/* * Contains some trigonometric functions. * The ANSI C equivalents are likely faster, but using any sin/cos/tan function incurs a memory penalty of 460 bytes on ESP8266, likely for lookup tables. * This implementation has no extra static memory usage. * * Source of the cos_t() function: https://web.eecs.utk.edu/~azh/blog/cosine.html (cos_taylor_literal_6terms) */ #include //PI constant //#define WLED_DEBUG_MATH // Note: cos_t, sin_t and tan_t are very accurate but slow // the math.h functions use several kB of flash and are to be avoided if possible // sin16_t / cos16_t are faster and much more accurate than the fastled variants // sin_approx and cos_approx are float wrappers for sin16_t/cos16_t and have an accuracy better than +/-0.0015 compared to sinf() // sin8_t / cos8_t are fastled replacements and use sin16_t / cos16_t. Slightly slower than fastled version but very accurate // Taylor series approximations, replaced with Bhaskara I's approximation /* #define modd(x, y) ((x) - (int)((x) / (y)) * (y)) float cos_t(float phi) { float x = modd(phi, M_TWOPI); if (x < 0) x = -1 * x; int8_t sign = 1; if (x > M_PI) { x -= M_PI; sign = -1; } float xx = x * x; float res = sign * (1 - ((xx) / (2)) + ((xx * xx) / (24)) - ((xx * xx * xx) / (720)) + ((xx * xx * xx * xx) / (40320)) - ((xx * xx * xx * xx * xx) / (3628800)) + ((xx * xx * xx * xx * xx * xx) / (479001600))); #ifdef WLED_DEBUG_MATH Serial.printf("cos: %f,%f,%f,(%f)\n",phi,res,cos(x),res-cos(x)); #endif return res; } float sin_t(float phi) { float res = cos_t(M_PI_2 - phi); #ifdef WLED_DEBUG_MATH Serial.printf("sin: %f,%f,%f,(%f)\n",x,res,sin(x),res-sin(x)); #endif return res; } float tan_t(float x) { float c = cos_t(x); if (c==0.0f) return 0; float res = sin_t(x) / c; #ifdef WLED_DEBUG_MATH Serial.printf("tan: %f,%f,%f,(%f)\n",x,res,tan(x),res-tan(x)); #endif return res; } */ // 16-bit, integer based Bhaskara I's sine approximation: 16*x*(pi - x) / (5*pi^2 - 4*x*(pi - x)) // input is 16bit unsigned (0-65535), output is 16bit signed (-32767 to +32767) // optimized integer implementation by @dedehai int16_t sin16_t(uint16_t theta) { int scale = 1; if (theta > 0x7FFF) { theta = 0xFFFF - theta; scale = -1; // second half of the sine function is negative (pi - 2*pi) } uint32_t precal = theta * (0x7FFF - theta); uint64_t numerator = (uint64_t)precal * (4 * 0x7FFF); // 64bit required int32_t denominator = 1342095361 - precal; // 1342095361 is 5 * 0x7FFF^2 / 4 int16_t result = numerator / denominator; return result * scale; } int16_t cos16_t(uint16_t theta) { return sin16_t(theta + 0x4000); //cos(x) = sin(x+pi/2) } uint8_t sin8_t(uint8_t theta) { int32_t sin16 = sin16_t((uint16_t)theta * 257); // 255 * 257 = 0xFFFF sin16 += 0x7FFF + 128; //shift result to range 0-0xFFFF, +128 for rounding return min(sin16, int32_t(0xFFFF)) >> 8; // min performs saturation, and prevents overflow } uint8_t cos8_t(uint8_t theta) { return sin8_t(theta + 64); //cos(x) = sin(x+pi/2) } float sin_approx(float theta) { uint16_t scaled_theta = (int)(theta * (float)(0xFFFF / M_TWOPI)); // note: do not cast negative float to uint! cast to int first (undefined on C3) int32_t result = sin16_t(scaled_theta); float sin = float(result) / 0x7FFF; return sin; } float cos_approx(float theta) { uint16_t scaled_theta = (int)(theta * (float)(0xFFFF / M_TWOPI)); // note: do not cast negative float to uint! cast to int first (undefined on C3) int32_t result = sin16_t(scaled_theta + 0x4000); float cos = float(result) / 0x7FFF; return cos; } float tan_approx(float x) { float c = cos_approx(x); if (c==0.0f) return 0; float res = sin_approx(x) / c; return res; } #define ATAN2_CONST_A 0.1963f #define ATAN2_CONST_B 0.9817f // atan2_t approximation, with the idea from https://gist.github.com/volkansalma/2972237?permalink_comment_id=3872525#gistcomment-3872525 float atan2_t(float y, float x) { float abs_y = fabs(y); float abs_x = fabs(x); float r = (abs_x - abs_y) / (abs_y + abs_x + 1e-10f); // avoid division by zero by adding a small nubmer float angle; if(x < 0) { r = -r; angle = M_PI_2 + M_PI_4; } else angle = M_PI_2 - M_PI_4; float add = (ATAN2_CONST_A * (r * r) - ATAN2_CONST_B) * r; angle += add; angle = y < 0 ? -angle : angle; return angle; } //https://stackoverflow.com/questions/3380628 // Absolute error <= 6.7e-5 float acos_t(float x) { float negate = float(x < 0); float xabs = std::abs(x); float ret = -0.0187293f; ret = ret * xabs; ret = ret + 0.0742610f; ret = ret * xabs; ret = ret - 0.2121144f; ret = ret * xabs; ret = ret + M_PI_2; ret = ret * sqrt(1.0f-xabs); ret = ret - 2 * negate * ret; float res = negate * M_PI + ret; #ifdef WLED_DEBUG_MATH Serial.printf("acos: %f,%f,%f,(%f)\n",x,res,acos(x),res-acos(x)); #endif return res; } float asin_t(float x) { float res = M_PI_2 - acos_t(x); #ifdef WLED_DEBUG_MATH Serial.printf("asin: %f,%f,%f,(%f)\n",x,res,asin(x),res-asin(x)); #endif return res; } // declare a template with no implementation, and only one specialization // this allows hiding the constants, while ensuring ODR causes optimizations // to still apply. (Fixes issues with conflicting 3rd party #define's) template T atan_t(T x); template<> float atan_t(float x) { //For A/B/C, see https://stackoverflow.com/a/42542593 static const double A { 0.0776509570923569 }; static const double B { -0.287434475393028 }; static const double C { ((M_PI_4) - A - B) }; // polynominal factors for approximation between 1 and 5 static const float C0 { 0.089494f }; static const float C1 { 0.974207f }; static const float C2 { -0.326175f }; static const float C3 { 0.05375f }; static const float C4 { -0.003445f }; #ifdef WLED_DEBUG_MATH float xinput = x; #endif bool neg = (x < 0); x = std::abs(x); float res; if (x > 5.0f) { // atan(x) converges to pi/2 - (1/x) for large values res = M_PI_2 - (1.0f/x); } else if (x > 1.0f) { //1 < x < 5 float xx = x * x; res = (C4*xx*xx)+(C3*xx*x)+(C2*xx)+(C1*x)+C0; } else { // this approximation is only for x <= 1 float xx = x * x; res = ((A*xx + B)*xx + C)*x; } if (neg) { res = -res; } #ifdef WLED_DEBUG_MATH Serial.printf("atan: %f,%f,%f,(%f)\n",xinput,res,atan(xinput),res-atan(xinput)); #endif return res; } float floor_t(float x) { bool neg = x < 0; int val = x; if (neg) val--; #ifdef WLED_DEBUG_MATH Serial.printf("floor: %f,%f,%f\n",x,(float)val,floor(x)); #endif return val; } float fmod_t(float num, float denom) { int tquot = num / denom; float res = num - tquot * denom; #ifdef WLED_DEBUG_MATH Serial.printf("fmod: %f,%f,(%f)\n",res,fmod(num,denom),res-fmod(num,denom)); #endif return res; }