mirror of
https://github.com/wled/WLED.git
synced 2025-04-22 05:47:19 +00:00

* changed some parameters to "pointer to const", so compiler can better optimize code size and performance - because data behind a const pointer will never be modified by the called function. * made setPixelColor `const` * fixed a few potentially uninitialized local vars (the may have random values if not initialized) * avoid shadowing "state" in handleSerial() * plus a few very minor improvements
545 lines
19 KiB
C++
545 lines
19 KiB
C++
#include "wled.h"
|
|
|
|
/*
|
|
* Color conversion & utility methods
|
|
*/
|
|
|
|
/*
|
|
* color blend function, based on FastLED blend function
|
|
* the calculation for each color is: result = (A*(amountOfA) + A + B*(amountOfB) + B) / 256 with amountOfA = 255 - amountOfB
|
|
*/
|
|
uint32_t color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
|
|
// min / max blend checking is omitted: calls with 0 or 255 are rare, checking lowers overall performance
|
|
uint32_t rb1 = color1 & 0x00FF00FF;
|
|
uint32_t wg1 = (color1>>8) & 0x00FF00FF;
|
|
uint32_t rb2 = color2 & 0x00FF00FF;
|
|
uint32_t wg2 = (color2>>8) & 0x00FF00FF;
|
|
uint32_t rb3 = ((((rb1 << 8) | rb2) + (rb2 * blend) - (rb1 * blend)) >> 8) & 0x00FF00FF;
|
|
uint32_t wg3 = ((((wg1 << 8) | wg2) + (wg2 * blend) - (wg1 * blend))) & 0xFF00FF00;
|
|
return rb3 | wg3;
|
|
}
|
|
|
|
/*
|
|
* color add function that preserves ratio
|
|
* original idea: https://github.com/Aircoookie/WLED/pull/2465 by https://github.com/Proto-molecule
|
|
* speed optimisations by @dedehai
|
|
*/
|
|
uint32_t color_add(uint32_t c1, uint32_t c2, bool preserveCR)
|
|
{
|
|
if (c1 == BLACK) return c2;
|
|
if (c2 == BLACK) return c1;
|
|
uint32_t rb = (c1 & 0x00FF00FF) + (c2 & 0x00FF00FF); // mask and add two colors at once
|
|
uint32_t wg = ((c1>>8) & 0x00FF00FF) + ((c2>>8) & 0x00FF00FF);
|
|
uint32_t r = rb >> 16; // extract single color values
|
|
uint32_t b = rb & 0xFFFF;
|
|
uint32_t w = wg >> 16;
|
|
uint32_t g = wg & 0xFFFF;
|
|
|
|
if (preserveCR) { // preserve color ratios
|
|
uint32_t max = std::max(r,g); // check for overflow note
|
|
max = std::max(max,b);
|
|
max = std::max(max,w);
|
|
//unsigned max = r; // check for overflow note
|
|
//max = g > max ? g : max;
|
|
//max = b > max ? b : max;
|
|
//max = w > max ? w : max;
|
|
if (max > 255) {
|
|
uint32_t scale = (uint32_t(255)<<8) / max; // division of two 8bit (shifted) values does not work -> use bit shifts and multiplaction instead
|
|
rb = ((rb * scale) >> 8) & 0x00FF00FF; //
|
|
wg = (wg * scale) & 0xFF00FF00;
|
|
} else wg = wg << 8; //shift white and green back to correct position
|
|
return rb | wg;
|
|
} else {
|
|
r = r > 255 ? 255 : r;
|
|
g = g > 255 ? 255 : g;
|
|
b = b > 255 ? 255 : b;
|
|
w = w > 255 ? 255 : w;
|
|
return RGBW32(r,g,b,w);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fades color toward black
|
|
* if using "video" method the resulting color will never become black unless it is already black
|
|
*/
|
|
|
|
uint32_t color_fade(uint32_t c1, uint8_t amount, bool video)
|
|
{
|
|
if (amount == 255) return c1;
|
|
if (c1 == BLACK || amount == 0) return BLACK;
|
|
uint32_t scaledcolor; // color order is: W R G B from MSB to LSB
|
|
uint32_t scale = amount; // 32bit for faster calculation
|
|
uint32_t addRemains = 0;
|
|
if (!video) scale++; // add one for correct scaling using bitshifts
|
|
else { // video scaling: make sure colors do not dim to zero if they started non-zero
|
|
addRemains = R(c1) ? 0x00010000 : 0;
|
|
addRemains |= G(c1) ? 0x00000100 : 0;
|
|
addRemains |= B(c1) ? 0x00000001 : 0;
|
|
addRemains |= W(c1) ? 0x01000000 : 0;
|
|
}
|
|
uint32_t rb = (((c1 & 0x00FF00FF) * scale) >> 8) & 0x00FF00FF; // scale red and blue
|
|
uint32_t wg = (((c1 & 0xFF00FF00) >> 8) * scale) & 0xFF00FF00; // scale white and green
|
|
scaledcolor = (rb | wg) + addRemains;
|
|
return scaledcolor;
|
|
}
|
|
|
|
// 1:1 replacement of fastled function optimized for ESP, slightly faster, more accurate and uses less flash (~ -200bytes)
|
|
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType)
|
|
{
|
|
if (blendType == LINEARBLEND_NOWRAP) {
|
|
index = (index*240) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
|
|
}
|
|
unsigned hi4 = byte(index) >> 4;
|
|
const CRGB* entry = (CRGB*)((uint8_t*)(&(pal[0])) + (hi4 * sizeof(CRGB)));
|
|
unsigned red1 = entry->r;
|
|
unsigned green1 = entry->g;
|
|
unsigned blue1 = entry->b;
|
|
if (blendType != NOBLEND) {
|
|
if (hi4 == 15) entry = &(pal[0]);
|
|
else ++entry;
|
|
unsigned f2 = ((index & 0x0F) << 4) + 1; // +1 so we scale by 256 as a max value, then result can just be shifted by 8
|
|
unsigned f1 = (257 - f2); // f2 is 1 minimum, so this is 256 max
|
|
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8;
|
|
green1 = (green1 * f1 + (unsigned)entry->g * f2) >> 8;
|
|
blue1 = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
|
|
}
|
|
if (brightness < 255) { // note: zero checking could be done to return black but that is hardly ever used so it is omitted
|
|
uint32_t scale = brightness + 1; // adjust for rounding (bitshift)
|
|
red1 = (red1 * scale) >> 8;
|
|
green1 = (green1 * scale) >> 8;
|
|
blue1 = (blue1 * scale) >> 8;
|
|
}
|
|
return RGBW32(red1,green1,blue1,0);
|
|
}
|
|
|
|
void setRandomColor(byte* rgb)
|
|
{
|
|
lastRandomIndex = get_random_wheel_index(lastRandomIndex);
|
|
colorHStoRGB(lastRandomIndex*256,255,rgb);
|
|
}
|
|
|
|
/*
|
|
* generates a random palette based on harmonic color theory
|
|
* takes a base palette as the input, it will choose one color of the base palette and keep it
|
|
*/
|
|
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette)
|
|
{
|
|
CHSV palettecolors[4]; // array of colors for the new palette
|
|
uint8_t keepcolorposition = hw_random8(4); // color position of current random palette to keep
|
|
palettecolors[keepcolorposition] = rgb2hsv(basepalette.entries[keepcolorposition*5]); // read one of the base colors of the current palette
|
|
palettecolors[keepcolorposition].hue += hw_random8(10)-5; // +/- 5 randomness of base color
|
|
// generate 4 saturation and brightness value numbers
|
|
// only one saturation is allowed to be below 200 creating mostly vibrant colors
|
|
// only one brightness value number is allowed below 200, creating mostly bright palettes
|
|
|
|
for (int i = 0; i < 3; i++) { // generate three high values
|
|
palettecolors[i].saturation = hw_random8(200,255);
|
|
palettecolors[i].value = hw_random8(220,255);
|
|
}
|
|
// allow one to be lower
|
|
palettecolors[3].saturation = hw_random8(20,255);
|
|
palettecolors[3].value = hw_random8(80,255);
|
|
|
|
// shuffle the arrays
|
|
for (int i = 3; i > 0; i--) {
|
|
std::swap(palettecolors[i].saturation, palettecolors[hw_random8(i + 1)].saturation);
|
|
std::swap(palettecolors[i].value, palettecolors[hw_random8(i + 1)].value);
|
|
}
|
|
|
|
// now generate three new hues based off of the hue of the chosen current color
|
|
uint8_t basehue = palettecolors[keepcolorposition].hue;
|
|
uint8_t harmonics[3]; // hues that are harmonic but still a little random
|
|
uint8_t type = hw_random8(5); // choose a harmony type
|
|
|
|
switch (type) {
|
|
case 0: // analogous
|
|
harmonics[0] = basehue + hw_random8(30, 50);
|
|
harmonics[1] = basehue + hw_random8(10, 30);
|
|
harmonics[2] = basehue - hw_random8(10, 30);
|
|
break;
|
|
|
|
case 1: // triadic
|
|
harmonics[0] = basehue + 113 + hw_random8(15);
|
|
harmonics[1] = basehue + 233 + hw_random8(15);
|
|
harmonics[2] = basehue - 7 + hw_random8(15);
|
|
break;
|
|
|
|
case 2: // split-complementary
|
|
harmonics[0] = basehue + 145 + hw_random8(10);
|
|
harmonics[1] = basehue + 205 + hw_random8(10);
|
|
harmonics[2] = basehue - 5 + hw_random8(10);
|
|
break;
|
|
|
|
case 3: // square
|
|
harmonics[0] = basehue + 85 + hw_random8(10);
|
|
harmonics[1] = basehue + 175 + hw_random8(10);
|
|
harmonics[2] = basehue + 265 + hw_random8(10);
|
|
break;
|
|
|
|
case 4: // tetradic
|
|
harmonics[0] = basehue + 80 + hw_random8(20);
|
|
harmonics[1] = basehue + 170 + hw_random8(20);
|
|
harmonics[2] = basehue - 15 + hw_random8(30);
|
|
break;
|
|
}
|
|
|
|
if (hw_random8() < 128) {
|
|
// 50:50 chance of shuffling hues or keep the color order
|
|
for (int i = 2; i > 0; i--) {
|
|
std::swap(harmonics[i], harmonics[hw_random8(i + 1)]);
|
|
}
|
|
}
|
|
|
|
// now set the hues
|
|
int j = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (i==keepcolorposition) continue; // skip the base color
|
|
palettecolors[i].hue = harmonics[j];
|
|
j++;
|
|
}
|
|
|
|
bool makepastelpalette = false;
|
|
if (hw_random8() < 25) { // ~10% chance of desaturated 'pastel' colors
|
|
makepastelpalette = true;
|
|
}
|
|
|
|
// apply saturation & gamma correction
|
|
CRGB RGBpalettecolors[4];
|
|
for (int i = 0; i < 4; i++) {
|
|
if (makepastelpalette && palettecolors[i].saturation > 180) {
|
|
palettecolors[i].saturation -= 160; //desaturate all four colors
|
|
}
|
|
RGBpalettecolors[i] = (CRGB)palettecolors[i]; //convert to RGB
|
|
RGBpalettecolors[i] = gamma32(((uint32_t)RGBpalettecolors[i]) & 0x00FFFFFFU); //strip alpha from CRGB
|
|
}
|
|
|
|
return CRGBPalette16(RGBpalettecolors[0],
|
|
RGBpalettecolors[1],
|
|
RGBpalettecolors[2],
|
|
RGBpalettecolors[3]);
|
|
}
|
|
|
|
CRGBPalette16 generateRandomPalette() // generate fully random palette
|
|
{
|
|
return CRGBPalette16(CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
|
|
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
|
|
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
|
|
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)));
|
|
}
|
|
|
|
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb) // convert HSV (16bit hue) to RGB (32bit with white = 0)
|
|
{
|
|
unsigned int remainder, region, p, q, t;
|
|
unsigned int h = hsv.h;
|
|
unsigned int s = hsv.s;
|
|
unsigned int v = hsv.v;
|
|
if (s == 0) {
|
|
rgb = v << 16 | v << 8 | v;
|
|
return;
|
|
}
|
|
region = h / 10923; // 65536 / 6 = 10923
|
|
remainder = (h - (region * 10923)) * 6;
|
|
p = (v * (255 - s)) >> 8;
|
|
q = (v * (255 - ((s * remainder) >> 16))) >> 8;
|
|
t = (v * (255 - ((s * (65535 - remainder)) >> 16))) >> 8;
|
|
switch (region) {
|
|
case 0:
|
|
rgb = v << 16 | t << 8 | p; break;
|
|
case 1:
|
|
rgb = q << 16 | v << 8 | p; break;
|
|
case 2:
|
|
rgb = p << 16 | v << 8 | t; break;
|
|
case 3:
|
|
rgb = p << 16 | q << 8 | v; break;
|
|
case 4:
|
|
rgb = t << 16 | p << 8 | v; break;
|
|
default:
|
|
rgb = v << 16 | p << 8 | q; break;
|
|
}
|
|
}
|
|
|
|
void rgb2hsv(const uint32_t rgb, CHSV32& hsv) // convert RGB to HSV (16bit hue), much more accurate and faster than fastled version
|
|
{
|
|
hsv.raw = 0;
|
|
int32_t r = (rgb>>16)&0xFF;
|
|
int32_t g = (rgb>>8)&0xFF;
|
|
int32_t b = rgb&0xFF;
|
|
int32_t minval, maxval, delta;
|
|
minval = min(r, g);
|
|
minval = min(minval, b);
|
|
maxval = max(r, g);
|
|
maxval = max(maxval, b);
|
|
if (maxval == 0) return; // black
|
|
hsv.v = maxval;
|
|
delta = maxval - minval;
|
|
hsv.s = (255 * delta) / maxval;
|
|
if (hsv.s == 0) return; // gray value
|
|
if (maxval == r) hsv.h = (10923 * (g - b)) / delta;
|
|
else if (maxval == g) hsv.h = 21845 + (10923 * (b - r)) / delta;
|
|
else hsv.h = 43690 + (10923 * (r - g)) / delta;
|
|
}
|
|
|
|
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb) { //hue, sat to rgb
|
|
uint32_t crgb;
|
|
hsv2rgb(CHSV32(hue, sat, 255), crgb);
|
|
rgb[0] = byte((crgb) >> 16);
|
|
rgb[1] = byte((crgb) >> 8);
|
|
rgb[2] = byte(crgb);
|
|
}
|
|
|
|
//get RGB values from color temperature in K (https://tannerhelland.com/2012/09/18/convert-temperature-rgb-algorithm-code.html)
|
|
void colorKtoRGB(uint16_t kelvin, byte* rgb) //white spectrum to rgb, calc
|
|
{
|
|
int r = 0, g = 0, b = 0;
|
|
float temp = kelvin / 100.0f;
|
|
if (temp <= 66.0f) {
|
|
r = 255;
|
|
g = roundf(99.4708025861f * logf(temp) - 161.1195681661f);
|
|
if (temp <= 19.0f) {
|
|
b = 0;
|
|
} else {
|
|
b = roundf(138.5177312231f * logf((temp - 10.0f)) - 305.0447927307f);
|
|
}
|
|
} else {
|
|
r = roundf(329.698727446f * powf((temp - 60.0f), -0.1332047592f));
|
|
g = roundf(288.1221695283f * powf((temp - 60.0f), -0.0755148492f));
|
|
b = 255;
|
|
}
|
|
//g += 12; //mod by Aircoookie, a bit less accurate but visibly less pinkish
|
|
rgb[0] = (uint8_t) constrain(r, 0, 255);
|
|
rgb[1] = (uint8_t) constrain(g, 0, 255);
|
|
rgb[2] = (uint8_t) constrain(b, 0, 255);
|
|
rgb[3] = 0;
|
|
}
|
|
|
|
void colorCTtoRGB(uint16_t mired, byte* rgb) //white spectrum to rgb, bins
|
|
{
|
|
//this is only an approximation using WS2812B with gamma correction enabled
|
|
if (mired > 475) {
|
|
rgb[0]=255;rgb[1]=199;rgb[2]=92;//500
|
|
} else if (mired > 425) {
|
|
rgb[0]=255;rgb[1]=213;rgb[2]=118;//450
|
|
} else if (mired > 375) {
|
|
rgb[0]=255;rgb[1]=216;rgb[2]=118;//400
|
|
} else if (mired > 325) {
|
|
rgb[0]=255;rgb[1]=234;rgb[2]=140;//350
|
|
} else if (mired > 275) {
|
|
rgb[0]=255;rgb[1]=243;rgb[2]=160;//300
|
|
} else if (mired > 225) {
|
|
rgb[0]=250;rgb[1]=255;rgb[2]=188;//250
|
|
} else if (mired > 175) {
|
|
rgb[0]=247;rgb[1]=255;rgb[2]=215;//200
|
|
} else {
|
|
rgb[0]=237;rgb[1]=255;rgb[2]=239;//150
|
|
}
|
|
}
|
|
|
|
#ifndef WLED_DISABLE_HUESYNC
|
|
void colorXYtoRGB(float x, float y, byte* rgb) //coordinates to rgb (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
|
|
{
|
|
float z = 1.0f - x - y;
|
|
float X = (1.0f / y) * x;
|
|
float Z = (1.0f / y) * z;
|
|
float r = (int)255*(X * 1.656492f - 0.354851f - Z * 0.255038f);
|
|
float g = (int)255*(-X * 0.707196f + 1.655397f + Z * 0.036152f);
|
|
float b = (int)255*(X * 0.051713f - 0.121364f + Z * 1.011530f);
|
|
if (r > b && r > g && r > 1.0f) {
|
|
// red is too big
|
|
g = g / r;
|
|
b = b / r;
|
|
r = 1.0f;
|
|
} else if (g > b && g > r && g > 1.0f) {
|
|
// green is too big
|
|
r = r / g;
|
|
b = b / g;
|
|
g = 1.0f;
|
|
} else if (b > r && b > g && b > 1.0f) {
|
|
// blue is too big
|
|
r = r / b;
|
|
g = g / b;
|
|
b = 1.0f;
|
|
}
|
|
// Apply gamma correction
|
|
r = r <= 0.0031308f ? 12.92f * r : (1.0f + 0.055f) * powf(r, (1.0f / 2.4f)) - 0.055f;
|
|
g = g <= 0.0031308f ? 12.92f * g : (1.0f + 0.055f) * powf(g, (1.0f / 2.4f)) - 0.055f;
|
|
b = b <= 0.0031308f ? 12.92f * b : (1.0f + 0.055f) * powf(b, (1.0f / 2.4f)) - 0.055f;
|
|
|
|
if (r > b && r > g) {
|
|
// red is biggest
|
|
if (r > 1.0f) {
|
|
g = g / r;
|
|
b = b / r;
|
|
r = 1.0f;
|
|
}
|
|
} else if (g > b && g > r) {
|
|
// green is biggest
|
|
if (g > 1.0f) {
|
|
r = r / g;
|
|
b = b / g;
|
|
g = 1.0f;
|
|
}
|
|
} else if (b > r && b > g) {
|
|
// blue is biggest
|
|
if (b > 1.0f) {
|
|
r = r / b;
|
|
g = g / b;
|
|
b = 1.0f;
|
|
}
|
|
}
|
|
rgb[0] = byte(255.0f*r);
|
|
rgb[1] = byte(255.0f*g);
|
|
rgb[2] = byte(255.0f*b);
|
|
}
|
|
|
|
void colorRGBtoXY(const byte* rgb, float* xy) //rgb to coordinates (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
|
|
{
|
|
float X = rgb[0] * 0.664511f + rgb[1] * 0.154324f + rgb[2] * 0.162028f;
|
|
float Y = rgb[0] * 0.283881f + rgb[1] * 0.668433f + rgb[2] * 0.047685f;
|
|
float Z = rgb[0] * 0.000088f + rgb[1] * 0.072310f + rgb[2] * 0.986039f;
|
|
xy[0] = X / (X + Y + Z);
|
|
xy[1] = Y / (X + Y + Z);
|
|
}
|
|
#endif // WLED_DISABLE_HUESYNC
|
|
|
|
//RRGGBB / WWRRGGBB order for hex
|
|
void colorFromDecOrHexString(byte* rgb, const char* in)
|
|
{
|
|
if (in[0] == 0) return;
|
|
char first = in[0];
|
|
uint32_t c = 0;
|
|
|
|
if (first == '#' || first == 'h' || first == 'H') //is HEX encoded
|
|
{
|
|
c = strtoul(in +1, NULL, 16);
|
|
} else
|
|
{
|
|
c = strtoul(in, NULL, 10);
|
|
}
|
|
|
|
rgb[0] = R(c);
|
|
rgb[1] = G(c);
|
|
rgb[2] = B(c);
|
|
rgb[3] = W(c);
|
|
}
|
|
|
|
//contrary to the colorFromDecOrHexString() function, this uses the more standard RRGGBB / RRGGBBWW order
|
|
bool colorFromHexString(byte* rgb, const char* in) {
|
|
if (in == nullptr) return false;
|
|
size_t inputSize = strnlen(in, 9);
|
|
if (inputSize != 6 && inputSize != 8) return false;
|
|
|
|
uint32_t c = strtoul(in, NULL, 16);
|
|
|
|
if (inputSize == 6) {
|
|
rgb[0] = (c >> 16);
|
|
rgb[1] = (c >> 8);
|
|
rgb[2] = c ;
|
|
} else {
|
|
rgb[0] = (c >> 24);
|
|
rgb[1] = (c >> 16);
|
|
rgb[2] = (c >> 8);
|
|
rgb[3] = c ;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline float minf(float v, float w)
|
|
{
|
|
if (w > v) return v;
|
|
return w;
|
|
}
|
|
|
|
static inline float maxf(float v, float w)
|
|
{
|
|
if (w > v) return w;
|
|
return v;
|
|
}
|
|
|
|
// adjust RGB values based on color temperature in K (range [2800-10200]) (https://en.wikipedia.org/wiki/Color_balance)
|
|
// called from bus manager when color correction is enabled!
|
|
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb)
|
|
{
|
|
//remember so that slow colorKtoRGB() doesn't have to run for every setPixelColor()
|
|
static byte correctionRGB[4] = {0,0,0,0};
|
|
static uint16_t lastKelvin = 0;
|
|
if (lastKelvin != kelvin) colorKtoRGB(kelvin, correctionRGB); // convert Kelvin to RGB
|
|
lastKelvin = kelvin;
|
|
byte rgbw[4];
|
|
rgbw[0] = ((uint16_t) correctionRGB[0] * R(rgb)) /255; // correct R
|
|
rgbw[1] = ((uint16_t) correctionRGB[1] * G(rgb)) /255; // correct G
|
|
rgbw[2] = ((uint16_t) correctionRGB[2] * B(rgb)) /255; // correct B
|
|
rgbw[3] = W(rgb);
|
|
return RGBW32(rgbw[0],rgbw[1],rgbw[2],rgbw[3]);
|
|
}
|
|
|
|
//approximates a Kelvin color temperature from an RGB color.
|
|
//this does no check for the "whiteness" of the color,
|
|
//so should be used combined with a saturation check (as done by auto-white)
|
|
//values from http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html (10deg)
|
|
//equation spreadsheet at https://bit.ly/30RkHaN
|
|
//accuracy +-50K from 1900K up to 8000K
|
|
//minimum returned: 1900K, maximum returned: 10091K (range of 8192)
|
|
uint16_t approximateKelvinFromRGB(uint32_t rgb) {
|
|
//if not either red or blue is 255, color is dimmed. Scale up
|
|
uint8_t r = R(rgb), b = B(rgb);
|
|
if (r == b) return 6550; //red == blue at about 6600K (also can't go further if both R and B are 0)
|
|
|
|
if (r > b) {
|
|
//scale blue up as if red was at 255
|
|
uint16_t scale = 0xFFFF / r; //get scale factor (range 257-65535)
|
|
b = ((uint16_t)b * scale) >> 8;
|
|
//For all temps K<6600 R is bigger than B (for full bri colors R=255)
|
|
//-> Use 9 linear approximations for blackbody radiation blue values from 2000-6600K (blue is always 0 below 2000K)
|
|
if (b < 33) return 1900 + b *6;
|
|
if (b < 72) return 2100 + (b-33) *10;
|
|
if (b < 101) return 2492 + (b-72) *14;
|
|
if (b < 132) return 2900 + (b-101) *16;
|
|
if (b < 159) return 3398 + (b-132) *19;
|
|
if (b < 186) return 3906 + (b-159) *22;
|
|
if (b < 210) return 4500 + (b-186) *25;
|
|
if (b < 230) return 5100 + (b-210) *30;
|
|
return 5700 + (b-230) *34;
|
|
} else {
|
|
//scale red up as if blue was at 255
|
|
uint16_t scale = 0xFFFF / b; //get scale factor (range 257-65535)
|
|
r = ((uint16_t)r * scale) >> 8;
|
|
//For all temps K>6600 B is bigger than R (for full bri colors B=255)
|
|
//-> Use 2 linear approximations for blackbody radiation red values from 6600-10091K (blue is always 0 below 2000K)
|
|
if (r > 225) return 6600 + (254-r) *50;
|
|
uint16_t k = 8080 + (225-r) *86;
|
|
return (k > 10091) ? 10091 : k;
|
|
}
|
|
}
|
|
|
|
// gamma lookup table used for color correction (filled on 1st use (cfg.cpp & set.cpp))
|
|
uint8_t NeoGammaWLEDMethod::gammaT[256];
|
|
|
|
// re-calculates & fills gamma table
|
|
void NeoGammaWLEDMethod::calcGammaTable(float gamma)
|
|
{
|
|
for (size_t i = 0; i < 256; i++) {
|
|
gammaT[i] = (int)(powf((float)i / 255.0f, gamma) * 255.0f + 0.5f);
|
|
}
|
|
}
|
|
|
|
uint8_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct(uint8_t value)
|
|
{
|
|
if (!gammaCorrectCol) return value;
|
|
return gammaT[value];
|
|
}
|
|
|
|
// used for color gamma correction
|
|
uint32_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct32(uint32_t color)
|
|
{
|
|
if (!gammaCorrectCol) return color;
|
|
uint8_t w = W(color);
|
|
uint8_t r = R(color);
|
|
uint8_t g = G(color);
|
|
uint8_t b = B(color);
|
|
w = gammaT[w];
|
|
r = gammaT[r];
|
|
g = gammaT[g];
|
|
b = gammaT[b];
|
|
return RGBW32(r, g, b, w);
|
|
}
|