/* FX_2Dfcn.cpp contains all 2D utility functions Copyright (c) 2022 Blaz Kristan (https://blaz.at/home) Licensed under the EUPL v. 1.2 or later Adapted from code originally licensed under the MIT license Parts of the code adapted from WLED Sound Reactive */ #include "wled.h" #include "FX.h" #include "palettes.h" // setUpMatrix() - constructs ledmap array from matrix of panels with WxH pixels // this converts physical (possibly irregular) LED arrangement into well defined // array of logical pixels: fist entry corresponds to left-topmost logical pixel // followed by horizontal pixels, when Segment::maxWidth logical pixels are added they // are followed by next row (down) of Segment::maxWidth pixels (and so forth) // note: matrix may be comprised of multiple panels each with different orientation // but ledmap takes care of that. ledmap is constructed upon initialization // so matrix should disable regular ledmap processing void WS2812FX::setUpMatrix() { #ifndef WLED_DISABLE_2D // isMatrix is set in cfg.cpp or set.cpp if (isMatrix) { // calculate width dynamically because it may have gaps Segment::maxWidth = 1; Segment::maxHeight = 1; for (size_t i = 0; i < panel.size(); i++) { Panel &p = panel[i]; if (p.xOffset + p.width > Segment::maxWidth) { Segment::maxWidth = p.xOffset + p.width; } if (p.yOffset + p.height > Segment::maxHeight) { Segment::maxHeight = p.yOffset + p.height; } } // safety check if (Segment::maxWidth * Segment::maxHeight > MAX_LEDS || Segment::maxWidth <= 1 || Segment::maxHeight <= 1) { DEBUG_PRINTLN(F("2D Bounds error.")); isMatrix = false; Segment::maxWidth = _length; Segment::maxHeight = 1; panels = 0; panel.clear(); // release memory allocated by panels resetSegments(); return; } customMappingSize = 0; // prevent use of mapping if anything goes wrong if (customMappingTable) delete[] customMappingTable; customMappingTable = new uint16_t[getLengthTotal()]; if (customMappingTable) { customMappingSize = getLengthTotal(); // fill with empty in case we don't fill the entire matrix unsigned matrixSize = Segment::maxWidth * Segment::maxHeight; for (unsigned i = 0; ias(); gapSize = map.size(); if (!map.isNull() && gapSize >= matrixSize) { // not an empty map gapTable = new int8_t[gapSize]; if (gapTable) for (size_t i = 0; i < gapSize; i++) { gapTable[i] = constrain(map[i], -1, 1); } } } DEBUG_PRINTLN(F("Gaps loaded.")); releaseJSONBufferLock(); } unsigned x, y, pix=0; //pixel for (size_t pan = 0; pan < panel.size(); pan++) { Panel &p = panel[pan]; unsigned h = p.vertical ? p.height : p.width; unsigned v = p.vertical ? p.width : p.height; for (size_t j = 0; j < v; j++){ for(size_t i = 0; i < h; i++) { y = (p.vertical?p.rightStart:p.bottomStart) ? v-j-1 : j; x = (p.vertical?p.bottomStart:p.rightStart) ? h-i-1 : i; x = p.serpentine && j%2 ? h-x-1 : x; size_t index = (p.yOffset + (p.vertical?x:y)) * Segment::maxWidth + p.xOffset + (p.vertical?y:x); if (!gapTable || (gapTable && gapTable[index] > 0)) customMappingTable[index] = pix; // a useful pixel (otherwise -1 is retained) if (!gapTable || (gapTable && gapTable[index] >= 0)) pix++; // not a missing pixel } } } // delete gap array as we no longer need it if (gapTable) delete[] gapTable; #ifdef WLED_DEBUG DEBUG_PRINT(F("Matrix ledmap:")); for (unsigned i=0; i= 1) return isActive() ? (x%vW) + (y%vH) * vW : 0; } // raw setColor function without checks (checks are done in setPixelColorXY()) void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(int& x, int& y, uint32_t& col) { const int baseX = start + x; const int baseY = startY + y; #ifndef WLED_DISABLE_MODE_BLEND // if blending modes, blend with underlying pixel if (_modeBlend) col = color_blend16(strip.getPixelColorXY(baseX, baseY), col, 0xFFFFU - progress()); #endif strip.setPixelColorXY(baseX, baseY, col); // Apply mirroring if (mirror || mirror_y) { auto setMirroredPixel = [&](int mx, int my) { strip.setPixelColorXY(mx, my, col); }; const int mirrorX = start + width() - x - 1; const int mirrorY = startY + height() - y - 1; if (mirror) setMirroredPixel(transpose ? baseX : mirrorX, transpose ? mirrorY : baseY); if (mirror_y) setMirroredPixel(transpose ? mirrorX : baseX, transpose ? baseY : mirrorY); if (mirror && mirror_y) setMirroredPixel(mirrorX, mirrorY); } } void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col) { if (!isActive()) return; // not active const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive) const int vH = vHeight(); // segment height in logical pixels (is always >= 1) // negative values of x & y cast into unsigend will become very large values and will therefore be greater than vW/vH if (unsigned(x) >= unsigned(vW) || unsigned(y) >= unsigned(vH)) return; // if pixel would fall out of virtual segment just exit // if color is unscaled if (!_colorScaled) col = color_fade(col, _segBri); if (reverse ) x = vW - x - 1; if (reverse_y) y = vH - y - 1; if (transpose) { std::swap(x,y); } // swap X & Y if segment transposed unsigned groupLen = groupLength(); if (groupLen > 1) { int W = width(); int H = height(); x *= groupLen; // expand to physical pixels y *= groupLen; // expand to physical pixels const int maxY = std::min(y + grouping, H); const int maxX = std::min(x + grouping, W); for (int yY = y; yY < maxY; yY++) { for (int xX = x; xX < maxX; xX++) { _setPixelColorXY_raw(xX, yY, col); } } } else { _setPixelColorXY_raw(x, y, col); } } #ifdef WLED_USE_AA_PIXELS // anti-aliased version of setPixelColorXY() void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa) { if (!isActive()) return; // not active if (x<0.0f || x>1.0f || y<0.0f || y>1.0f) return; // not normalized float fX = x * (vWidth()-1); float fY = y * (vHeight()-1); if (aa) { unsigned xL = roundf(fX-0.49f); unsigned xR = roundf(fX+0.49f); unsigned yT = roundf(fY-0.49f); unsigned yB = roundf(fY+0.49f); float dL = (fX - xL)*(fX - xL); float dR = (xR - fX)*(xR - fX); float dT = (fY - yT)*(fY - yT); float dB = (yB - fY)*(yB - fY); uint32_t cXLYT = getPixelColorXY(xL, yT); uint32_t cXRYT = getPixelColorXY(xR, yT); uint32_t cXLYB = getPixelColorXY(xL, yB); uint32_t cXRYB = getPixelColorXY(xR, yB); if (xL!=xR && yT!=yB) { setPixelColorXY(xL, yT, color_blend(col, cXLYT, uint8_t(sqrtf(dL*dT)*255.0f))); // blend TL pixel setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(sqrtf(dR*dT)*255.0f))); // blend TR pixel setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(sqrtf(dL*dB)*255.0f))); // blend BL pixel setPixelColorXY(xR, yB, color_blend(col, cXRYB, uint8_t(sqrtf(dR*dB)*255.0f))); // blend BR pixel } else if (xR!=xL && yT==yB) { setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dL*255.0f))); // blend L pixel setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(dR*255.0f))); // blend R pixel } else if (xR==xL && yT!=yB) { setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dT*255.0f))); // blend T pixel setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(dB*255.0f))); // blend B pixel } else { setPixelColorXY(xL, yT, col); // exact match (x & y land on a pixel) } } else { setPixelColorXY(uint16_t(roundf(fX)), uint16_t(roundf(fY)), col); } } #endif // returns RGBW values of pixel uint32_t IRAM_ATTR_YN Segment::getPixelColorXY(int x, int y) const { if (!isActive()) return 0; // not active const int vW = vWidth(); const int vH = vHeight(); if (unsigned(x) >= unsigned(vW) || unsigned(y) >= unsigned(vH)) return 0; // if pixel would fall out of virtual segment just exit if (reverse ) x = vW - x - 1; if (reverse_y) y = vH - y - 1; if (transpose) { std::swap(x,y); } // swap X & Y if segment transposed x *= groupLength(); // expand to physical pixels y *= groupLength(); // expand to physical pixels if (x >= width() || y >= height()) return 0; return strip.getPixelColorXY(start + x, startY + y); } // 2D blurring, can be asymmetrical void Segment::blur2D(uint8_t blur_x, uint8_t blur_y, bool smear) { if (!isActive()) return; // not active const unsigned cols = vWidth(); const unsigned rows = vHeight(); uint32_t lastnew; uint32_t last; if (blur_x) { const uint8_t keepx = smear ? 255 : 255 - blur_x; const uint8_t seepx = blur_x >> 1; for (unsigned row = 0; row < rows; row++) { // blur rows (x direction) uint32_t carryover = BLACK; uint32_t curnew = BLACK; for (unsigned x = 0; x < cols; x++) { uint32_t cur = getPixelColorXY(x, row); uint32_t part = color_fade(cur, seepx); curnew = color_fade(cur, keepx); if (x > 0) { if (carryover) curnew = color_add(curnew, carryover); uint32_t prev = color_add(lastnew, part); // optimization: only set pixel if color has changed if (last != prev) setPixelColorXY(x - 1, row, prev); } else setPixelColorXY(x, row, curnew); // first pixel lastnew = curnew; last = cur; // save original value for comparison on next iteration carryover = part; } setPixelColorXY(cols-1, row, curnew); // set last pixel } } if (blur_y) { const uint8_t keepy = smear ? 255 : 255 - blur_y; const uint8_t seepy = blur_y >> 1; for (unsigned col = 0; col < cols; col++) { uint32_t carryover = BLACK; uint32_t curnew = BLACK; for (unsigned y = 0; y < rows; y++) { uint32_t cur = getPixelColorXY(col, y); uint32_t part = color_fade(cur, seepy); curnew = color_fade(cur, keepy); if (y > 0) { if (carryover) curnew = color_add(curnew, carryover); uint32_t prev = color_add(lastnew, part); // optimization: only set pixel if color has changed if (last != prev) setPixelColorXY(col, y - 1, prev); } else setPixelColorXY(col, y, curnew); // first pixel lastnew = curnew; last = cur; //save original value for comparison on next iteration carryover = part; } setPixelColorXY(col, rows - 1, curnew); } } } /* // 2D Box blur void Segment::box_blur(unsigned radius, bool smear) { if (!isActive() || radius == 0) return; // not active if (radius > 3) radius = 3; const unsigned d = (1 + 2*radius) * (1 + 2*radius); // averaging divisor const unsigned cols = vWidth(); const unsigned rows = vHeight(); uint16_t *tmpRSum = new uint16_t[cols*rows]; uint16_t *tmpGSum = new uint16_t[cols*rows]; uint16_t *tmpBSum = new uint16_t[cols*rows]; uint16_t *tmpWSum = new uint16_t[cols*rows]; // fill summed-area table (https://en.wikipedia.org/wiki/Summed-area_table) for (unsigned x = 0; x < cols; x++) { unsigned rS, gS, bS, wS; unsigned index; rS = gS = bS = wS = 0; for (unsigned y = 0; y < rows; y++) { index = x * cols + y; if (x > 0) { unsigned index2 = (x - 1) * cols + y; tmpRSum[index] = tmpRSum[index2]; tmpGSum[index] = tmpGSum[index2]; tmpBSum[index] = tmpBSum[index2]; tmpWSum[index] = tmpWSum[index2]; } else { tmpRSum[index] = 0; tmpGSum[index] = 0; tmpBSum[index] = 0; tmpWSum[index] = 0; } uint32_t c = getPixelColorXY(x, y); rS += R(c); gS += G(c); bS += B(c); wS += W(c); tmpRSum[index] += rS; tmpGSum[index] += gS; tmpBSum[index] += bS; tmpWSum[index] += wS; } } // do a box blur using pre-calculated sums for (unsigned x = 0; x < cols; x++) { for (unsigned y = 0; y < rows; y++) { // sum = D + A - B - C where k = (x,y) // +----+-+---- (x) // | | | // +----A-B // | |k| // +----C-D // | //(y) unsigned x0 = x < radius ? 0 : x - radius; unsigned y0 = y < radius ? 0 : y - radius; unsigned x1 = x >= cols - radius ? cols - 1 : x + radius; unsigned y1 = y >= rows - radius ? rows - 1 : y + radius; unsigned A = x0 * cols + y0; unsigned B = x1 * cols + y0; unsigned C = x0 * cols + y1; unsigned D = x1 * cols + y1; unsigned r = tmpRSum[D] + tmpRSum[A] - tmpRSum[C] - tmpRSum[B]; unsigned g = tmpGSum[D] + tmpGSum[A] - tmpGSum[C] - tmpGSum[B]; unsigned b = tmpBSum[D] + tmpBSum[A] - tmpBSum[C] - tmpBSum[B]; unsigned w = tmpWSum[D] + tmpWSum[A] - tmpWSum[C] - tmpWSum[B]; setPixelColorXY(x, y, RGBW32(r/d, g/d, b/d, w/d)); } } delete[] tmpRSum; delete[] tmpGSum; delete[] tmpBSum; delete[] tmpWSum; } */ void Segment::moveX(int delta, bool wrap) { if (!isActive() || !delta) return; // not active const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive) const int vH = vHeight(); // segment height in logical pixels (is always >= 1) int absDelta = abs(delta); if (absDelta >= vW) return; uint32_t newPxCol[vW]; int newDelta; int stop = vW; int start = 0; if (wrap) newDelta = (delta + vW) % vW; // +cols in case delta < 0 else { if (delta < 0) start = absDelta; stop = vW - absDelta; newDelta = delta > 0 ? delta : 0; } for (int y = 0; y < vH; y++) { for (int x = 0; x < stop; x++) { int srcX = x + newDelta; if (wrap) srcX %= vW; // Wrap using modulo when `wrap` is true newPxCol[x] = getPixelColorXY(srcX, y); } for (int x = 0; x < stop; x++) setPixelColorXY(x + start, y, newPxCol[x]); } } void Segment::moveY(int delta, bool wrap) { if (!isActive() || !delta) return; // not active const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive) const int vH = vHeight(); // segment height in logical pixels (is always >= 1) int absDelta = abs(delta); if (absDelta >= vH) return; uint32_t newPxCol[vH]; int newDelta; int stop = vH; int start = 0; if (wrap) newDelta = (delta + vH) % vH; // +rows in case delta < 0 else { if (delta < 0) start = absDelta; stop = vH - absDelta; newDelta = delta > 0 ? delta : 0; } for (int x = 0; x < vW; x++) { for (int y = 0; y < stop; y++) { int srcY = y + newDelta; if (wrap) srcY %= vH; // Wrap using modulo when `wrap` is true newPxCol[y] = getPixelColorXY(x, srcY); } for (int y = 0; y < stop; y++) setPixelColorXY(x, y + start, newPxCol[y]); } } // move() - move all pixels in desired direction delta number of pixels // @param dir direction: 0=left, 1=left-up, 2=up, 3=right-up, 4=right, 5=right-down, 6=down, 7=left-down // @param delta number of pixels to move // @param wrap around void Segment::move(unsigned dir, unsigned delta, bool wrap) { if (delta==0) return; switch (dir) { case 0: moveX( delta, wrap); break; case 1: moveX( delta, wrap); moveY( delta, wrap); break; case 2: moveY( delta, wrap); break; case 3: moveX(-delta, wrap); moveY( delta, wrap); break; case 4: moveX(-delta, wrap); break; case 5: moveX(-delta, wrap); moveY(-delta, wrap); break; case 6: moveY(-delta, wrap); break; case 7: moveX( delta, wrap); moveY(-delta, wrap); break; } } void Segment::drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) { if (!isActive() || radius == 0) return; // not active if (soft) { // Xiaolin Wu’s algorithm const int rsq = radius*radius; int x = 0; int y = radius; unsigned oldFade = 0; while (x < y) { float yf = sqrtf(float(rsq - x*x)); // needs to be floating point uint8_t fade = float(0xFF) * (ceilf(yf) - yf); // how much color to keep if (oldFade > fade) y--; oldFade = fade; int px, py; for (uint8_t i = 0; i < 16; i++) { int swaps = (i & 0x4 ? 1 : 0); // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 int adj = (i < 8) ? 0 : 1; // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 int dx = (i & 1) ? -1 : 1; // 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1 int dy = (i & 2) ? -1 : 1; // 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1 if (swaps) { px = cx + (y - adj) * dx; py = cy + x * dy; } else { px = cx + x * dx; py = cy + (y - adj) * dy; } uint32_t pixCol = getPixelColorXY(px, py); setPixelColorXY(px, py, adj ? color_blend(pixCol, col, fade) : color_blend(col, pixCol, fade)); } x++; } } else { // pre-scale color for all pixels col = color_fade(col, _segBri); _colorScaled = true; // Bresenham’s Algorithm int d = 3 - (2*radius); int y = radius, x = 0; while (y >= x) { for (int i = 0; i < 4; i++) { int dx = (i & 1) ? -x : x; int dy = (i & 2) ? -y : y; setPixelColorXY(cx + dx, cy + dy, col); setPixelColorXY(cx + dy, cy + dx, col); } x++; if (d > 0) { y--; d += 4 * (x - y) + 10; } else { d += 4 * x + 6; } } _colorScaled = false; } } // by stepko, taken from https://editor.soulmatelights.com/gallery/573-blobs void Segment::fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) { if (!isActive() || radius == 0) return; // not active const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive) const int vH = vHeight(); // segment height in logical pixels (is always >= 1) // draw soft bounding circle if (soft) drawCircle(cx, cy, radius, col, soft); // pre-scale color for all pixels col = color_fade(col, _segBri); _colorScaled = true; // fill it for (int y = -radius; y <= radius; y++) { for (int x = -radius; x <= radius; x++) { if (x * x + y * y <= radius * radius && int(cx)+x >= 0 && int(cy)+y >= 0 && int(cx)+x < vW && int(cy)+y < vH) setPixelColorXY(cx + x, cy + y, col); } } _colorScaled = false; } //line function void Segment::drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft) { if (!isActive()) return; // not active const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive) const int vH = vHeight(); // segment height in logical pixels (is always >= 1) if (x0 >= vW || x1 >= vW || y0 >= vH || y1 >= vH) return; const int dx = abs(x1-x0), sx = x0 dx; if (steep) { // we need to go along longest dimension std::swap(x0,y0); std::swap(x1,y1); } if (x0 > x1) { // we need to go in increasing fashion std::swap(x0,x1); std::swap(y0,y1); } float gradient = x1-x0 == 0 ? 1.0f : float(y1-y0) / float(x1-x0); float intersectY = y0; for (int x = x0; x <= x1; x++) { uint8_t keep = float(0xFF) * (intersectY-int(intersectY)); // how much color to keep uint8_t seep = 0xFF - keep; // how much background to keep int y = int(intersectY); if (steep) std::swap(x,y); // temporaryly swap if steep // pixel coverage is determined by fractional part of y co-ordinate setPixelColorXY(x, y, color_blend(c, getPixelColorXY(x, y), keep)); setPixelColorXY(x+int(steep), y+int(!steep), color_blend(c, getPixelColorXY(x+int(steep), y+int(!steep)), seep)); intersectY += gradient; if (steep) std::swap(x,y); // restore if steep } } else { // pre-scale color for all pixels c = color_fade(c, _segBri); _colorScaled = true; // Bresenham's algorithm int err = (dx>dy ? dx : -dy)/2; // error direction for (;;) { setPixelColorXY(x0, y0, c); if (x0==x1 && y0==y1) break; int e2 = err; if (e2 >-dx) { err -= dy; x0 += sx; } if (e2 < dy) { err += dx; y0 += sy; } } _colorScaled = false; } } #include "src/font/console_font_4x6.h" #include "src/font/console_font_5x8.h" #include "src/font/console_font_5x12.h" #include "src/font/console_font_6x8.h" #include "src/font/console_font_7x9.h" // draws a raster font character on canvas // only supports: 4x6=24, 5x8=40, 5x12=60, 6x8=48 and 7x9=63 fonts ATM void Segment::drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t col2, int8_t rotate, bool usePalGrad) { if (!isActive()) return; // not active if (chr < 32 || chr > 126) return; // only ASCII 32-126 supported chr -= 32; // align with font table entries const int font = w*h; CRGB col = CRGB(color); CRGBPalette16 grad = CRGBPalette16(col, col2 ? CRGB(col2) : col); if(usePalGrad) grad = SEGPALETTE; // selected palette as gradient //if (w<5 || w>6 || h!=8) return; for (int i = 0; i= (int)vWidth() || y0 < 0 || y0 >= (int)vHeight()) continue; // drawing off-screen if (((bits>>(j+(8-w))) & 0x01)) { // bit set setPixelColorXY(x0, y0, c); } } _colorScaled = false; } } #define WU_WEIGHT(a,b) ((uint8_t) (((a)*(b)+(a)+(b))>>8)) void Segment::wu_pixel(uint32_t x, uint32_t y, CRGB c) { //awesome wu_pixel procedure by reddit u/sutaburosu if (!isActive()) return; // not active // extract the fractional parts and derive their inverses unsigned xx = x & 0xff, yy = y & 0xff, ix = 255 - xx, iy = 255 - yy; // calculate the intensities for each affected pixel uint8_t wu[4] = {WU_WEIGHT(ix, iy), WU_WEIGHT(xx, iy), WU_WEIGHT(ix, yy), WU_WEIGHT(xx, yy)}; // multiply the intensities by the colour, and saturating-add them to the pixels for (int i = 0; i < 4; i++) { int wu_x = (x >> 8) + (i & 1); // precalculate x int wu_y = (y >> 8) + ((i >> 1) & 1); // precalculate y CRGB led = getPixelColorXY(wu_x, wu_y); CRGB oldLed = led; led.r = qadd8(led.r, c.r * wu[i] >> 8); led.g = qadd8(led.g, c.g * wu[i] >> 8); led.b = qadd8(led.b, c.b * wu[i] >> 8); if (led != oldLed) setPixelColorXY(wu_x, wu_y, led); // don't repaint if same color } } #undef WU_WEIGHT #endif // WLED_DISABLE_2D