mirror of
https://github.com/wled/WLED.git
synced 2025-04-26 15:57:18 +00:00
449 lines
18 KiB
C++
449 lines
18 KiB
C++
#pragma once
|
|
|
|
#include "wled.h"
|
|
|
|
/* This driver reads quaternion data from the MPU6060 and adds it to the JSON
|
|
This example is adapted from:
|
|
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050/examples/MPU6050_DMP6_ESPWiFi
|
|
|
|
Tested with a d1 mini esp-12f
|
|
|
|
GY-521 NodeMCU
|
|
MPU6050 devkit 1.0
|
|
board Lolin Description
|
|
======= ========== ====================================================
|
|
VCC VU (5V USB) Not available on all boards so use 3.3V if needed.
|
|
GND G Ground
|
|
SCL D1 (GPIO05) I2C clock
|
|
SDA D2 (GPIO04) I2C data
|
|
XDA not connected
|
|
XCL not connected
|
|
AD0 not connected
|
|
INT D8 (GPIO15) Interrupt pin
|
|
|
|
Using usermod:
|
|
1. Copy the usermod into the sketch folder (same folder as wled00.ino)
|
|
2. Register the usermod by adding #include "usermod_filename.h" in the top and registerUsermod(new MyUsermodClass()) in the bottom of usermods_list.cpp
|
|
3. I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h file
|
|
for both classes must be in the include path of your project. To install the
|
|
libraries add I2Cdevlib-MPU6050@fbde122cc5 to lib_deps in the platformio.ini file.
|
|
4. You also need to change lib_compat_mode from strict to soft in platformio.ini (This ignores that I2Cdevlib-MPU6050 doesn't list platform compatibility)
|
|
5. Wire up the MPU6050 as detailed above.
|
|
*/
|
|
|
|
#include "I2Cdev.h"
|
|
|
|
#undef DEBUG_PRINT
|
|
#undef DEBUG_PRINTLN
|
|
#undef DEBUG_PRINTF
|
|
#include "MPU6050_6Axis_MotionApps20.h"
|
|
//#include "MPU6050.h" // not necessary if using MotionApps include file
|
|
|
|
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
|
|
// is used in I2Cdev.h
|
|
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
// Restore debug macros
|
|
// MPU6050 unfortunately uses the same macro names as WLED :(
|
|
#undef DEBUG_PRINT
|
|
#undef DEBUG_PRINTLN
|
|
#undef DEBUG_PRINTF
|
|
#ifdef WLED_DEBUG
|
|
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
|
|
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
|
|
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
|
|
#else
|
|
#define DEBUG_PRINT(x)
|
|
#define DEBUG_PRINTLN(x)
|
|
#define DEBUG_PRINTF(x...)
|
|
#endif
|
|
|
|
|
|
|
|
// ================================================================
|
|
// === INTERRUPT DETECTION ROUTINE ===
|
|
// ================================================================
|
|
|
|
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
|
|
void IRAM_ATTR dmpDataReady() {
|
|
mpuInterrupt = true;
|
|
}
|
|
|
|
|
|
|
|
class MPU6050Driver : public Usermod {
|
|
private:
|
|
MPU6050 mpu;
|
|
|
|
// configuration state
|
|
// default values are set in readFromConfig
|
|
// By making this a struct, we enable easy backup and comparison in the readFromConfig class
|
|
struct config_t {
|
|
bool enabled;
|
|
int8_t interruptPin;
|
|
int16_t gyro_offset[3];
|
|
int16_t accel_offset[3];
|
|
};
|
|
config_t config;
|
|
bool configDirty = true; // does the configuration need an update?
|
|
|
|
// MPU control/status vars
|
|
bool irqBound = false; // set true if we have bound the IRQ pin
|
|
bool dmpReady = false; // set true if DMP init was successful
|
|
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
|
|
uint16_t fifoCount; // count of all bytes currently in FIFO
|
|
uint8_t fifoBuffer[64]; // FIFO storage buffer
|
|
|
|
// TODO: some of these can be removed to save memory, processing time if the measurement isn't needed
|
|
Quaternion qat; // [w, x, y, z] quaternion container
|
|
float euler[3]; // [psi, theta, phi] Euler angle container
|
|
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container
|
|
VectorInt16 aa; // [x, y, z] accel sensor measurements
|
|
VectorInt16 gy; // [x, y, z] gyro sensor measurements
|
|
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
|
|
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
|
|
VectorFloat gravity; // [x, y, z] gravity vector
|
|
uint32 sample_count;
|
|
|
|
// Usermod output
|
|
um_data_t um_data;
|
|
|
|
// config element names as progmem strs
|
|
static const char _name[];
|
|
static const char _enabled[];
|
|
static const char _interrupt_pin[];
|
|
static const char _x_acc_bias[];
|
|
static const char _y_acc_bias[];
|
|
static const char _z_acc_bias[];
|
|
static const char _x_gyro_bias[];
|
|
static const char _y_gyro_bias[];
|
|
static const char _z_gyro_bias[];
|
|
|
|
public:
|
|
|
|
inline bool initDone() { return um_data.u_size != 0; }; // recycle this instead of storing an extra variable
|
|
|
|
//Functions called by WLED
|
|
/*
|
|
* setup() is called once at boot. WiFi is not yet connected at this point.
|
|
*/
|
|
void setup() {
|
|
dmpReady = false; // Start clean
|
|
|
|
// one time init
|
|
if (!initDone()) {
|
|
um_data.u_size = 9;
|
|
um_data.u_type = new um_types_t[um_data.u_size];
|
|
um_data.u_data = new void*[um_data.u_size];
|
|
um_data.u_data[0] = &qat;
|
|
um_data.u_type[0] = UMT_FLOAT_ARR;
|
|
um_data.u_data[1] = &euler;
|
|
um_data.u_type[1] = UMT_FLOAT_ARR;
|
|
um_data.u_data[2] = &ypr;
|
|
um_data.u_type[2] = UMT_FLOAT_ARR;
|
|
um_data.u_data[3] = &aa;
|
|
um_data.u_type[3] = UMT_INT16_ARR;
|
|
um_data.u_data[4] = &gy;
|
|
um_data.u_type[4] = UMT_INT16_ARR;
|
|
um_data.u_data[5] = &aaReal;
|
|
um_data.u_type[5] = UMT_INT16_ARR;
|
|
um_data.u_data[6] = &aaWorld;
|
|
um_data.u_type[6] = UMT_INT16_ARR;
|
|
um_data.u_data[7] = &gravity;
|
|
um_data.u_type[7] = UMT_FLOAT_ARR;
|
|
um_data.u_data[8] = &sample_count;
|
|
um_data.u_type[8] = UMT_UINT32;
|
|
}
|
|
|
|
configDirty = false; // we have now accepted the current configuration, success or not
|
|
|
|
if (!config.enabled) return;
|
|
// TODO: notice if these have changed ??
|
|
if (i2c_scl<0 || i2c_sda<0) { DEBUG_PRINTLN(F("MPU6050: I2C is no good.")); return; }
|
|
// Check the interrupt pin
|
|
if (config.interruptPin >= 0) {
|
|
irqBound = PinManager::allocatePin(config.interruptPin, false, PinOwner::UM_IMU);
|
|
if (!irqBound) { DEBUG_PRINTLN(F("MPU6050: IRQ pin already in use.")); return; }
|
|
pinMode(config.interruptPin, INPUT);
|
|
};
|
|
|
|
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
|
|
Wire.setClock(400000U); // 400kHz I2C clock. Comment this line if having compilation difficulties
|
|
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
|
|
Fastwire::setup(400, true);
|
|
#endif
|
|
|
|
// initialize device
|
|
DEBUG_PRINTLN(F("Initializing I2C devices..."));
|
|
mpu.initialize();
|
|
|
|
// verify connection
|
|
DEBUG_PRINTLN(F("Testing device connections..."));
|
|
DEBUG_PRINTLN(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));
|
|
|
|
// load and configure the DMP
|
|
DEBUG_PRINTLN(F("Initializing DMP..."));
|
|
auto devStatus = mpu.dmpInitialize();
|
|
|
|
// set offsets (from config)
|
|
mpu.setXGyroOffset(config.gyro_offset[0]);
|
|
mpu.setYGyroOffset(config.gyro_offset[1]);
|
|
mpu.setZGyroOffset(config.gyro_offset[2]);
|
|
mpu.setXAccelOffset(config.accel_offset[0]);
|
|
mpu.setYAccelOffset(config.accel_offset[1]);
|
|
mpu.setZAccelOffset(config.accel_offset[2]);
|
|
|
|
// set sample rate
|
|
mpu.setRate(16); // ~100Hz
|
|
|
|
// make sure it worked (returns 0 if so)
|
|
if (devStatus == 0) {
|
|
// turn on the DMP, now that it's ready
|
|
DEBUG_PRINTLN(F("Enabling DMP..."));
|
|
mpu.setDMPEnabled(true);
|
|
|
|
mpuInterrupt = true;
|
|
if (irqBound) {
|
|
// enable Arduino interrupt detection
|
|
DEBUG_PRINTLN(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
|
|
attachInterrupt(digitalPinToInterrupt(config.interruptPin), dmpDataReady, RISING);
|
|
}
|
|
|
|
// get expected DMP packet size for later comparison
|
|
packetSize = mpu.dmpGetFIFOPacketSize();
|
|
|
|
// set our DMP Ready flag so the main loop() function knows it's okay to use it
|
|
DEBUG_PRINTLN(F("DMP ready!"));
|
|
dmpReady = true;
|
|
} else {
|
|
// ERROR!
|
|
// 1 = initial memory load failed
|
|
// 2 = DMP configuration updates failed
|
|
// (if it's going to break, usually the code will be 1)
|
|
DEBUG_PRINT(F("DMP Initialization failed (code "));
|
|
DEBUG_PRINT(devStatus);
|
|
DEBUG_PRINTLN(")");
|
|
}
|
|
|
|
fifoCount = 0;
|
|
sample_count = 0;
|
|
}
|
|
|
|
/*
|
|
* connected() is called every time the WiFi is (re)connected
|
|
* Use it to initialize network interfaces
|
|
*/
|
|
void connected() {
|
|
//DEBUG_PRINTLN(F("Connected to WiFi!"));
|
|
}
|
|
|
|
|
|
/*
|
|
* loop() is called continuously. Here you can check for events, read sensors, etc.
|
|
*/
|
|
void loop() {
|
|
if (configDirty) setup();
|
|
|
|
// if programming failed, don't try to do anything
|
|
if (!config.enabled || !dmpReady || strip.isUpdating()) return;
|
|
|
|
// wait for MPU interrupt or extra packet(s) available
|
|
// mpuInterrupt is fixed on if interrupt pin is disabled
|
|
if (!mpuInterrupt && fifoCount < packetSize) return;
|
|
|
|
// reset interrupt flag and get INT_STATUS byte
|
|
auto mpuIntStatus = mpu.getIntStatus();
|
|
// Update current FIFO count
|
|
fifoCount = mpu.getFIFOCount();
|
|
|
|
// check for overflow (this should never happen unless our code is too inefficient)
|
|
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
|
|
// reset so we can continue cleanly
|
|
mpu.resetFIFO();
|
|
DEBUG_PRINTLN(F("MPU6050: FIFO overflow!"));
|
|
|
|
// otherwise, check for data ready
|
|
} else if (fifoCount >= packetSize) {
|
|
// clear local interrupt pending status, if not polling
|
|
mpuInterrupt = !irqBound;
|
|
|
|
// DEBUG_PRINT(F("MPU6050: Processing packet: "));
|
|
// DEBUG_PRINT(fifoCount);
|
|
// DEBUG_PRINTLN(F(" bytes in FIFO"));
|
|
|
|
// read a packet from FIFO
|
|
mpu.getFIFOBytes(fifoBuffer, packetSize);
|
|
|
|
// track FIFO count here in case there is > 1 packet available
|
|
// (this lets us immediately read more without waiting for an interrupt)
|
|
fifoCount -= packetSize;
|
|
|
|
//NOTE: some of these can be removed to save memory, processing time
|
|
// if the measurement isn't needed
|
|
mpu.dmpGetQuaternion(&qat, fifoBuffer);
|
|
mpu.dmpGetEuler(euler, &qat);
|
|
mpu.dmpGetGravity(&gravity, &qat);
|
|
mpu.dmpGetGyro(&gy, fifoBuffer);
|
|
mpu.dmpGetAccel(&aa, fifoBuffer);
|
|
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
|
|
mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &qat);
|
|
mpu.dmpGetYawPitchRoll(ypr, &qat, &gravity);
|
|
++sample_count;
|
|
}
|
|
}
|
|
|
|
void addToJsonInfo(JsonObject& root)
|
|
{
|
|
JsonObject user = root["u"];
|
|
if (user.isNull()) user = root.createNestedObject("u");
|
|
|
|
// Unfortunately the web UI doesn't know how to print sub-objects: you just see '[object Object]'
|
|
// For now, we just put everything in the root userdata object.
|
|
//auto imu_meas = user.createNestedObject("IMU");
|
|
auto& imu_meas = user;
|
|
|
|
// If an element is an array, the UI expects two elements in the form [value, unit]
|
|
// Since our /value/ is an array, wrap it, eg. [[a, b, c]]
|
|
JsonArray quat_json = imu_meas.createNestedArray("Quat").createNestedArray();
|
|
quat_json.add(qat.w);
|
|
quat_json.add(qat.x);
|
|
quat_json.add(qat.y);
|
|
quat_json.add(qat.z);
|
|
JsonArray euler_json = imu_meas.createNestedArray("Euler").createNestedArray();
|
|
euler_json.add(euler[0]);
|
|
euler_json.add(euler[1]);
|
|
euler_json.add(euler[2]);
|
|
JsonArray accel_json = imu_meas.createNestedArray("Accel").createNestedArray();
|
|
accel_json.add(aa.x);
|
|
accel_json.add(aa.y);
|
|
accel_json.add(aa.z);
|
|
JsonArray gyro_json = imu_meas.createNestedArray("Gyro").createNestedArray();
|
|
gyro_json.add(gy.x);
|
|
gyro_json.add(gy.y);
|
|
gyro_json.add(gy.z);
|
|
JsonArray world_json = imu_meas.createNestedArray("WorldAccel").createNestedArray();
|
|
world_json.add(aaWorld.x);
|
|
world_json.add(aaWorld.y);
|
|
world_json.add(aaWorld.z);
|
|
JsonArray real_json = imu_meas.createNestedArray("RealAccel").createNestedArray();
|
|
real_json.add(aaReal.x);
|
|
real_json.add(aaReal.y);
|
|
real_json.add(aaReal.z);
|
|
JsonArray grav_json = imu_meas.createNestedArray("Gravity").createNestedArray();
|
|
grav_json.add(gravity.x);
|
|
grav_json.add(gravity.y);
|
|
grav_json.add(gravity.z);
|
|
JsonArray orient_json = imu_meas.createNestedArray("Orientation").createNestedArray();
|
|
orient_json.add(ypr[0]);
|
|
orient_json.add(ypr[1]);
|
|
orient_json.add(ypr[2]);
|
|
}
|
|
|
|
|
|
/*
|
|
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
|
|
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
|
|
* I highly recommend checking out the basics of ArduinoJson serialization and deserialization in order to use custom settings!
|
|
*/
|
|
void addToConfig(JsonObject& root)
|
|
{
|
|
JsonObject top = root.createNestedObject(FPSTR(_name));
|
|
|
|
//save these vars persistently whenever settings are saved
|
|
top[FPSTR(_enabled)] = config.enabled;
|
|
top[FPSTR(_interrupt_pin)] = config.interruptPin;
|
|
top[FPSTR(_x_acc_bias)] = config.accel_offset[0];
|
|
top[FPSTR(_y_acc_bias)] = config.accel_offset[1];
|
|
top[FPSTR(_z_acc_bias)] = config.accel_offset[2];
|
|
top[FPSTR(_x_gyro_bias)] = config.gyro_offset[0];
|
|
top[FPSTR(_y_gyro_bias)] = config.gyro_offset[1];
|
|
top[FPSTR(_z_gyro_bias)] = config.gyro_offset[2];
|
|
}
|
|
|
|
/*
|
|
* readFromConfig() can be used to read back the custom settings you added with addToConfig().
|
|
* This is called by WLED when settings are loaded (currently this only happens immediately after boot, or after saving on the Usermod Settings page)
|
|
*
|
|
* readFromConfig() is called BEFORE setup(). This means you can use your persistent values in setup() (e.g. pin assignments, buffer sizes),
|
|
* but also that if you want to write persistent values to a dynamic buffer, you'd need to allocate it here instead of in setup.
|
|
* If you don't know what that is, don't fret. It most likely doesn't affect your use case :)
|
|
*
|
|
* Return true in case the config values returned from Usermod Settings were complete, or false if you'd like WLED to save your defaults to disk (so any missing values are editable in Usermod Settings)
|
|
*
|
|
* getJsonValue() returns false if the value is missing, or copies the value into the variable provided and returns true if the value is present
|
|
* The configComplete variable is true only if the "exampleUsermod" object and all values are present. If any values are missing, WLED will know to call addToConfig() to save them
|
|
*
|
|
* This function is guaranteed to be called on boot, but could also be called every time settings are updated
|
|
*/
|
|
bool readFromConfig(JsonObject& root)
|
|
{
|
|
// default settings values could be set here (or below using the 3-argument getJsonValue()) instead of in the class definition or constructor
|
|
// setting them inside readFromConfig() is slightly more robust, handling the rare but plausible use case of single value being missing after boot (e.g. if the cfg.json was manually edited and a value was removed)
|
|
auto old_cfg = config;
|
|
|
|
JsonObject top = root[FPSTR(_name)];
|
|
|
|
bool configComplete = top.isNull();
|
|
// Ensure default configuration is loaded
|
|
configComplete &= getJsonValue(top[FPSTR(_enabled)], config.enabled, true);
|
|
configComplete &= getJsonValue(top[FPSTR(_interrupt_pin)], config.interruptPin, -1);
|
|
configComplete &= getJsonValue(top[FPSTR(_x_acc_bias)], config.accel_offset[0], 0);
|
|
configComplete &= getJsonValue(top[FPSTR(_y_acc_bias)], config.accel_offset[1], 0);
|
|
configComplete &= getJsonValue(top[FPSTR(_z_acc_bias)], config.accel_offset[2], 0);
|
|
configComplete &= getJsonValue(top[FPSTR(_x_gyro_bias)], config.gyro_offset[0], 0);
|
|
configComplete &= getJsonValue(top[FPSTR(_y_gyro_bias)], config.gyro_offset[1], 0);
|
|
configComplete &= getJsonValue(top[FPSTR(_z_gyro_bias)], config.gyro_offset[2], 0);
|
|
|
|
DEBUG_PRINT(FPSTR(_name));
|
|
if (top.isNull()) {
|
|
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
|
|
} else if (!initDone()) {
|
|
DEBUG_PRINTLN(F(": config loaded."));
|
|
} else if (memcmp(&config, &old_cfg, sizeof(config)) == 0) {
|
|
DEBUG_PRINTLN(F(": config unchanged."));
|
|
} else {
|
|
DEBUG_PRINTLN(F(": config updated."));
|
|
// Previously loaded and config changed
|
|
if (irqBound && ((old_cfg.interruptPin != config.interruptPin) || !config.enabled)) {
|
|
detachInterrupt(old_cfg.interruptPin);
|
|
PinManager::deallocatePin(old_cfg.interruptPin, PinOwner::UM_IMU);
|
|
irqBound = false;
|
|
}
|
|
|
|
// Re-call setup on the next loop()
|
|
configDirty = true;
|
|
}
|
|
|
|
return configComplete;
|
|
}
|
|
|
|
bool getUMData(um_data_t **data)
|
|
{
|
|
if (!data || !config.enabled || !dmpReady) return false; // no pointer provided by caller or not enabled -> exit
|
|
*data = &um_data;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
|
|
*/
|
|
uint16_t getId()
|
|
{
|
|
return USERMOD_ID_IMU;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
const char MPU6050Driver::_name[] PROGMEM = "MPU6050_IMU";
|
|
const char MPU6050Driver::_enabled[] PROGMEM = "enabled";
|
|
const char MPU6050Driver::_interrupt_pin[] PROGMEM = "interrupt_pin";
|
|
const char MPU6050Driver::_x_acc_bias[] PROGMEM = "x_acc_bias";
|
|
const char MPU6050Driver::_y_acc_bias[] PROGMEM = "y_acc_bias";
|
|
const char MPU6050Driver::_z_acc_bias[] PROGMEM = "z_acc_bias";
|
|
const char MPU6050Driver::_x_gyro_bias[] PROGMEM = "x_gyro_bias";
|
|
const char MPU6050Driver::_y_gyro_bias[] PROGMEM = "y_gyro_bias";
|
|
const char MPU6050Driver::_z_gyro_bias[] PROGMEM = "z_gyro_bias";
|