#define WLED_DEFINE_GLOBAL_VARS //only in one source file, wled.cpp! #include "wled.h" #include "wled_ethernet.h" #include #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET) #include "soc/soc.h" #include "soc/rtc_cntl_reg.h" #endif /* * Main WLED class implementation. Mostly initialization and connection logic */ WLED::WLED() { } // turns all LEDs off and restarts ESP void WLED::reset() { briT = 0; #ifdef WLED_ENABLE_WEBSOCKETS ws.closeAll(1012); #endif unsigned long dly = millis(); while (millis() - dly < 450) { yield(); // enough time to send response to client } applyBri(); DEBUG_PRINTLN(F("WLED RESET")); ESP.restart(); } void WLED::loop() { static uint32_t lastHeap = UINT32_MAX; static unsigned long heapTime = 0; #ifdef WLED_DEBUG static unsigned long lastRun = 0; unsigned long loopMillis = millis(); size_t loopDelay = loopMillis - lastRun; if (lastRun == 0) loopDelay=0; // startup - don't have valid data from last run. if (loopDelay > 2) DEBUG_PRINTF_P(PSTR("Loop delayed more than %ums.\n"), loopDelay); static unsigned long maxLoopMillis = 0; static size_t avgLoopMillis = 0; static unsigned long maxUsermodMillis = 0; static size_t avgUsermodMillis = 0; static unsigned long maxStripMillis = 0; static size_t avgStripMillis = 0; unsigned long stripMillis; #endif handleTime(); #ifndef WLED_DISABLE_INFRARED handleIR(); // 2nd call to function needed for ESP32 to return valid results -- should be good for ESP8266, too #endif handleConnection(); handleSerial(); handleImprovWifiScan(); handleNotifications(); handleTransitions(); #ifdef WLED_ENABLE_DMX handleDMX(); #endif #ifdef WLED_DEBUG unsigned long usermodMillis = millis(); #endif userLoop(); usermods.loop(); #ifdef WLED_DEBUG usermodMillis = millis() - usermodMillis; avgUsermodMillis += usermodMillis; if (usermodMillis > maxUsermodMillis) maxUsermodMillis = usermodMillis; #endif yield(); handleIO(); #ifndef WLED_DISABLE_INFRARED handleIR(); #endif #ifndef WLED_DISABLE_ALEXA handleAlexa(); #endif if (doCloseFile) { closeFile(); yield(); } #ifdef WLED_DEBUG stripMillis = millis(); #endif if (!realtimeMode || realtimeOverride || (realtimeMode && useMainSegmentOnly)) // block stuff if WARLS/Adalight is enabled { if (apActive) dnsServer.processNextRequest(); #ifndef WLED_DISABLE_OTA if (WLED_CONNECTED && aOtaEnabled && !otaLock && correctPIN) ArduinoOTA.handle(); #endif handleNightlight(); handlePlaylist(); yield(); #ifndef WLED_DISABLE_HUESYNC handleHue(); yield(); #endif handlePresets(); yield(); if (!offMode || strip.isOffRefreshRequired() || strip.needsUpdate()) strip.service(); #ifdef ESP8266 else if (!noWifiSleep) delay(1); //required to make sure ESP enters modem sleep (see #1184) #endif } #ifdef WLED_DEBUG stripMillis = millis() - stripMillis; avgStripMillis += stripMillis; if (stripMillis > maxStripMillis) maxStripMillis = stripMillis; #endif yield(); #ifdef ESP8266 MDNS.update(); #endif //millis() rolls over every 50 days if (lastMqttReconnectAttempt > millis()) { rolloverMillis++; lastMqttReconnectAttempt = 0; ntpLastSyncTime = NTP_NEVER; // force new NTP query strip.restartRuntime(); } if (millis() - lastMqttReconnectAttempt > 30000 || lastMqttReconnectAttempt == 0) { // lastMqttReconnectAttempt==0 forces immediate broadcast lastMqttReconnectAttempt = millis(); #ifndef WLED_DISABLE_MQTT initMqtt(); #endif yield(); // refresh WLED nodes list refreshNodeList(); if (nodeBroadcastEnabled) sendSysInfoUDP(); yield(); } // 15min PIN time-out if (strlen(settingsPIN)>0 && correctPIN && millis() - lastEditTime > PIN_TIMEOUT) { correctPIN = false; createEditHandler(false); } // reconnect WiFi to clear stale allocations if heap gets too low if (millis() - heapTime > 15000) { uint32_t heap = ESP.getFreeHeap(); if (heap < MIN_HEAP_SIZE && lastHeap < MIN_HEAP_SIZE) { DEBUG_PRINT(F("Heap too low! ")); DEBUG_PRINTLN(heap); forceReconnect = true; strip.resetSegments(); // remove all but one segments from memory } else if (heap < MIN_HEAP_SIZE) { DEBUG_PRINTLN(F("Heap low, purging segments.")); strip.purgeSegments(); } lastHeap = heap; heapTime = millis(); } //LED settings have been saved, re-init busses //This code block causes severe FPS drop on ESP32 with the original "if (busConfigs[0] != nullptr)" conditional. Investigate! if (doInitBusses) { doInitBusses = false; DEBUG_PRINTLN(F("Re-init busses.")); bool aligned = strip.checkSegmentAlignment(); //see if old segments match old bus(ses) BusManager::removeAll(); uint32_t mem = 0, globalBufMem = 0; uint16_t maxlen = 0; for (uint8_t i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) { if (busConfigs[i] == nullptr) break; mem += BusManager::memUsage(*busConfigs[i]); if (useGlobalLedBuffer && busConfigs[i]->start + busConfigs[i]->count > maxlen) { maxlen = busConfigs[i]->start + busConfigs[i]->count; globalBufMem = maxlen * 4; } if (mem + globalBufMem <= MAX_LED_MEMORY) { BusManager::add(*busConfigs[i]); } delete busConfigs[i]; busConfigs[i] = nullptr; } strip.finalizeInit(); // also loads default ledmap if present if (aligned) strip.makeAutoSegments(); else strip.fixInvalidSegments(); doSerializeConfig = true; } if (loadLedmap >= 0) { strip.deserializeMap(loadLedmap); loadLedmap = -1; } yield(); if (doSerializeConfig) serializeConfig(); yield(); handleWs(); #if defined(STATUSLED) handleStatusLED(); #endif toki.resetTick(); #if WLED_WATCHDOG_TIMEOUT > 0 // we finished our mainloop, reset the watchdog timer static unsigned long lastWDTFeed = 0; if (!strip.isUpdating() || millis() - lastWDTFeed > (WLED_WATCHDOG_TIMEOUT*500)) { #ifdef ARDUINO_ARCH_ESP32 esp_task_wdt_reset(); #else ESP.wdtFeed(); #endif lastWDTFeed = millis(); } #endif if (doReboot && (!doInitBusses || !doSerializeConfig)) // if busses have to be inited & saved, wait until next iteration reset(); // DEBUG serial logging (every 30s) #ifdef WLED_DEBUG loopMillis = millis() - loopMillis; if (loopMillis > 30) { DEBUG_PRINTF_P(PSTR("Loop took %lums.\n"), loopMillis); DEBUG_PRINTF_P(PSTR("Usermods took %lums.\n"), usermodMillis); DEBUG_PRINTF_P(PSTR("Strip took %lums.\n"), stripMillis); } avgLoopMillis += loopMillis; if (loopMillis > maxLoopMillis) maxLoopMillis = loopMillis; if (millis() - debugTime > 29999) { DEBUG_PRINTLN(F("---DEBUG INFO---")); DEBUG_PRINT(F("Runtime: ")); DEBUG_PRINTLN(millis()); DEBUG_PRINT(F("Unix time: ")); toki.printTime(toki.getTime()); DEBUG_PRINT(F("Free heap: ")); DEBUG_PRINTLN(ESP.getFreeHeap()); #if defined(ARDUINO_ARCH_ESP32) && defined(BOARD_HAS_PSRAM) if (psramFound()) { DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB"); DEBUG_PRINT(F("Free PSRAM: ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB"); } #endif DEBUG_PRINT(F("Wifi state: ")); DEBUG_PRINTLN(WiFi.status()); #ifndef WLED_DISABLE_ESPNOW DEBUG_PRINT(F("ESP-NOW state: ")); DEBUG_PRINTLN(statusESPNow); #endif if (WiFi.status() != lastWifiState) { wifiStateChangedTime = millis(); } lastWifiState = WiFi.status(); DEBUG_PRINT(F("State time: ")); DEBUG_PRINTLN(wifiStateChangedTime); DEBUG_PRINT(F("NTP last sync: ")); DEBUG_PRINTLN(ntpLastSyncTime); DEBUG_PRINT(F("Client IP: ")); DEBUG_PRINTLN(Network.localIP()); if (loops > 0) { // avoid division by zero DEBUG_PRINT(F("Loops/sec: ")); DEBUG_PRINTLN(loops / 30); DEBUG_PRINT(F("Loop time[ms]: ")); DEBUG_PRINT(avgLoopMillis/loops); DEBUG_PRINT("/");DEBUG_PRINTLN(maxLoopMillis); DEBUG_PRINT(F("UM time[ms]: ")); DEBUG_PRINT(avgUsermodMillis/loops); DEBUG_PRINT("/");DEBUG_PRINTLN(maxUsermodMillis); DEBUG_PRINT(F("Strip time[ms]: ")); DEBUG_PRINT(avgStripMillis/loops); DEBUG_PRINT("/"); DEBUG_PRINTLN(maxStripMillis); } strip.printSize(); loops = 0; maxLoopMillis = 0; maxUsermodMillis = 0; maxStripMillis = 0; avgLoopMillis = 0; avgUsermodMillis = 0; avgStripMillis = 0; debugTime = millis(); } loops++; lastRun = millis(); #endif // WLED_DEBUG } #if WLED_WATCHDOG_TIMEOUT > 0 void WLED::enableWatchdog() { #ifdef ARDUINO_ARCH_ESP32 esp_err_t watchdog = esp_task_wdt_init(WLED_WATCHDOG_TIMEOUT, true); DEBUG_PRINT(F("Watchdog enabled: ")); if (watchdog == ESP_OK) { DEBUG_PRINTLN(F("OK")); } else { DEBUG_PRINTLN(watchdog); return; } esp_task_wdt_add(NULL); #else ESP.wdtEnable(WLED_WATCHDOG_TIMEOUT * 1000); #endif } void WLED::disableWatchdog() { DEBUG_PRINTLN(F("Watchdog: disabled")); #ifdef ARDUINO_ARCH_ESP32 esp_task_wdt_delete(NULL); #else ESP.wdtDisable(); #endif } #endif void WLED::setup() { #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET) WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); //disable brownout detection #endif #ifdef ARDUINO_ARCH_ESP32 pinMode(hardwareRX, INPUT_PULLDOWN); delay(1); // suppress noise in case RX pin is floating (at low noise energy) - see issue #3128 #endif Serial.begin(115200); #if !ARDUINO_USB_CDC_ON_BOOT Serial.setTimeout(50); // this causes troubles on new MCUs that have a "virtual" USB Serial (HWCDC) #else #endif #if defined(WLED_DEBUG) && defined(ARDUINO_ARCH_ESP32) && (defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) || ARDUINO_USB_CDC_ON_BOOT) delay(2500); // allow CDC USB serial to initialise #endif #if !defined(WLED_DEBUG) && defined(ARDUINO_ARCH_ESP32) && !defined(WLED_DEBUG_HOST) && ARDUINO_USB_CDC_ON_BOOT Serial.setDebugOutput(false); // switch off kernel messages when using USBCDC #endif DEBUG_PRINTLN(); DEBUG_PRINT(F("---WLED ")); DEBUG_PRINT(versionString); DEBUG_PRINT(F(" ")); DEBUG_PRINT(VERSION); DEBUG_PRINTLN(F(" INIT---")); #ifdef ARDUINO_ARCH_ESP32 DEBUG_PRINT(F("esp32 ")); DEBUG_PRINTLN(ESP.getSdkVersion()); #if defined(ESP_ARDUINO_VERSION) //DEBUG_PRINTF_P(PSTR("arduino-esp32 0x%06x\n"), ESP_ARDUINO_VERSION); DEBUG_PRINTF_P(PSTR("arduino-esp32 v%d.%d.%d\n"), int(ESP_ARDUINO_VERSION_MAJOR), int(ESP_ARDUINO_VERSION_MINOR), int(ESP_ARDUINO_VERSION_PATCH)); // availeable since v2.0.0 #else DEBUG_PRINTLN(F("arduino-esp32 v1.0.x\n")); // we can't say in more detail. #endif DEBUG_PRINT(F("CPU: ")); DEBUG_PRINT(ESP.getChipModel()); DEBUG_PRINT(F(" rev.")); DEBUG_PRINT(ESP.getChipRevision()); DEBUG_PRINT(F(", ")); DEBUG_PRINT(ESP.getChipCores()); DEBUG_PRINT(F(" core(s)")); DEBUG_PRINT(F(", ")); DEBUG_PRINT(ESP.getCpuFreqMHz()); DEBUG_PRINTLN(F("MHz.")); DEBUG_PRINT(F("FLASH: ")); DEBUG_PRINT((ESP.getFlashChipSize()/1024)/1024); DEBUG_PRINT(F("MB, Mode ")); DEBUG_PRINT(ESP.getFlashChipMode()); #ifdef WLED_DEBUG switch (ESP.getFlashChipMode()) { // missing: Octal modes case FM_QIO: DEBUG_PRINT(F(" (QIO)")); break; case FM_QOUT: DEBUG_PRINT(F(" (QOUT)"));break; case FM_DIO: DEBUG_PRINT(F(" (DIO)")); break; case FM_DOUT: DEBUG_PRINT(F(" (DOUT)"));break; default: break; } #endif DEBUG_PRINT(F(", speed ")); DEBUG_PRINT(ESP.getFlashChipSpeed()/1000000);DEBUG_PRINTLN(F("MHz.")); #else DEBUG_PRINT(F("esp8266 ")); DEBUG_PRINTLN(ESP.getCoreVersion()); #endif DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap()); #if defined(ARDUINO_ARCH_ESP32) && defined(BOARD_HAS_PSRAM) /* * The following code is obsolete as PinManager::isPinOK() will return false for reserved GPIO. * Additionally xml.cpp will inform UI about reserved GPIO. * #if defined(CONFIG_IDF_TARGET_ESP32S3) // S3: reserve GPIO 33-37 for "octal" PSRAM managed_pin_type pins[] = { {33, true}, {34, true}, {35, true}, {36, true}, {37, true} }; pinManager.allocateMultiplePins(pins, sizeof(pins)/sizeof(managed_pin_type), PinOwner::SPI_RAM); #elif defined(CONFIG_IDF_TARGET_ESP32S2) // S2: reserve GPIO 26-32 for PSRAM (may fail due to isPinOk() but that will also prevent other allocation) managed_pin_type pins[] = { {26, true}, {27, true}, {28, true}, {29, true}, {30, true}, {31, true}, {32, true} }; pinManager.allocateMultiplePins(pins, sizeof(pins)/sizeof(managed_pin_type), PinOwner::SPI_RAM); #elif defined(CONFIG_IDF_TARGET_ESP32C3) // C3: reserve GPIO 12-17 for PSRAM (may fail due to isPinOk() but that will also prevent other allocation) managed_pin_type pins[] = { {12, true}, {13, true}, {14, true}, {15, true}, {16, true}, {17, true} }; pinManager.allocateMultiplePins(pins, sizeof(pins)/sizeof(managed_pin_type), PinOwner::SPI_RAM); #else // GPIO16/GPIO17 reserved for SPI RAM managed_pin_type pins[] = { {16, true}, {17, true} }; pinManager.allocateMultiplePins(pins, sizeof(pins)/sizeof(managed_pin_type), PinOwner::SPI_RAM); #endif */ #if defined(BOARD_HAS_PSRAM) && defined(WLED_USE_PSRAM) pDoc = new PSRAMDynamicJsonDocument(2*JSON_BUFFER_SIZE); if (!pDoc) pDoc = new PSRAMDynamicJsonDocument(JSON_BUFFER_SIZE); // falback if double sized buffer could not be allocated // if the above still fails requestJsonBufferLock() will always return false preventing crashes if (psramFound()) { DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB"); DEBUG_PRINT(F("Free PSRAM : ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB"); } #else if (!pDoc) pDoc = &gDoc; // just in case ... (it should be globally assigned) DEBUG_PRINTLN(F("PSRAM not used.")); #endif #endif #if defined(ARDUINO_ESP32_PICO) // special handling for PICO-D4: gpio16+17 are in use for onboard SPI FLASH (not PSRAM) managed_pin_type pins[] = { {16, true}, {17, true} }; pinManager.allocateMultiplePins(pins, sizeof(pins)/sizeof(managed_pin_type), PinOwner::SPI_RAM); #endif //DEBUG_PRINT(F("LEDs inited. heap usage ~")); //DEBUG_PRINTLN(heapPreAlloc - ESP.getFreeHeap()); #if defined(WLED_DEBUG) && !defined(WLED_DEBUG_HOST) pinManager.allocatePin(hardwareTX, true, PinOwner::DebugOut); // TX (GPIO1 on ESP32) reserved for debug output #endif #ifdef WLED_ENABLE_DMX //reserve GPIO2 as hardcoded DMX pin pinManager.allocatePin(2, true, PinOwner::DMX); #endif DEBUG_PRINTLN(F("Registering usermods ...")); registerUsermods(); DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap()); bool fsinit = false; DEBUGFS_PRINTLN(F("Mount FS")); #ifdef ARDUINO_ARCH_ESP32 fsinit = WLED_FS.begin(true); #else fsinit = WLED_FS.begin(); #endif if (!fsinit) { DEBUGFS_PRINTLN(F("FS failed!")); errorFlag = ERR_FS_BEGIN; } #ifdef WLED_ADD_EEPROM_SUPPORT else deEEP(); #else initPresetsFile(); #endif updateFSInfo(); // generate module IDs must be done before AP setup escapedMac = WiFi.macAddress(); escapedMac.replace(":", ""); escapedMac.toLowerCase(); WLED_SET_AP_SSID(); // otherwise it is empty on first boot until config is saved multiWiFi.push_back(WiFiConfig(CLIENT_SSID,CLIENT_PASS)); // initialise vector with default WiFi DEBUG_PRINTLN(F("Reading config")); deserializeConfigFromFS(); #if defined(STATUSLED) && STATUSLED>=0 if (!pinManager.isPinAllocated(STATUSLED)) { // NOTE: Special case: The status LED should *NOT* be allocated. // See comments in handleStatusLed(). pinMode(STATUSLED, OUTPUT); } #endif DEBUG_PRINTLN(F("Initializing strip")); beginStrip(); DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap()); DEBUG_PRINTLN(F("Usermods setup")); userSetup(); usermods.setup(); DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap()); if (strcmp(multiWiFi[0].clientSSID, DEFAULT_CLIENT_SSID) == 0) showWelcomePage = true; WiFi.persistent(false); #ifdef WLED_USE_ETHERNET WiFi.onEvent(WiFiEvent); #endif WiFi.mode(WIFI_STA); // enable scanning findWiFi(true); // start scanning for available WiFi-s #ifdef WLED_ENABLE_ADALIGHT //Serial RX (Adalight, Improv, Serial JSON) only possible if GPIO3 unused //Serial TX (Debug, Improv, Serial JSON) only possible if GPIO1 unused if (!pinManager.isPinAllocated(hardwareRX) && !pinManager.isPinAllocated(hardwareTX)) { Serial.println(F("Ada")); } #endif // fill in unique mdns default if (strcmp(cmDNS, "x") == 0) sprintf_P(cmDNS, PSTR("wled-%*s"), 6, escapedMac.c_str() + 6); #ifndef WLED_DISABLE_MQTT if (mqttDeviceTopic[0] == 0) sprintf_P(mqttDeviceTopic, PSTR("wled/%*s"), 6, escapedMac.c_str() + 6); if (mqttClientID[0] == 0) sprintf_P(mqttClientID, PSTR("WLED-%*s"), 6, escapedMac.c_str() + 6); #endif #ifdef WLED_ENABLE_ADALIGHT if (Serial.available() > 0 && Serial.peek() == 'I') handleImprovPacket(); #endif #ifndef WLED_DISABLE_OTA if (aOtaEnabled) { ArduinoOTA.onStart([]() { #ifdef ESP8266 wifi_set_sleep_type(NONE_SLEEP_T); #endif #if WLED_WATCHDOG_TIMEOUT > 0 WLED::instance().disableWatchdog(); #endif DEBUG_PRINTLN(F("Start ArduinoOTA")); }); ArduinoOTA.onError([](ota_error_t error) { #if WLED_WATCHDOG_TIMEOUT > 0 // reenable watchdog on failed update WLED::instance().enableWatchdog(); #endif }); if (strlen(cmDNS) > 0) ArduinoOTA.setHostname(cmDNS); } #endif #ifdef WLED_ENABLE_DMX initDMX(); #endif #ifdef WLED_ENABLE_ADALIGHT if (Serial.available() > 0 && Serial.peek() == 'I') handleImprovPacket(); #endif // HTTP server page init DEBUG_PRINTLN(F("initServer")); initServer(); DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap()); // Seed FastLED random functions with an esp random value, which already works properly at this point. #if defined(ARDUINO_ARCH_ESP32) const uint32_t seed32 = esp_random(); #elif defined(ARDUINO_ARCH_ESP8266) const uint32_t seed32 = RANDOM_REG32; #else const uint32_t seed32 = random(std::numeric_limits::max()); #endif random16_set_seed((uint16_t)((seed32 & 0xFFFF) ^ (seed32 >> 16))); #if WLED_WATCHDOG_TIMEOUT > 0 enableWatchdog(); #endif #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET) WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); //enable brownout detector #endif } void WLED::beginStrip() { // Initialize NeoPixel Strip and button strip.finalizeInit(); // busses created during deserializeConfig() strip.makeAutoSegments(); strip.setBrightness(0); strip.setShowCallback(handleOverlayDraw); if (turnOnAtBoot) { if (briS > 0) bri = briS; else if (bri == 0) bri = 128; } else { // fix for #3196 if (bootPreset > 0) { bool oldTransition = fadeTransition; // workaround if transitions are enabled fadeTransition = false; // ignore transitions temporarily strip.setColor(0, BLACK); // set all segments black fadeTransition = oldTransition; // restore transitions col[0] = col[1] = col[2] = col[3] = 0; // needed for colorUpdated() } briLast = briS; bri = 0; strip.fill(BLACK); strip.show(); } if (bootPreset > 0) { applyPreset(bootPreset, CALL_MODE_INIT); } colorUpdated(CALL_MODE_INIT); // init relay pin if (rlyPin>=0) digitalWrite(rlyPin, (rlyMde ? bri : !bri)); } void WLED::initAP(bool resetAP) { if (apBehavior == AP_BEHAVIOR_BUTTON_ONLY && !resetAP) return; if (resetAP) { WLED_SET_AP_SSID(); strcpy_P(apPass, PSTR(WLED_AP_PASS)); } DEBUG_PRINT(F("Opening access point ")); DEBUG_PRINTLN(apSSID); WiFi.softAPConfig(IPAddress(4, 3, 2, 1), IPAddress(4, 3, 2, 1), IPAddress(255, 255, 255, 0)); WiFi.softAP(apSSID, apPass, apChannel, apHide); #if defined(LOLIN_WIFI_FIX) && (defined(ARDUINO_ARCH_ESP32C3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32S3)) WiFi.setTxPower(WIFI_POWER_8_5dBm); #endif if (!apActive) // start captive portal if AP active { DEBUG_PRINTLN(F("Init AP interfaces")); server.begin(); if (udpPort > 0 && udpPort != ntpLocalPort) { udpConnected = notifierUdp.begin(udpPort); } if (udpRgbPort > 0 && udpRgbPort != ntpLocalPort && udpRgbPort != udpPort) { udpRgbConnected = rgbUdp.begin(udpRgbPort); } if (udpPort2 > 0 && udpPort2 != ntpLocalPort && udpPort2 != udpPort && udpPort2 != udpRgbPort) { udp2Connected = notifier2Udp.begin(udpPort2); } e131.begin(false, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT); ddp.begin(false, DDP_DEFAULT_PORT); dnsServer.setErrorReplyCode(DNSReplyCode::NoError); dnsServer.start(53, "*", WiFi.softAPIP()); } apActive = true; } bool WLED::initEthernet() { #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET) static bool successfullyConfiguredEthernet = false; if (successfullyConfiguredEthernet) { // DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring")); return false; } if (ethernetType == WLED_ETH_NONE) { return false; } if (ethernetType >= WLED_NUM_ETH_TYPES) { DEBUG_PRINT(F("initE: Ignoring attempt for invalid ethernetType ")); DEBUG_PRINTLN(ethernetType); return false; } DEBUG_PRINT(F("initE: Attempting ETH config: ")); DEBUG_PRINTLN(ethernetType); // Ethernet initialization should only succeed once -- else reboot required ethernet_settings es = ethernetBoards[ethernetType]; managed_pin_type pinsToAllocate[10] = { // first six pins are non-configurable esp32_nonconfigurable_ethernet_pins[0], esp32_nonconfigurable_ethernet_pins[1], esp32_nonconfigurable_ethernet_pins[2], esp32_nonconfigurable_ethernet_pins[3], esp32_nonconfigurable_ethernet_pins[4], esp32_nonconfigurable_ethernet_pins[5], { (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory { (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory { (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use { ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory }; // update the clock pin.... if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) { pinsToAllocate[9].pin = 0; pinsToAllocate[9].isOutput = false; } else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) { pinsToAllocate[9].pin = 0; pinsToAllocate[9].isOutput = true; } else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) { pinsToAllocate[9].pin = 16; pinsToAllocate[9].isOutput = true; } else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) { pinsToAllocate[9].pin = 17; pinsToAllocate[9].isOutput = true; } else { DEBUG_PRINT(F("initE: Failing due to invalid eth_clk_mode (")); DEBUG_PRINT(es.eth_clk_mode); DEBUG_PRINTLN(")"); return false; } if (!pinManager.allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) { DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins")); return false; } /* For LAN8720 the most correct way is to perform clean reset each time before init applying LOW to power or nRST pin for at least 100 us (please refer to datasheet, page 59) ESP_IDF > V4 implements it (150 us, lan87xx_reset_hw(esp_eth_phy_t *phy) function in /components/esp_eth/src/esp_eth_phy_lan87xx.c, line 280) but ESP_IDF < V4 does not. Lets do it: [not always needed, might be relevant in some EMI situations at startup and for hot resets] */ #if ESP_IDF_VERSION_MAJOR==3 if(es.eth_power>0 && es.eth_type==ETH_PHY_LAN8720) { pinMode(es.eth_power, OUTPUT); digitalWrite(es.eth_power, 0); delayMicroseconds(150); digitalWrite(es.eth_power, 1); delayMicroseconds(10); } #endif if (!ETH.begin( (uint8_t) es.eth_address, (int) es.eth_power, (int) es.eth_mdc, (int) es.eth_mdio, (eth_phy_type_t) es.eth_type, (eth_clock_mode_t) es.eth_clk_mode )) { DEBUG_PRINTLN(F("initC: ETH.begin() failed")); // de-allocate the allocated pins for (managed_pin_type mpt : pinsToAllocate) { pinManager.deallocatePin(mpt.pin, PinOwner::Ethernet); } return false; } successfullyConfiguredEthernet = true; DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***")); return true; #else return false; // Ethernet not enabled for build #endif } // performs asynchronous scan for available networks (which may take couple of seconds to finish) // returns configured WiFi ID with the strongest signal (or default if no configured networks available) int8_t WLED::findWiFi(bool doScan) { if (multiWiFi.size() <= 1) { DEBUG_PRINTLN(F("Defaulf WiFi used.")); return 0; } if (doScan) WiFi.scanDelete(); // restart scan int status = WiFi.scanComplete(); // complete scan may take as much as several seconds (usually <3s with not very crowded air) if (status == WIFI_SCAN_FAILED) { DEBUG_PRINTLN(F("WiFi scan started.")); WiFi.scanNetworks(true); // start scanning in asynchronous mode } else if (status >= 0) { // status contains number of found networks DEBUG_PRINT(F("WiFi scan completed: ")); DEBUG_PRINTLN(status); int rssi = -9999; unsigned selected = selectedWiFi; for (int o = 0; o < status; o++) { DEBUG_PRINT(F(" WiFi available: ")); DEBUG_PRINT(WiFi.SSID(o)); DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(WiFi.RSSI(o)); DEBUG_PRINTLN(F("dB")); for (unsigned n = 0; n < multiWiFi.size(); n++) if (!strcmp(WiFi.SSID(o).c_str(), multiWiFi[n].clientSSID)) { // find the WiFi with the strongest signal (but keep priority of entry if signal difference is not big) if ((n < selected && WiFi.RSSI(o) > rssi-10) || WiFi.RSSI(o) > rssi) { rssi = WiFi.RSSI(o); selected = n; } break; } } DEBUG_PRINT(F("Selected: ")); DEBUG_PRINT(multiWiFi[selected].clientSSID); DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(rssi); DEBUG_PRINTLN(F("dB")); return selected; } //DEBUG_PRINT(F("WiFi scan running.")); return status; // scan is still running or there was an error } void WLED::initConnection() { DEBUG_PRINTLN(F("initConnection() called.")); #ifdef WLED_ENABLE_WEBSOCKETS ws.onEvent(wsEvent); #endif #ifndef WLED_DISABLE_ESPNOW if (statusESPNow == ESP_NOW_STATE_ON) { DEBUG_PRINTLN(F("ESP-NOW stopping.")); quickEspNow.stop(); statusESPNow = ESP_NOW_STATE_UNINIT; } #endif WiFi.disconnect(true); // close old connections #ifdef ESP8266 WiFi.setPhyMode(force802_3g ? WIFI_PHY_MODE_11G : WIFI_PHY_MODE_11N); #endif if (multiWiFi[selectedWiFi].staticIP != 0U && multiWiFi[selectedWiFi].staticGW != 0U) { WiFi.config(multiWiFi[selectedWiFi].staticIP, multiWiFi[selectedWiFi].staticGW, multiWiFi[selectedWiFi].staticSN, dnsAddress); } else { WiFi.config(IPAddress((uint32_t)0), IPAddress((uint32_t)0), IPAddress((uint32_t)0)); } lastReconnectAttempt = millis(); if (!WLED_WIFI_CONFIGURED) { DEBUG_PRINTLN(F("No connection configured.")); if (!apActive) initAP(); // instantly go to ap mode } else if (!apActive) { if (apBehavior == AP_BEHAVIOR_ALWAYS) { DEBUG_PRINTLN(F("Access point ALWAYS enabled.")); initAP(); } else { DEBUG_PRINTLN(F("Access point disabled (init).")); WiFi.softAPdisconnect(true); WiFi.mode(WIFI_STA); } } if (WLED_WIFI_CONFIGURED) { showWelcomePage = false; DEBUG_PRINT(F("Connecting to ")); DEBUG_PRINT(multiWiFi[selectedWiFi].clientSSID); DEBUG_PRINTLN(F("...")); // convert the "serverDescription" into a valid DNS hostname (alphanumeric) char hostname[25]; prepareHostname(hostname); WiFi.begin(multiWiFi[selectedWiFi].clientSSID, multiWiFi[selectedWiFi].clientPass); // no harm if called multiple times #ifdef ARDUINO_ARCH_ESP32 #if defined(LOLIN_WIFI_FIX) && (defined(ARDUINO_ARCH_ESP32C3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32S3)) WiFi.setTxPower(WIFI_POWER_8_5dBm); #endif WiFi.setSleep(!noWifiSleep); WiFi.setHostname(hostname); #else wifi_set_sleep_type((noWifiSleep) ? NONE_SLEEP_T : MODEM_SLEEP_T); WiFi.hostname(hostname); #endif } #ifndef WLED_DISABLE_ESPNOW if (enableESPNow) { quickEspNow.onDataSent(espNowSentCB); // see udp.cpp quickEspNow.onDataRcvd(espNowReceiveCB); // see udp.cpp bool espNowOK; if (apActive) { DEBUG_PRINTLN(F("ESP-NOW initing in AP mode.")); #ifdef ESP32 quickEspNow.setWiFiBandwidth(WIFI_IF_AP, WIFI_BW_HT20); // Only needed for ESP32 in case you need coexistence with ESP8266 in the same network #endif //ESP32 espNowOK = quickEspNow.begin(apChannel, WIFI_IF_AP); // Same channel must be used for both AP and ESP-NOW } else { DEBUG_PRINTLN(F("ESP-NOW initing in STA mode.")); espNowOK = quickEspNow.begin(); // Use no parameters to start ESP-NOW on same channel as WiFi, in STA mode } statusESPNow = espNowOK ? ESP_NOW_STATE_ON : ESP_NOW_STATE_ERROR; } #endif } void WLED::initInterfaces() { DEBUG_PRINTLN(F("Init STA interfaces")); #ifndef WLED_DISABLE_HUESYNC IPAddress ipAddress = Network.localIP(); if (hueIP[0] == 0) { hueIP[0] = ipAddress[0]; hueIP[1] = ipAddress[1]; hueIP[2] = ipAddress[2]; } #endif #ifndef WLED_DISABLE_ALEXA // init Alexa hue emulation if (alexaEnabled) alexaInit(); #endif #ifndef WLED_DISABLE_OTA if (aOtaEnabled) ArduinoOTA.begin(); #endif // Set up mDNS responder: if (strlen(cmDNS) > 0) { // "end" must be called before "begin" is called a 2nd time // see https://github.com/esp8266/Arduino/issues/7213 MDNS.end(); MDNS.begin(cmDNS); DEBUG_PRINTLN(F("mDNS started")); MDNS.addService("http", "tcp", 80); MDNS.addService("wled", "tcp", 80); MDNS.addServiceTxt("wled", "tcp", "mac", escapedMac.c_str()); } server.begin(); if (udpPort > 0 && udpPort != ntpLocalPort) { udpConnected = notifierUdp.begin(udpPort); if (udpConnected && udpRgbPort != udpPort) udpRgbConnected = rgbUdp.begin(udpRgbPort); if (udpConnected && udpPort2 != udpPort && udpPort2 != udpRgbPort) udp2Connected = notifier2Udp.begin(udpPort2); } if (ntpEnabled) ntpConnected = ntpUdp.begin(ntpLocalPort); e131.begin(e131Multicast, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT); ddp.begin(false, DDP_DEFAULT_PORT); reconnectHue(); #ifndef WLED_DISABLE_MQTT initMqtt(); #endif interfacesInited = true; wasConnected = true; } void WLED::handleConnection() { static bool scanDone = true; static byte stacO = 0; unsigned long now = millis(); const bool wifiConfigured = WLED_WIFI_CONFIGURED; // ignore connection handling if WiFi is configured and scan still running // or within first 2s if WiFi is not configured or AP is always active if ((wifiConfigured && multiWiFi.size() > 1 && WiFi.scanComplete() < 0) || (now < 2000 && (!wifiConfigured || apBehavior == AP_BEHAVIOR_ALWAYS))) return; if (lastReconnectAttempt == 0 || forceReconnect) { DEBUG_PRINTLN(F("Initial connect or forced reconnect.")); selectedWiFi = findWiFi(); // find strongest WiFi initConnection(); interfacesInited = false; forceReconnect = false; wasConnected = false; return; } byte stac = 0; if (apActive) { #ifdef ESP8266 stac = wifi_softap_get_station_num(); #else wifi_sta_list_t stationList; esp_wifi_ap_get_sta_list(&stationList); stac = stationList.num; #endif if (stac != stacO) { stacO = stac; DEBUG_PRINT(F("Connected AP clients: ")); DEBUG_PRINTLN(stac); if (!WLED_CONNECTED && wifiConfigured) { // trying to connect, but not connected if (stac) WiFi.disconnect(); // disable search so that AP can work else initConnection(); // restart search } } } if (!Network.isConnected()) { if (interfacesInited) { if (scanDone && multiWiFi.size() > 1) { DEBUG_PRINTLN(F("WiFi scan initiated on disconnect.")); findWiFi(true); // reinit scan scanDone = false; return; // try to connect in next iteration } DEBUG_PRINTLN(F("Disconnected!")); selectedWiFi = findWiFi(); initConnection(); interfacesInited = false; scanDone = true; } //send improv failed 6 seconds after second init attempt (24 sec. after provisioning) if (improvActive > 2 && now - lastReconnectAttempt > 6000) { sendImprovStateResponse(0x03, true); improvActive = 2; } if (now - lastReconnectAttempt > ((stac) ? 300000 : 18000) && wifiConfigured) { if (improvActive == 2) improvActive = 3; DEBUG_PRINTLN(F("Last reconnect too old.")); if (++selectedWiFi >= multiWiFi.size()) selectedWiFi = 0; // we couldn't connect, try with another network from the list initConnection(); } if (!apActive && now - lastReconnectAttempt > 12000 && (!wasConnected || apBehavior == AP_BEHAVIOR_NO_CONN)) { if (!(apBehavior == AP_BEHAVIOR_TEMPORARY && now > WLED_AP_TIMEOUT)) { DEBUG_PRINTLN(F("Not connected AP.")); initAP(); // start AP only within first 5min } } if (apActive && apBehavior == AP_BEHAVIOR_TEMPORARY && now > WLED_AP_TIMEOUT && stac == 0) { // disconnect AP after 5min if no clients connected // if AP was enabled more than 10min after boot or if client was connected more than 10min after boot do not disconnect AP mode if (now < 2*WLED_AP_TIMEOUT) { dnsServer.stop(); WiFi.softAPdisconnect(true); apActive = false; DEBUG_PRINTLN(F("Temporary AP disabled.")); } } } else if (!interfacesInited) { //newly connected DEBUG_PRINTLN(); DEBUG_PRINT(F("Connected! IP address: ")); DEBUG_PRINTLN(Network.localIP()); if (improvActive) { if (improvError == 3) sendImprovStateResponse(0x00, true); sendImprovStateResponse(0x04); if (improvActive > 1) sendImprovIPRPCResult(ImprovRPCType::Command_Wifi); } initInterfaces(); userConnected(); usermods.connected(); lastMqttReconnectAttempt = 0; // force immediate update // shut down AP if (apBehavior != AP_BEHAVIOR_ALWAYS && apActive) { dnsServer.stop(); WiFi.softAPdisconnect(true); apActive = false; DEBUG_PRINTLN(F("Access point disabled (connected).")); } } } // If status LED pin is allocated for other uses, does nothing // else blink at 1Hz when WLED_CONNECTED is false (no WiFi, ?? no Ethernet ??) // else blink at 2Hz when MQTT is enabled but not connected // else turn the status LED off #if defined(STATUSLED) void WLED::handleStatusLED() { uint32_t c = 0; #if STATUSLED>=0 if (pinManager.isPinAllocated(STATUSLED)) { return; //lower priority if something else uses the same pin } #endif if (WLED_CONNECTED) { c = RGBW32(0,255,0,0); ledStatusType = 2; } else if (WLED_MQTT_CONNECTED) { c = RGBW32(0,128,0,0); ledStatusType = 4; } else if (apActive) { c = RGBW32(0,0,255,0); ledStatusType = 1; } if (ledStatusType) { if (millis() - ledStatusLastMillis >= (1000/ledStatusType)) { ledStatusLastMillis = millis(); ledStatusState = !ledStatusState; #if STATUSLED>=0 digitalWrite(STATUSLED, ledStatusState); #else BusManager::setStatusPixel(ledStatusState ? c : 0); #endif } } else { #if STATUSLED>=0 #ifdef STATUSLEDINVERTED digitalWrite(STATUSLED, HIGH); #else digitalWrite(STATUSLED, LOW); #endif #else BusManager::setStatusPixel(0); #endif } } #endif