); +uint8_t perlin8(uint16_t x, uint16_t y); +uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z); // fast (true) random numbers using hardware RNG, all functions return values in the range lowerlimit to upperlimit-1 // note: for true random numbers with high entropy, do not call faster than every 200ns (5MHz) diff --git a/wled00/util.cpp b/wled00/util.cpp index 16af85e71..ac8a16207 100644 --- a/wled00/util.cpp +++ b/wled00/util.cpp @@ -506,12 +506,12 @@ um_data_t* simulateSound(uint8_t simulationId) break; case UMS_10_13: for (int i = 0; i<16; i++) - fftResult[i] = inoise8(beatsin8_t(90 / (i+1), 0, 200)*15 + (ms>>10), ms>>3); + fftResult[i] = perlin8(beatsin8_t(90 / (i+1), 0, 200)*15 + (ms>>10), ms>>3); volumeSmth = fftResult[8]; break; case UMS_14_3: for (int i = 0; i<16; i++) - fftResult[i] = inoise8(beatsin8_t(120 / (i+1), 10, 30)*10 + (ms>>14), ms>>3); + fftResult[i] = perlin8(beatsin8_t(120 / (i+1), 10, 30)*10 + (ms>>14), ms>>3); volumeSmth = fftResult[8]; break; } @@ -618,3 +618,178 @@ int32_t hw_random(int32_t lowerlimit, int32_t upperlimit) { uint32_t diff = upperlimit - lowerlimit; return hw_random(diff) + lowerlimit; } + +/* + * Fixed point integer based Perlin noise functions by @dedehai + * Note: optimized for speed and to mimic fastled inoise functions, not for accuracy or best randomness + */ +#define PERLIN_SHIFT 1 + +// calculate gradient for corner from hash value +static inline __attribute__((always_inline)) int32_t hashToGradient(uint32_t h) { + // using more steps yields more "detailed" perlin noise but looks less like the original fastled version (adjust PERLIN_SHIFT to compensate, also changes range and needs proper adustment) + // return (h & 0xFF) - 128; // use PERLIN_SHIFT 7 + // return (h & 0x0F) - 8; // use PERLIN_SHIFT 3 + // return (h & 0x07) - 4; // use PERLIN_SHIFT 2 + return (h & 0x03) - 2; // use PERLIN_SHIFT 1 -> closest to original fastled version +} + +// Gradient functions for 1D, 2D and 3D Perlin noise note: forcing inline produces smaller code and makes it 3x faster! +static inline __attribute__((always_inline)) int32_t gradient1D(uint32_t x0, int32_t dx) { + uint32_t h = x0 * 0x27D4EB2D; + h ^= h >> 15; + h *= 0x92C3412B; + h ^= h >> 13; + h ^= h >> 7; + return (hashToGradient(h) * dx) >> PERLIN_SHIFT; +} + +static inline __attribute__((always_inline)) int32_t gradient2D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy) { + uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D); + h ^= h >> 15; + h *= 0x92C3412B; + h ^= h >> 13; + return (hashToGradient(h) * dx + hashToGradient(h>>PERLIN_SHIFT) * dy) >> (1 + PERLIN_SHIFT); +} + +static inline __attribute__((always_inline)) int32_t gradient3D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy, uint32_t z0, int32_t dz) { + // fast and good entropy hash from corner coordinates + uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D) ^ (z0 * 0x1B56C4E9); + h ^= h >> 15; + h *= 0x92C3412B; + h ^= h >> 13; + return ((hashToGradient(h) * dx + hashToGradient(h>>(1+PERLIN_SHIFT)) * dy + hashToGradient(h>>(1 + 2*PERLIN_SHIFT)) * dz) * 85) >> (8 + PERLIN_SHIFT); // scale to 16bit, x*85 >> 8 = x/3 +} + +// fast cubic smoothstep: t*(3 - 2t²), optimized for fixed point, scaled to avoid overflows +static uint32_t smoothstep(const uint32_t t) { + uint32_t t_squared = (t * t) >> 16; + uint32_t factor = (3 << 16) - ((t << 1)); + return (t_squared * factor) >> 18; // scale to avoid overflows and give best resolution +} + +// simple linear interpolation for fixed-point values, scaled for perlin noise use +static inline int32_t lerpPerlin(int32_t a, int32_t b, int32_t t) { + return a + (((b - a) * t) >> 14); // match scaling with smoothstep to yield 16.16bit values +} + +// 1D Perlin noise function that returns a value in range of -24691 to 24689 +int32_t perlin1D_raw(uint32_t x, bool is16bit) { + // integer and fractional part coordinates + int32_t x0 = x >> 16; + int32_t x1 = x0 + 1; + if(is16bit) x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF + + int32_t dx0 = x & 0xFFFF; + int32_t dx1 = dx0 - 0x10000; + // gradient values for the two corners + int32_t g0 = gradient1D(x0, dx0); + int32_t g1 = gradient1D(x1, dx1); + // interpolate and smooth function + int32_t tx = smoothstep(dx0); + int32_t noise = lerpPerlin(g0, g1, tx); + return noise; +} + +// 2D Perlin noise function that returns a value in range of -20633 to 20629 +int32_t perlin2D_raw(uint32_t x, uint32_t y, bool is16bit) { + int32_t x0 = x >> 16; + int32_t y0 = y >> 16; + int32_t x1 = x0 + 1; + int32_t y1 = y0 + 1; + + if(is16bit) { + x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF + y1 = y1 & 0xFF; + } + + int32_t dx0 = x & 0xFFFF; + int32_t dy0 = y & 0xFFFF; + int32_t dx1 = dx0 - 0x10000; + int32_t dy1 = dy0 - 0x10000; + + int32_t g00 = gradient2D(x0, dx0, y0, dy0); + int32_t g10 = gradient2D(x1, dx1, y0, dy0); + int32_t g01 = gradient2D(x0, dx0, y1, dy1); + int32_t g11 = gradient2D(x1, dx1, y1, dy1); + + uint32_t tx = smoothstep(dx0); + uint32_t ty = smoothstep(dy0); + + int32_t nx0 = lerpPerlin(g00, g10, tx); + int32_t nx1 = lerpPerlin(g01, g11, tx); + + int32_t noise = lerpPerlin(nx0, nx1, ty); + return noise; +} + +// 3D Perlin noise function that returns a value in range of -16788 to 16381 +int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z, bool is16bit) { + int32_t x0 = x >> 16; + int32_t y0 = y >> 16; + int32_t z0 = z >> 16; + int32_t x1 = x0 + 1; + int32_t y1 = y0 + 1; + int32_t z1 = z0 + 1; + + if(is16bit) { + x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF + y1 = y1 & 0xFF; + z1 = z1 & 0xFF; + } + + int32_t dx0 = x & 0xFFFF; + int32_t dy0 = y & 0xFFFF; + int32_t dz0 = z & 0xFFFF; + int32_t dx1 = dx0 - 0x10000; + int32_t dy1 = dy0 - 0x10000; + int32_t dz1 = dz0 - 0x10000; + + int32_t g000 = gradient3D(x0, dx0, y0, dy0, z0, dz0); + int32_t g001 = gradient3D(x0, dx0, y0, dy0, z1, dz1); + int32_t g010 = gradient3D(x0, dx0, y1, dy1, z0, dz0); + int32_t g011 = gradient3D(x0, dx0, y1, dy1, z1, dz1); + int32_t g100 = gradient3D(x1, dx1, y0, dy0, z0, dz0); + int32_t g101 = gradient3D(x1, dx1, y0, dy0, z1, dz1); + int32_t g110 = gradient3D(x1, dx1, y1, dy1, z0, dz0); + int32_t g111 = gradient3D(x1, dx1, y1, dy1, z1, dz1); + + uint32_t tx = smoothstep(dx0); + uint32_t ty = smoothstep(dy0); + uint32_t tz = smoothstep(dz0); + + int32_t nx0 = lerpPerlin(g000, g100, tx); + int32_t nx1 = lerpPerlin(g010, g110, tx); + int32_t nx2 = lerpPerlin(g001, g101, tx); + int32_t nx3 = lerpPerlin(g011, g111, tx); + int32_t ny0 = lerpPerlin(nx0, nx1, ty); + int32_t ny1 = lerpPerlin(nx2, nx3, ty); + + int32_t noise = lerpPerlin(ny0, ny1, tz); + return noise; +} + +// scaling functions for fastled replacement +uint16_t perlin16(uint32_t x) { + return ((perlin1D_raw(x) * 1159) >> 10) + 32803; //scale to 16bit and offset (fastled range: about 4838 to 60766) +} + +uint16_t perlin16(uint32_t x, uint32_t y) { + return ((perlin2D_raw(x, y) * 1537) >> 10) + 32725; //scale to 16bit and offset (fastled range: about 1748 to 63697) +} + +uint16_t perlin16(uint32_t x, uint32_t y, uint32_t z) { + return ((perlin3D_raw(x, y, z) * 1731) >> 10) + 33147; //scale to 16bit and offset (fastled range: about 4766 to 60840) +} + +uint8_t perlin8(uint16_t x) { + return (((perlin1D_raw((uint32_t)x << 8, true) * 1353) >> 10) + 32769) >> 8; //scale to 16 bit, offset, then scale to 8bit +} + +uint8_t perlin8(uint16_t x, uint16_t y) { + return (((perlin2D_raw((uint32_t)x << 8, (uint32_t)y << 8, true) * 1620) >> 10) + 32771) >> 8; //scale to 16 bit, offset, then scale to 8bit +} + +uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z) { + return (((perlin3D_raw((uint32_t)x << 8, (uint32_t)y << 8, (uint32_t)z << 8, true) * 2015) >> 10) + 33168) >> 8; //scale to 16 bit, offset, then scale to 8bit +} \ No newline at end of file diff --git a/wled00/wled.cpp b/wled00/wled.cpp index 34caeefa3..7e2095838 100644 --- a/wled00/wled.cpp +++ b/wled00/wled.cpp @@ -342,7 +342,6 @@ void WLED::setup() #else DEBUG_PRINTLN(F("arduino-esp32 v1.0.x\n")); // we can't say in more detail. #endif - DEBUG_PRINTF_P(PSTR("CPU: %s rev.%d, %d core(s), %d MHz.\n"), ESP.getChipModel(), (int)ESP.getChipRevision(), ESP.getChipCores(), ESP.getCpuFreqMHz()); DEBUG_PRINTF_P(PSTR("FLASH: %d MB, Mode %d "), (ESP.getFlashChipSize()/1024)/1024, (int)ESP.getFlashChipMode()); #ifdef WLED_DEBUG