mirror of
https://github.com/wled/WLED.git
synced 2025-07-12 05:16:31 +00:00
2055 lines
87 KiB
C++
Executable File
2055 lines
87 KiB
C++
Executable File
/*
|
||
WS2812FX_fcn.cpp contains all utility functions
|
||
Harm Aldick - 2016
|
||
www.aldick.org
|
||
|
||
Copyright (c) 2016 Harm Aldick
|
||
Licensed under the EUPL v. 1.2 or later
|
||
Adapted from code originally licensed under the MIT license
|
||
|
||
Modified heavily for WLED
|
||
*/
|
||
#include "wled.h"
|
||
#include "FXparticleSystem.h" // TODO: better define the required function (mem service) in FX.h?
|
||
#include "palettes.h"
|
||
|
||
/*
|
||
Custom per-LED mapping has moved!
|
||
|
||
Create a file "ledmap.json" using the edit page.
|
||
|
||
this is just an example (30 LEDs). It will first set all even, then all uneven LEDs.
|
||
{"map":[
|
||
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
|
||
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]}
|
||
|
||
another example. Switches direction every 5 LEDs.
|
||
{"map":[
|
||
0, 1, 2, 3, 4, 9, 8, 7, 6, 5, 10, 11, 12, 13, 14,
|
||
19, 18, 17, 16, 15, 20, 21, 22, 23, 24, 29, 28, 27, 26, 25]}
|
||
*/
|
||
|
||
#if MAX_NUM_SEGMENTS < WLED_MAX_BUSSES
|
||
#error "Max segments must be at least max number of busses!"
|
||
#endif
|
||
|
||
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
// Segment class implementation
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
unsigned Segment::_usedSegmentData = 0U; // amount of RAM all segments use for their data[]
|
||
uint16_t Segment::maxWidth = DEFAULT_LED_COUNT;
|
||
uint16_t Segment::maxHeight = 1;
|
||
unsigned Segment::_vLength = 0;
|
||
unsigned Segment::_vWidth = 0;
|
||
unsigned Segment::_vHeight = 0;
|
||
uint32_t Segment::_currentColors[NUM_COLORS] = {0,0,0};
|
||
CRGBPalette16 Segment::_currentPalette = CRGBPalette16(CRGB::Black);
|
||
CRGBPalette16 Segment::_randomPalette = generateRandomPalette(); // was CRGBPalette16(DEFAULT_COLOR);
|
||
CRGBPalette16 Segment::_newRandomPalette = generateRandomPalette(); // was CRGBPalette16(DEFAULT_COLOR);
|
||
uint16_t Segment::_lastPaletteChange = 0; // in seconds; perhaps it should be per segment
|
||
uint16_t Segment::_nextPaletteBlend = 0; // in millis
|
||
|
||
bool Segment::_modeBlend = false;
|
||
uint16_t Segment::_clipStart = 0;
|
||
uint16_t Segment::_clipStop = 0;
|
||
uint8_t Segment::_clipStartY = 0;
|
||
uint8_t Segment::_clipStopY = 1;
|
||
|
||
// copy constructor
|
||
Segment::Segment(const Segment &orig) {
|
||
//DEBUG_PRINTF_P(PSTR("-- Copy segment constructor: %p -> %p\n"), &orig, this);
|
||
memcpy((void*)this, (void*)&orig, sizeof(Segment));
|
||
_t = nullptr; // copied segment cannot be in transition
|
||
name = nullptr;
|
||
data = nullptr;
|
||
_dataLen = 0;
|
||
pixels = nullptr;
|
||
if (!stop) return; // nothing to do if segment is inactive/invalid
|
||
if (orig.name) { name = static_cast<char*>(d_malloc(strlen(orig.name)+1)); if (name) strcpy(name, orig.name); }
|
||
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
|
||
if (orig.pixels) {
|
||
pixels = static_cast<uint32_t*>(d_malloc(sizeof(uint32_t) * orig.length()));
|
||
if (pixels) memcpy(pixels, orig.pixels, sizeof(uint32_t) * orig.length());
|
||
else {
|
||
DEBUG_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
|
||
errorFlag = ERR_NORAM_PX;
|
||
stop = 0; // mark segment as inactive/invalid
|
||
}
|
||
} else stop = 0; // mark segment as inactive/invalid
|
||
}
|
||
|
||
// move constructor
|
||
Segment::Segment(Segment &&orig) noexcept {
|
||
//DEBUG_PRINTF_P(PSTR("-- Move segment constructor: %p -> %p\n"), &orig, this);
|
||
memcpy((void*)this, (void*)&orig, sizeof(Segment));
|
||
orig._t = nullptr; // old segment cannot be in transition any more
|
||
orig.name = nullptr;
|
||
orig.data = nullptr;
|
||
orig._dataLen = 0;
|
||
orig.pixels = nullptr;
|
||
}
|
||
|
||
// copy assignment
|
||
Segment& Segment::operator= (const Segment &orig) {
|
||
//DEBUG_PRINTF_P(PSTR("-- Copying segment: %p -> %p\n"), &orig, this);
|
||
if (this != &orig) {
|
||
// clean destination
|
||
if (name) { d_free(name); name = nullptr; }
|
||
if (_t) stopTransition(); // also erases _t
|
||
deallocateData();
|
||
d_free(pixels);
|
||
// copy source
|
||
memcpy((void*)this, (void*)&orig, sizeof(Segment));
|
||
// erase pointers to allocated data
|
||
data = nullptr;
|
||
_dataLen = 0;
|
||
pixels = nullptr;
|
||
if (!stop) return *this; // nothing to do if segment is inactive/invalid
|
||
// copy source data
|
||
if (orig.name) { name = static_cast<char*>(d_malloc(strlen(orig.name)+1)); if (name) strcpy(name, orig.name); }
|
||
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
|
||
if (orig.pixels) {
|
||
pixels = static_cast<uint32_t*>(d_malloc(sizeof(uint32_t) * orig.length()));
|
||
if (pixels) memcpy(pixels, orig.pixels, sizeof(uint32_t) * orig.length());
|
||
else {
|
||
DEBUG_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
|
||
errorFlag = ERR_NORAM_PX;
|
||
stop = 0; // mark segment as inactive/invalid
|
||
}
|
||
} else stop = 0; // mark segment as inactive/invalid
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
// move assignment
|
||
Segment& Segment::operator= (Segment &&orig) noexcept {
|
||
//DEBUG_PRINTF_P(PSTR("-- Moving segment: %p -> %p\n"), &orig, this);
|
||
if (this != &orig) {
|
||
if (name) { d_free(name); name = nullptr; } // free old name
|
||
if (_t) stopTransition(); // also erases _t
|
||
deallocateData(); // free old runtime data
|
||
d_free(pixels); // free old pixel buffer
|
||
// move source data
|
||
memcpy((void*)this, (void*)&orig, sizeof(Segment));
|
||
orig.name = nullptr;
|
||
orig.data = nullptr;
|
||
orig._dataLen = 0;
|
||
orig.pixels = nullptr;
|
||
orig._t = nullptr; // old segment cannot be in transition
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
// allocates effect data buffer on heap and initialises (erases) it
|
||
bool Segment::allocateData(size_t len) {
|
||
if (len == 0) return false; // nothing to do
|
||
if (data && _dataLen >= len) { // already allocated enough (reduce fragmentation)
|
||
if (call == 0) {
|
||
//DEBUG_PRINTF_P(PSTR("-- Clearing data (%d): %p\n"), len, this);
|
||
memset(data, 0, len); // erase buffer if called during effect initialisation
|
||
}
|
||
return true;
|
||
}
|
||
//DEBUG_PRINTF_P(PSTR("-- Allocating data (%d): %p\n"), len, this);
|
||
if (Segment::getUsedSegmentData() + len - _dataLen > MAX_SEGMENT_DATA) {
|
||
// not enough memory
|
||
DEBUG_PRINTF_P(PSTR("!!! Not enough RAM: %d/%d !!!\n"), len, Segment::getUsedSegmentData());
|
||
errorFlag = ERR_NORAM;
|
||
return false;
|
||
}
|
||
// prefer DRAM over SPI RAM on ESP32 since it is slow
|
||
if (data) data = (byte*)d_realloc(data, len);
|
||
else data = (byte*)d_malloc(len);
|
||
if (data) {
|
||
memset(data, 0, len); // erase buffer
|
||
Segment::addUsedSegmentData(len - _dataLen);
|
||
_dataLen = len;
|
||
//DEBUG_PRINTF_P(PSTR("--- Allocated data (%p): %d/%d -> %p\n"), this, len, Segment::getUsedSegmentData(), data);
|
||
return true;
|
||
}
|
||
// allocation failed
|
||
DEBUG_PRINTLN(F("!!! Allocation failed. !!!"));
|
||
Segment::addUsedSegmentData(-_dataLen); // subtract original buffer size
|
||
errorFlag = ERR_NORAM;
|
||
return false;
|
||
}
|
||
|
||
void Segment::deallocateData() {
|
||
if (!data) { _dataLen = 0; return; }
|
||
if ((Segment::getUsedSegmentData() > 0) && (_dataLen > 0)) { // check that we don't have a dangling / inconsistent data pointer
|
||
//DEBUG_PRINTF_P(PSTR("--- Released data (%p): %d/%d -> %p\n"), this, _dataLen, Segment::getUsedSegmentData(), data);
|
||
d_free(data);
|
||
} else {
|
||
DEBUG_PRINTF_P(PSTR("---- Released data (%p): inconsistent UsedSegmentData (%d/%d), cowardly refusing to free nothing.\n"), this, _dataLen, Segment::getUsedSegmentData());
|
||
}
|
||
data = nullptr;
|
||
Segment::addUsedSegmentData(_dataLen <= Segment::getUsedSegmentData() ? -_dataLen : -Segment::getUsedSegmentData());
|
||
_dataLen = 0;
|
||
}
|
||
|
||
/**
|
||
* If reset of this segment was requested, clears runtime
|
||
* settings of this segment.
|
||
* Must not be called while an effect mode function is running
|
||
* because it could access the data buffer and this method
|
||
* may free that data buffer.
|
||
*/
|
||
void Segment::resetIfRequired() {
|
||
if (!reset || !isActive()) return;
|
||
//DEBUG_PRINTF_P(PSTR("-- Segment reset: %p\n"), this);
|
||
if (data && _dataLen > 0) memset(data, 0, _dataLen); // prevent heap fragmentation (just erase buffer instead of deallocateData())
|
||
if (pixels) for (size_t i = 0; i < length(); i++) pixels[i] = BLACK; // clear pixel buffer
|
||
next_time = 0; step = 0; call = 0; aux0 = 0; aux1 = 0;
|
||
reset = false;
|
||
#ifdef WLED_ENABLE_GIF
|
||
endImagePlayback(this);
|
||
#endif
|
||
}
|
||
|
||
CRGBPalette16 &Segment::loadPalette(CRGBPalette16 &targetPalette, uint8_t pal) {
|
||
if (pal < 245 && pal > GRADIENT_PALETTE_COUNT+13) pal = 0;
|
||
if (pal > 245 && (customPalettes.size() == 0 || 255U-pal > customPalettes.size()-1)) pal = 0;
|
||
//default palette. Differs depending on effect
|
||
if (pal == 0) pal = _default_palette; // _default_palette is set in setMode()
|
||
switch (pal) {
|
||
case 0: //default palette. Exceptions for specific effects above
|
||
targetPalette = PartyColors_p;
|
||
break;
|
||
case 1: //randomly generated palette
|
||
targetPalette = _randomPalette; //random palette is generated at intervals in handleRandomPalette()
|
||
break;
|
||
case 2: {//primary color only
|
||
CRGB prim = colors[0];
|
||
targetPalette = CRGBPalette16(prim);
|
||
break;}
|
||
case 3: {//primary + secondary
|
||
CRGB prim = colors[0];
|
||
CRGB sec = colors[1];
|
||
targetPalette = CRGBPalette16(prim,prim,sec,sec);
|
||
break;}
|
||
case 4: {//primary + secondary + tertiary
|
||
CRGB prim = colors[0];
|
||
CRGB sec = colors[1];
|
||
CRGB ter = colors[2];
|
||
targetPalette = CRGBPalette16(ter,sec,prim);
|
||
break;}
|
||
case 5: {//primary + secondary (+tertiary if not off), more distinct
|
||
CRGB prim = colors[0];
|
||
CRGB sec = colors[1];
|
||
if (colors[2]) {
|
||
CRGB ter = colors[2];
|
||
targetPalette = CRGBPalette16(prim,prim,prim,prim,prim,sec,sec,sec,sec,sec,ter,ter,ter,ter,ter,prim);
|
||
} else {
|
||
targetPalette = CRGBPalette16(prim,prim,prim,prim,prim,prim,prim,prim,sec,sec,sec,sec,sec,sec,sec,sec);
|
||
}
|
||
break;}
|
||
default: //progmem palettes
|
||
if (pal>245) {
|
||
targetPalette = customPalettes[255-pal]; // we checked bounds above
|
||
} else if (pal < 13) { // palette 6 - 12, fastled palettes
|
||
targetPalette = *fastledPalettes[pal-6];
|
||
} else {
|
||
byte tcp[72];
|
||
memcpy_P(tcp, (byte*)pgm_read_dword(&(gGradientPalettes[pal-13])), 72);
|
||
targetPalette.loadDynamicGradientPalette(tcp);
|
||
}
|
||
break;
|
||
}
|
||
return targetPalette;
|
||
}
|
||
|
||
// starting a transition has to occur before change so we get current values 1st
|
||
void Segment::startTransition(uint16_t dur, bool segmentCopy) {
|
||
if (dur == 0 || !isActive()) {
|
||
if (isInTransition()) _t->_dur = 0;
|
||
return;
|
||
}
|
||
if (isInTransition()) {
|
||
if (segmentCopy && !_t->_oldSegment) {
|
||
// already in transition but segment copy requested and not yet created
|
||
_t->_oldSegment = new(std::nothrow) Segment(*this); // store/copy current segment settings
|
||
_t->_start = millis(); // restart countdown
|
||
_t->_dur = dur;
|
||
if (_t->_oldSegment) {
|
||
_t->_oldSegment->palette = _t->_palette; // restore original palette and colors (from start of transition)
|
||
for (unsigned i = 0; i < NUM_COLORS; i++) _t->_oldSegment->colors[i] = _t->_colors[i];
|
||
}
|
||
DEBUG_PRINTF_P(PSTR("-- Updated transition with segment copy: S=%p T(%p) O[%p] OP[%p]\n"), this, _t, _t->_oldSegment, _t->_oldSegment->pixels);
|
||
}
|
||
return;
|
||
}
|
||
|
||
// no previous transition running, start by allocating memory for segment copy
|
||
_t = new(std::nothrow) Transition(dur);
|
||
if (_t) {
|
||
_t->_bri = on ? opacity : 0;
|
||
_t->_cct = cct;
|
||
_t->_palette = palette;
|
||
#ifndef WLED_SAVE_RAM
|
||
loadPalette(_t->_palT, palette);
|
||
#endif
|
||
for (int i=0; i<NUM_COLORS; i++) _t->_colors[i] = colors[i];
|
||
if (segmentCopy) _t->_oldSegment = new(std::nothrow) Segment(*this); // store/copy current segment settings
|
||
#ifdef WLED_DEBUG
|
||
if (_t->_oldSegment) {
|
||
DEBUG_PRINTF_P(PSTR("-- Started transition: S=%p T(%p) O[%p] OP[%p]\n"), this, _t, _t->_oldSegment, _t->_oldSegment->pixels);
|
||
} else {
|
||
DEBUG_PRINTF_P(PSTR("-- Started transition without old segment: S=%p T(%p)\n"), this, _t);
|
||
}
|
||
#endif
|
||
};
|
||
}
|
||
|
||
void Segment::stopTransition() {
|
||
DEBUG_PRINTF_P(PSTR("-- Stopping transition: S=%p T(%p) O[%p]\n"), this, _t, _t->_oldSegment);
|
||
delete _t;
|
||
_t = nullptr;
|
||
}
|
||
|
||
// sets transition progress variable (0-65535) based on time passed since transition start
|
||
void Segment::updateTransitionProgress() const {
|
||
if (isInTransition()) {
|
||
_t->_progress = 0xFFFF;
|
||
unsigned diff = millis() - _t->_start;
|
||
if (_t->_dur > 0 && diff < _t->_dur) _t->_progress = diff * 0xFFFFU / _t->_dur;
|
||
}
|
||
}
|
||
|
||
// will return segment's CCT during a transition
|
||
// isPreviousMode() is actually not implemented for CCT in strip.service() as WLED does not support per-pixel CCT
|
||
uint8_t Segment::currentCCT() const {
|
||
unsigned prog = progress();
|
||
if (prog < 0xFFFFU) {
|
||
if (blendingStyle == BLEND_STYLE_FADE) return (cct * prog + (_t->_cct * (0xFFFFU - prog))) / 0xFFFFU;
|
||
//else return Segment::isPreviousMode() ? _t->_cct : cct;
|
||
}
|
||
return cct;
|
||
}
|
||
|
||
// will return segment's opacity during a transition (blending it with old in case of FADE transition)
|
||
uint8_t Segment::currentBri() const {
|
||
unsigned prog = progress();
|
||
unsigned curBri = on ? opacity : 0;
|
||
if (prog < 0xFFFFU) {
|
||
// this will blend opacity in new mode if style is FADE (single effect call)
|
||
if (blendingStyle == BLEND_STYLE_FADE) curBri = (prog * curBri + _t->_bri * (0xFFFFU - prog)) / 0xFFFFU;
|
||
else curBri = Segment::isPreviousMode() ? _t->_bri : curBri;
|
||
}
|
||
return curBri;
|
||
}
|
||
|
||
// pre-calculate drawing parameters for faster access (based on the idea from @softhack007 from MM fork)
|
||
// and blends colors and palettes if necessary
|
||
// prog is the progress of the transition (0-65535) and is passed to the function as it may be called in the context of old segment
|
||
// which does not have transition structure
|
||
void Segment::beginDraw(uint16_t prog) {
|
||
setDrawDimensions();
|
||
// load colors into _currentColors
|
||
for (unsigned i = 0; i < NUM_COLORS; i++) _currentColors[i] = colors[i];
|
||
// load palette into _currentPalette
|
||
loadPalette(Segment::_currentPalette, palette);
|
||
if (isInTransition() && prog < 0xFFFFU && blendingStyle == BLEND_STYLE_FADE) {
|
||
// blend colors
|
||
for (unsigned i = 0; i < NUM_COLORS; i++) _currentColors[i] = color_blend16(_t->_colors[i], colors[i], prog);
|
||
// blend palettes
|
||
// there are about 255 blend passes of 48 "blends" to completely blend two palettes (in _dur time)
|
||
// minimum blend time is 100ms maximum is 65535ms
|
||
#ifndef WLED_SAVE_RAM
|
||
unsigned noOfBlends = ((255U * prog) / 0xFFFFU) - _t->_prevPaletteBlends;
|
||
for (unsigned i = 0; i < noOfBlends; i++, _t->_prevPaletteBlends++) nblendPaletteTowardPalette(_t->_palT, Segment::_currentPalette, 48);
|
||
Segment::_currentPalette = _t->_palT; // copy transitioning/temporary palette
|
||
#else
|
||
unsigned noOfBlends = ((255U * prog) / 0xFFFFU);
|
||
CRGBPalette16 tmpPalette;
|
||
loadPalette(tmpPalette, _t->_palette);
|
||
for (unsigned i = 0; i < noOfBlends; i++) nblendPaletteTowardPalette(tmpPalette, Segment::_currentPalette, 48);
|
||
Segment::_currentPalette = tmpPalette; // copy transitioning/temporary palette
|
||
#endif
|
||
}
|
||
}
|
||
|
||
// relies on WS2812FX::service() to call it for each frame
|
||
void Segment::handleRandomPalette() {
|
||
unsigned long now = millis();
|
||
uint16_t now_s = now / 1000; // we only need seconds (and @dedehai hated shift >> 10)
|
||
now = (now_s)*1000 + (now % 1000); // ignore days (now is limited to 18 hours as now_s can only store 65535s ~ 18h 12min)
|
||
if (now_s < Segment::_lastPaletteChange) Segment::_lastPaletteChange = 0; // handle overflow (will cause 2*randomPaletteChangeTime glitch at most)
|
||
// is it time to generate a new palette?
|
||
if (now_s > Segment::_lastPaletteChange + randomPaletteChangeTime) {
|
||
Segment::_newRandomPalette = useHarmonicRandomPalette ? generateHarmonicRandomPalette(Segment::_randomPalette) : generateRandomPalette();
|
||
Segment::_lastPaletteChange = now_s;
|
||
Segment::_nextPaletteBlend = now; // starts blending immediately
|
||
}
|
||
// there are about 255 blend passes of 48 "blends" to completely blend two palettes (in strip.getTransition() time)
|
||
// if randomPaletteChangeTime is shorter than strip.getTransition() palette will never fully blend
|
||
unsigned frameTime = strip.getFrameTime(); // in ms [8-1000]
|
||
unsigned transitionTime = strip.getTransition(); // in ms [100-65535]
|
||
if ((uint16_t)now < Segment::_nextPaletteBlend || now > ((Segment::_lastPaletteChange*1000) + transitionTime + 2*frameTime)) return; // not yet time or past transition time, no need to blend
|
||
unsigned transitionFrames = frameTime > transitionTime ? 1 : transitionTime / frameTime; // i.e. 700ms/23ms = 30 or 20000ms/8ms = 2500 or 100ms/1000ms = 0 -> 1
|
||
unsigned noOfBlends = transitionFrames > 255 ? 1 : (255 + (transitionFrames>>1)) / transitionFrames; // we do some rounding here
|
||
for (unsigned i = 0; i < noOfBlends; i++) nblendPaletteTowardPalette(Segment::_randomPalette, Segment::_newRandomPalette, 48);
|
||
Segment::_nextPaletteBlend = now + ((transitionFrames >> 8) * frameTime); // postpone next blend if necessary
|
||
}
|
||
|
||
// sets Segment geometry (length or width/height and grouping, spacing and offset as well as 2D mapping)
|
||
// strip must be suspended (strip.suspend()) before calling this function
|
||
// this function may call fill() to clear pixels if spacing or mapping changed (which requires setting _vWidth, _vHeight, _vLength or beginDraw())
|
||
void Segment::setGeometry(uint16_t i1, uint16_t i2, uint8_t grp, uint8_t spc, uint16_t ofs, uint16_t i1Y, uint16_t i2Y, uint8_t m12) {
|
||
// return if neither bounds nor grouping have changed
|
||
bool boundsUnchanged = (start == i1 && stop == i2);
|
||
#ifndef WLED_DISABLE_2D
|
||
boundsUnchanged &= (startY == i1Y && stopY == i2Y); // 2D
|
||
#endif
|
||
boundsUnchanged &= (grouping == grp && spacing == spc); // changing grouping and/or spacing changes virtual segment length (painting dimensions)
|
||
|
||
if (stop && (spc > 0 || m12 != map1D2D)) clear();
|
||
if (grp) { // prevent assignment of 0
|
||
grouping = grp;
|
||
spacing = spc;
|
||
} else {
|
||
grouping = 1;
|
||
spacing = 0;
|
||
}
|
||
if (ofs < UINT16_MAX) offset = ofs;
|
||
map1D2D = constrain(m12, 0, 7);
|
||
|
||
if (boundsUnchanged) return;
|
||
|
||
unsigned oldLength = length();
|
||
|
||
DEBUG_PRINTF_P(PSTR("Segment geometry: %d,%d -> %d,%d [%d,%d]\n"), (int)i1, (int)i2, (int)i1Y, (int)i2Y, (int)grp, (int)spc);
|
||
markForReset();
|
||
startTransition(strip.getTransition()); // start transition prior to change (if segment is deactivated (start>stop) no transition will happen)
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
|
||
// apply change immediately
|
||
if (i2 <= i1) { //disable segment
|
||
d_free(pixels);
|
||
pixels = nullptr;
|
||
stop = 0;
|
||
return;
|
||
}
|
||
if (i1 < Segment::maxWidth || (i1 >= Segment::maxWidth*Segment::maxHeight && i1 < strip.getLengthTotal())) start = i1; // Segment::maxWidth equals strip.getLengthTotal() for 1D
|
||
stop = i2 > Segment::maxWidth*Segment::maxHeight ? MIN(i2,strip.getLengthTotal()) : constrain(i2, 1, Segment::maxWidth);
|
||
startY = 0;
|
||
stopY = 1;
|
||
#ifndef WLED_DISABLE_2D
|
||
if (Segment::maxHeight>1) { // 2D
|
||
if (i1Y < Segment::maxHeight) startY = i1Y;
|
||
stopY = constrain(i2Y, 1, Segment::maxHeight);
|
||
}
|
||
#endif
|
||
// safety check
|
||
if (start >= stop || startY >= stopY) {
|
||
d_free(pixels);
|
||
pixels = nullptr;
|
||
stop = 0;
|
||
return;
|
||
}
|
||
// re-allocate FX render buffer
|
||
if (length() != oldLength) {
|
||
if (pixels) pixels = static_cast<uint32_t*>(d_realloc(pixels, sizeof(uint32_t) * length()));
|
||
else pixels = static_cast<uint32_t*>(d_malloc(sizeof(uint32_t) * length()));
|
||
if (!pixels) {
|
||
DEBUG_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
|
||
errorFlag = ERR_NORAM_PX;
|
||
stop = 0;
|
||
return;
|
||
}
|
||
}
|
||
refreshLightCapabilities();
|
||
}
|
||
|
||
|
||
Segment &Segment::setColor(uint8_t slot, uint32_t c) {
|
||
if (slot >= NUM_COLORS || c == colors[slot]) return *this;
|
||
if (!_isRGB && !_hasW) {
|
||
if (slot == 0 && c == BLACK) return *this; // on/off segment cannot have primary color black
|
||
if (slot == 1 && c != BLACK) return *this; // on/off segment cannot have secondary color non black
|
||
}
|
||
//DEBUG_PRINTF_P(PSTR("- Starting color transition: %d [0x%X]\n"), slot, c);
|
||
startTransition(strip.getTransition(), blendingStyle != BLEND_STYLE_FADE); // start transition prior to change
|
||
colors[slot] = c;
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
return *this;
|
||
}
|
||
|
||
Segment &Segment::setCCT(uint16_t k) {
|
||
if (k > 255) { //kelvin value, convert to 0-255
|
||
if (k < 1900) k = 1900;
|
||
if (k > 10091) k = 10091;
|
||
k = (k - 1900) >> 5;
|
||
}
|
||
if (cct != k) {
|
||
//DEBUG_PRINTF_P(PSTR("- Starting CCT transition: %d\n"), k);
|
||
startTransition(strip.getTransition(), false); // start transition prior to change (no need to copy segment)
|
||
cct = k;
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Segment &Segment::setOpacity(uint8_t o) {
|
||
if (opacity != o) {
|
||
//DEBUG_PRINTF_P(PSTR("- Starting opacity transition: %d\n"), o);
|
||
startTransition(strip.getTransition(), blendingStyle != BLEND_STYLE_FADE); // start transition prior to change
|
||
opacity = o;
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Segment &Segment::setOption(uint8_t n, bool val) {
|
||
bool prev = (options >> n) & 0x01;
|
||
if (val == prev) return *this;
|
||
//DEBUG_PRINTF_P(PSTR("- Starting option transition: %d\n"), n);
|
||
if (n == SEG_OPTION_ON) startTransition(strip.getTransition(), blendingStyle != BLEND_STYLE_FADE); // start transition prior to change
|
||
if (val) options |= 0x01 << n;
|
||
else options &= ~(0x01 << n);
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
return *this;
|
||
}
|
||
|
||
Segment &Segment::setMode(uint8_t fx, bool loadDefaults) {
|
||
// skip reserved
|
||
while (fx < strip.getModeCount() && strncmp_P("RSVD", strip.getModeData(fx), 4) == 0) fx++;
|
||
if (fx >= strip.getModeCount()) fx = 0; // set solid mode
|
||
// if we have a valid mode & is not reserved
|
||
if (fx != mode) {
|
||
startTransition(strip.getTransition(), true); // set effect transitions (must create segment copy)
|
||
mode = fx;
|
||
int sOpt;
|
||
// load default values from effect string
|
||
if (loadDefaults) {
|
||
sOpt = extractModeDefaults(fx, "sx"); speed = (sOpt >= 0) ? sOpt : DEFAULT_SPEED;
|
||
sOpt = extractModeDefaults(fx, "ix"); intensity = (sOpt >= 0) ? sOpt : DEFAULT_INTENSITY;
|
||
sOpt = extractModeDefaults(fx, "c1"); custom1 = (sOpt >= 0) ? sOpt : DEFAULT_C1;
|
||
sOpt = extractModeDefaults(fx, "c2"); custom2 = (sOpt >= 0) ? sOpt : DEFAULT_C2;
|
||
sOpt = extractModeDefaults(fx, "c3"); custom3 = (sOpt >= 0) ? sOpt : DEFAULT_C3;
|
||
sOpt = extractModeDefaults(fx, "o1"); check1 = (sOpt >= 0) ? (bool)sOpt : false;
|
||
sOpt = extractModeDefaults(fx, "o2"); check2 = (sOpt >= 0) ? (bool)sOpt : false;
|
||
sOpt = extractModeDefaults(fx, "o3"); check3 = (sOpt >= 0) ? (bool)sOpt : false;
|
||
sOpt = extractModeDefaults(fx, "m12"); if (sOpt >= 0) map1D2D = constrain(sOpt, 0, 7); else map1D2D = M12_Pixels; // reset mapping if not defined (2D FX may not work)
|
||
sOpt = extractModeDefaults(fx, "si"); if (sOpt >= 0) soundSim = constrain(sOpt, 0, 3);
|
||
sOpt = extractModeDefaults(fx, "rev"); if (sOpt >= 0) reverse = (bool)sOpt;
|
||
sOpt = extractModeDefaults(fx, "mi"); if (sOpt >= 0) mirror = (bool)sOpt; // NOTE: setting this option is a risky business
|
||
sOpt = extractModeDefaults(fx, "rY"); if (sOpt >= 0) reverse_y = (bool)sOpt;
|
||
sOpt = extractModeDefaults(fx, "mY"); if (sOpt >= 0) mirror_y = (bool)sOpt; // NOTE: setting this option is a risky business
|
||
}
|
||
sOpt = extractModeDefaults(fx, "pal"); // always extract 'pal' to set _default_palette
|
||
if (sOpt >= 0 && loadDefaults) setPalette(sOpt);
|
||
if (sOpt <= 0) sOpt = 6; // partycolors if zero or not set
|
||
_default_palette = sOpt; // _deault_palette is loaded into pal0 in loadPalette() (if selected)
|
||
markForReset();
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Segment &Segment::setPalette(uint8_t pal) {
|
||
if (pal < 245 && pal > GRADIENT_PALETTE_COUNT+13) pal = 0; // built in palettes
|
||
if (pal > 245 && (customPalettes.size() == 0 || 255U-pal > customPalettes.size()-1)) pal = 0; // custom palettes
|
||
if (pal != palette) {
|
||
//DEBUG_PRINTF_P(PSTR("- Starting palette transition: %d\n"), pal);
|
||
startTransition(strip.getTransition(), blendingStyle != BLEND_STYLE_FADE); // start transition prior to change (no need to copy segment)
|
||
palette = pal;
|
||
stateChanged = true; // send UDP/WS broadcast
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Segment &Segment::setName(const char *newName) {
|
||
if (newName) {
|
||
const int newLen = min(strlen(newName), (size_t)WLED_MAX_SEGNAME_LEN);
|
||
if (newLen) {
|
||
if (name) name = static_cast<char*>(d_realloc(name, newLen+1));
|
||
else name = static_cast<char*>(d_malloc(newLen+1));
|
||
if (name) strlcpy(name, newName, newLen+1);
|
||
name[newLen] = 0;
|
||
return *this;
|
||
}
|
||
}
|
||
return clearName();
|
||
}
|
||
|
||
// 2D matrix
|
||
unsigned Segment::virtualWidth() const {
|
||
unsigned groupLen = groupLength();
|
||
unsigned vWidth = ((transpose ? height() : width()) + groupLen - 1) / groupLen;
|
||
if (mirror) vWidth = (vWidth + 1) /2; // divide by 2 if mirror, leave at least a single LED
|
||
return vWidth;
|
||
}
|
||
|
||
unsigned Segment::virtualHeight() const {
|
||
unsigned groupLen = groupLength();
|
||
unsigned vHeight = ((transpose ? width() : height()) + groupLen - 1) / groupLen;
|
||
if (mirror_y) vHeight = (vHeight + 1) /2; // divide by 2 if mirror, leave at least a single LED
|
||
return vHeight;
|
||
}
|
||
|
||
// Constants for mapping mode "Pinwheel"
|
||
#ifndef WLED_DISABLE_2D
|
||
constexpr int Fixed_Scale = 16384; // fixpoint scaling factor (14bit for fraction)
|
||
// Pinwheel helper function: matrix dimensions to number of rays
|
||
static int getPinwheelLength(int vW, int vH) {
|
||
// Returns multiple of 8, prevents over drawing
|
||
return (max(vW, vH) + 15) & ~7;
|
||
}
|
||
static void setPinwheelParameters(int i, int vW, int vH, int& startx, int& starty, int* cosVal, int* sinVal, bool getPixel = false) {
|
||
int steps = getPinwheelLength(vW, vH);
|
||
int baseAngle = ((0xFFFF + steps / 2) / steps); // 360° / steps, in 16 bit scale round to nearest integer
|
||
int rotate = 0;
|
||
if (getPixel) rotate = baseAngle / 2; // rotate by half a ray width when reading pixel color
|
||
for (int k = 0; k < 2; k++) // angular steps for two consecutive rays
|
||
{
|
||
int angle = (i + k) * baseAngle + rotate;
|
||
cosVal[k] = (cos16_t(angle) * Fixed_Scale) >> 15; // step per pixel in fixed point, cos16 output is -0x7FFF to +0x7FFF
|
||
sinVal[k] = (sin16_t(angle) * Fixed_Scale) >> 15; // using explicit bit shifts as dividing negative numbers is not equivalent (rounding error is acceptable)
|
||
}
|
||
startx = (vW * Fixed_Scale) / 2; // + cosVal[0] / 4; // starting position = center + 1/4 pixel (in fixed point)
|
||
starty = (vH * Fixed_Scale) / 2; // + sinVal[0] / 4;
|
||
}
|
||
#endif
|
||
|
||
// 1D strip
|
||
uint16_t Segment::virtualLength() const {
|
||
#ifndef WLED_DISABLE_2D
|
||
if (is2D()) {
|
||
unsigned vW = virtualWidth();
|
||
unsigned vH = virtualHeight();
|
||
unsigned vLen;
|
||
switch (map1D2D) {
|
||
case M12_pBar:
|
||
vLen = vH;
|
||
break;
|
||
case M12_pCorner:
|
||
vLen = max(vW,vH); // get the longest dimension
|
||
break;
|
||
case M12_pArc:
|
||
vLen = sqrt32_bw(vH*vH + vW*vW); // use diagonal
|
||
break;
|
||
case M12_sPinwheel:
|
||
vLen = getPinwheelLength(vW, vH);
|
||
break;
|
||
default:
|
||
vLen = vW * vH; // use all pixels from segment
|
||
break;
|
||
}
|
||
return vLen;
|
||
}
|
||
#endif
|
||
unsigned groupLen = groupLength(); // is always >= 1
|
||
unsigned vLength = (length() + groupLen - 1) / groupLen;
|
||
if (mirror) vLength = (vLength + 1) /2; // divide by 2 if mirror, leave at least a single LED
|
||
return vLength;
|
||
}
|
||
|
||
// pixel is clipped if it falls outside clipping range
|
||
// if clipping start > stop the clipping range is inverted
|
||
bool IRAM_ATTR_YN Segment::isPixelClipped(int i) const {
|
||
if (blendingStyle != BLEND_STYLE_FADE && isInTransition() && _clipStart != _clipStop) {
|
||
bool invert = _clipStart > _clipStop; // ineverted start & stop
|
||
int start = invert ? _clipStop : _clipStart;
|
||
int stop = invert ? _clipStart : _clipStop;
|
||
if (blendingStyle == BLEND_STYLE_FAIRY_DUST) {
|
||
unsigned len = stop - start;
|
||
if (len < 2) return false;
|
||
unsigned shuffled = hashInt(i) % len;
|
||
unsigned pos = (shuffled * 0xFFFFU) / len;
|
||
return progress() <= pos;
|
||
}
|
||
const bool iInside = (i >= start && i < stop);
|
||
return !iInside ^ invert; // thanks @willmmiles (https://github.com/wled/WLED/pull/3877#discussion_r1554633876)
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void IRAM_ATTR_YN Segment::setPixelColor(int i, uint32_t col) const
|
||
{
|
||
if (!isActive() || i < 0) return; // not active or invalid index
|
||
#ifndef WLED_DISABLE_2D
|
||
int vStrip = 0;
|
||
#endif
|
||
const int vL = vLength();
|
||
// if the 1D effect is using virtual strips "i" will have virtual strip id stored in upper 16 bits
|
||
// in such case "i" will be > virtualLength()
|
||
if (i >= vL) {
|
||
// check if this is a virtual strip
|
||
#ifndef WLED_DISABLE_2D
|
||
vStrip = i>>16; // hack to allow running on virtual strips (2D segment columns/rows)
|
||
#endif
|
||
i &= 0xFFFF; // truncate vstrip index. note: vStrip index is 1 even in 1D, still need to truncate
|
||
if (i >= vL) return; // if pixel would still fall out of segment just exit
|
||
}
|
||
|
||
#ifndef WLED_DISABLE_2D
|
||
if (is2D()) {
|
||
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
|
||
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
|
||
const auto XY = [&](unsigned x, unsigned y){ return x + y*vW;};
|
||
switch (map1D2D) {
|
||
case M12_Pixels:
|
||
// use all available pixels as a long strip
|
||
setPixelColorRaw(XY(i % vW, i / vW), col);
|
||
break;
|
||
case M12_pBar:
|
||
// expand 1D effect vertically or have it play on virtual strips
|
||
if (vStrip > 0) setPixelColorRaw(XY(vStrip - 1, vH - i - 1), col);
|
||
else for (int x = 0; x < vW; x++) setPixelColorRaw(XY(x, vH - i - 1), col);
|
||
break;
|
||
case M12_pArc:
|
||
// expand in circular fashion from center
|
||
if (i == 0)
|
||
setPixelColorRaw(XY(0, 0), col);
|
||
else {
|
||
float r = i;
|
||
float step = HALF_PI / (2.8284f * r + 4); // we only need (PI/4)/(r/sqrt(2)+1) steps
|
||
for (float rad = 0.0f; rad <= (HALF_PI/2)+step/2; rad += step) {
|
||
int x = roundf(sin_t(rad) * r);
|
||
int y = roundf(cos_t(rad) * r);
|
||
// exploit symmetry
|
||
setPixelColorXY(x, y, col);
|
||
setPixelColorXY(y, x, col);
|
||
}
|
||
// Bresenham’s Algorithm (may not fill every pixel)
|
||
//int d = 3 - (2*i);
|
||
//int y = i, x = 0;
|
||
//while (y >= x) {
|
||
// setPixelColorXY(x, y, col);
|
||
// setPixelColorXY(y, x, col);
|
||
// x++;
|
||
// if (d > 0) {
|
||
// y--;
|
||
// d += 4 * (x - y) + 10;
|
||
// } else {
|
||
// d += 4 * x + 6;
|
||
// }
|
||
//}
|
||
}
|
||
break;
|
||
case M12_pCorner:
|
||
for (int x = 0; x <= i; x++) setPixelColorRaw(XY(x, i), col);
|
||
for (int y = 0; y < i; y++) setPixelColorRaw(XY(i, y), col);
|
||
break;
|
||
case M12_sPinwheel: {
|
||
// Uses Bresenham's algorithm to place coordinates of two lines in arrays then draws between them
|
||
int startX, startY, cosVal[2], sinVal[2]; // in fixed point scale
|
||
setPinwheelParameters(i, vW, vH, startX, startY, cosVal, sinVal);
|
||
|
||
unsigned maxLineLength = max(vW, vH) + 2; // pixels drawn is always smaller than dx or dy, +1 pair for rounding errors
|
||
uint16_t lineCoords[2][maxLineLength]; // uint16_t to save ram
|
||
int lineLength[2] = {0};
|
||
|
||
static int prevRays[2] = {INT_MAX, INT_MAX}; // previous two ray numbers
|
||
int closestEdgeIdx = INT_MAX; // index of the closest edge pixel
|
||
|
||
for (int lineNr = 0; lineNr < 2; lineNr++) {
|
||
int x0 = startX; // x, y coordinates in fixed scale
|
||
int y0 = startY;
|
||
int x1 = (startX + (cosVal[lineNr] << 9)); // outside of grid
|
||
int y1 = (startY + (sinVal[lineNr] << 9)); // outside of grid
|
||
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; // x distance & step
|
||
const int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1; // y distance & step
|
||
uint16_t* coordinates = lineCoords[lineNr]; // 1D access is faster
|
||
int* length = &lineLength[lineNr]; // faster access
|
||
x0 /= Fixed_Scale; // convert to pixel coordinates
|
||
y0 /= Fixed_Scale;
|
||
|
||
// Bresenham's algorithm
|
||
int idx = 0;
|
||
int err = dx + dy;
|
||
while (true) {
|
||
if ((unsigned)x0 >= (unsigned)vW || (unsigned)y0 >= (unsigned)vH) {
|
||
closestEdgeIdx = min(closestEdgeIdx, idx-2);
|
||
break; // stop if outside of grid (exploit unsigned int overflow)
|
||
}
|
||
coordinates[idx++] = x0;
|
||
coordinates[idx++] = y0;
|
||
(*length)++;
|
||
// note: since endpoint is out of grid, no need to check if endpoint is reached
|
||
int e2 = 2 * err;
|
||
if (e2 >= dy) { err += dy; x0 += sx; }
|
||
if (e2 <= dx) { err += dx; y0 += sy; }
|
||
}
|
||
}
|
||
|
||
// fill up the shorter line with missing coordinates, so block filling works correctly and efficiently
|
||
int diff = lineLength[0] - lineLength[1];
|
||
int longLineIdx = (diff > 0) ? 0 : 1;
|
||
int shortLineIdx = longLineIdx ? 0 : 1;
|
||
if (diff != 0) {
|
||
int idx = (lineLength[shortLineIdx] - 1) * 2; // last valid coordinate index
|
||
int lastX = lineCoords[shortLineIdx][idx++];
|
||
int lastY = lineCoords[shortLineIdx][idx++];
|
||
bool keepX = lastX == 0 || lastX == vW - 1;
|
||
for (int d = 0; d < abs(diff); d++) {
|
||
lineCoords[shortLineIdx][idx] = keepX ? lastX :lineCoords[longLineIdx][idx];
|
||
idx++;
|
||
lineCoords[shortLineIdx][idx] = keepX ? lineCoords[longLineIdx][idx] : lastY;
|
||
idx++;
|
||
}
|
||
}
|
||
|
||
// draw and block-fill the line coordinates. Note: block filling only efficient if angle between lines is small
|
||
closestEdgeIdx += 2;
|
||
int max_i = getPinwheelLength(vW, vH) - 1;
|
||
bool drawFirst = !(prevRays[0] == i - 1 || (i == 0 && prevRays[0] == max_i)); // draw first line if previous ray was not adjacent including wrap
|
||
bool drawLast = !(prevRays[0] == i + 1 || (i == max_i && prevRays[0] == 0)); // same as above for last line
|
||
for (int idx = 0; idx < lineLength[longLineIdx] * 2;) { //!! should be long line idx!
|
||
int x1 = lineCoords[0][idx];
|
||
int x2 = lineCoords[1][idx++];
|
||
int y1 = lineCoords[0][idx];
|
||
int y2 = lineCoords[1][idx++];
|
||
int minX, maxX, minY, maxY;
|
||
(x1 < x2) ? (minX = x1, maxX = x2) : (minX = x2, maxX = x1);
|
||
(y1 < y2) ? (minY = y1, maxY = y2) : (minY = y2, maxY = y1);
|
||
|
||
// fill the block between the two x,y points
|
||
bool alwaysDraw = (drawFirst && drawLast) || // No adjacent rays, draw all pixels
|
||
(idx > closestEdgeIdx) || // Edge pixels on uneven lines are always drawn
|
||
(i == 0 && idx == 2) || // Center pixel special case
|
||
(i == prevRays[1]); // Effect drawing twice in 1 frame
|
||
for (int x = minX; x <= maxX; x++) {
|
||
for (int y = minY; y <= maxY; y++) {
|
||
bool onLine1 = x == x1 && y == y1;
|
||
bool onLine2 = x == x2 && y == y2;
|
||
if ((alwaysDraw) ||
|
||
(!onLine1 && (!onLine2 || drawLast)) || // Middle pixels and line2 if drawLast
|
||
(!onLine2 && (!onLine1 || drawFirst)) // Middle pixels and line1 if drawFirst
|
||
) {
|
||
setPixelColorXY(x, y, col);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
prevRays[1] = prevRays[0];
|
||
prevRays[0] = i;
|
||
break;
|
||
}
|
||
}
|
||
return;
|
||
} else if (Segment::maxHeight != 1 && (width() == 1 || height() == 1)) {
|
||
if (start < Segment::maxWidth*Segment::maxHeight) {
|
||
// we have a vertical or horizontal 1D segment (WARNING: virtual...() may be transposed)
|
||
int x = 0, y = 0;
|
||
if (vHeight() > 1) y = i;
|
||
if (vWidth() > 1) x = i;
|
||
setPixelColorXY(x, y, col);
|
||
return;
|
||
}
|
||
}
|
||
#endif
|
||
setPixelColorRaw(i, col);
|
||
}
|
||
|
||
#ifdef WLED_USE_AA_PIXELS
|
||
// anti-aliased normalized version of setPixelColor()
|
||
void Segment::setPixelColor(float i, uint32_t col, bool aa) const
|
||
{
|
||
if (!isActive()) return; // not active
|
||
int vStrip = int(i/10.0f); // hack to allow running on virtual strips (2D segment columns/rows)
|
||
i -= int(i);
|
||
|
||
if (i<0.0f || i>1.0f) return; // not normalized
|
||
|
||
float fC = i * (virtualLength()-1);
|
||
if (aa) {
|
||
unsigned iL = roundf(fC-0.49f);
|
||
unsigned iR = roundf(fC+0.49f);
|
||
float dL = (fC - iL)*(fC - iL);
|
||
float dR = (iR - fC)*(iR - fC);
|
||
uint32_t cIL = getPixelColor(iL | (vStrip<<16));
|
||
uint32_t cIR = getPixelColor(iR | (vStrip<<16));
|
||
if (iR!=iL) {
|
||
// blend L pixel
|
||
cIL = color_blend(col, cIL, uint8_t(dL*255.0f));
|
||
setPixelColor(iL | (vStrip<<16), cIL);
|
||
// blend R pixel
|
||
cIR = color_blend(col, cIR, uint8_t(dR*255.0f));
|
||
setPixelColor(iR | (vStrip<<16), cIR);
|
||
} else {
|
||
// exact match (x & y land on a pixel)
|
||
setPixelColor(iL | (vStrip<<16), col);
|
||
}
|
||
} else {
|
||
setPixelColor(int(roundf(fC)) | (vStrip<<16), col);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
uint32_t IRAM_ATTR_YN Segment::getPixelColor(int i) const
|
||
{
|
||
if (!isActive() || i < 0) return 0; // not active or invalid index
|
||
|
||
#ifndef WLED_DISABLE_2D
|
||
int vStrip = i>>16; // virtual strips are only relevant in Bar expansion mode
|
||
i &= 0xFFFF;
|
||
#endif
|
||
if (i >= (int)vLength()) return 0;
|
||
|
||
#ifndef WLED_DISABLE_2D
|
||
if (is2D()) {
|
||
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
|
||
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
|
||
int x = 0, y = 0;
|
||
switch (map1D2D) {
|
||
case M12_Pixels:
|
||
x = i % vW;
|
||
y = i / vW;
|
||
break;
|
||
case M12_pBar:
|
||
if (vStrip > 0) { x = vStrip - 1; y = vH - i - 1; }
|
||
else { y = vH - i - 1; };
|
||
break;
|
||
case M12_pArc:
|
||
if (i > vW && i > vH) {
|
||
x = y = sqrt32_bw(i*i/2);
|
||
break; // use diagonal
|
||
}
|
||
// otherwise fallthrough
|
||
case M12_pCorner:
|
||
// use longest dimension
|
||
if (vW > vH) x = i;
|
||
else y = i;
|
||
break;
|
||
case M12_sPinwheel: {
|
||
// not 100% accurate, returns pixel at outer edge
|
||
int cosVal[2], sinVal[2];
|
||
setPinwheelParameters(i, vW, vH, x, y, cosVal, sinVal, true);
|
||
int maxX = (vW-1) * Fixed_Scale;
|
||
int maxY = (vH-1) * Fixed_Scale;
|
||
// trace ray from center until we hit any edge - to avoid rounding problems, we use fixed point coordinates
|
||
while ((x < maxX) && (y < maxY) && (x > Fixed_Scale) && (y > Fixed_Scale)) {
|
||
x += cosVal[0]; // advance to next position
|
||
y += sinVal[0];
|
||
}
|
||
x /= Fixed_Scale;
|
||
y /= Fixed_Scale;
|
||
break;
|
||
}
|
||
}
|
||
return getPixelColorXY(x, y);
|
||
}
|
||
#endif
|
||
return getPixelColorRaw(i);
|
||
}
|
||
|
||
void Segment::refreshLightCapabilities() const {
|
||
unsigned capabilities = 0;
|
||
|
||
if (!isActive()) {
|
||
_capabilities = 0;
|
||
return;
|
||
}
|
||
|
||
// we must traverse each pixel in segment to determine its capabilities (as pixel may be mapped)
|
||
for (unsigned y = startY; y < stopY; y++) for (unsigned x = start; x < stop; x++) {
|
||
unsigned index = x + Segment::maxWidth * y;
|
||
index = strip.getMappedPixelIndex(index); // convert logical address to physical
|
||
if (index == 0xFFFF) continue; // invalid/missing pixel
|
||
for (unsigned b = 0; b < BusManager::getNumBusses(); b++) {
|
||
const Bus *bus = BusManager::getBus(b);
|
||
if (!bus || !bus->isOk()) break;
|
||
if (bus->containsPixel(index)) {
|
||
if (bus->hasRGB() || (strip.cctFromRgb && bus->hasCCT())) capabilities |= SEG_CAPABILITY_RGB;
|
||
if (!strip.cctFromRgb && bus->hasCCT()) capabilities |= SEG_CAPABILITY_CCT;
|
||
if (strip.correctWB && (bus->hasRGB() || bus->hasCCT())) capabilities |= SEG_CAPABILITY_CCT; //white balance correction (CCT slider)
|
||
if (bus->hasWhite()) {
|
||
unsigned aWM = Bus::getGlobalAWMode() == AW_GLOBAL_DISABLED ? bus->getAutoWhiteMode() : Bus::getGlobalAWMode();
|
||
bool whiteSlider = (aWM == RGBW_MODE_DUAL || aWM == RGBW_MODE_MANUAL_ONLY); // white slider allowed
|
||
// if auto white calculation from RGB is active (Accurate/Brighter), force RGB controls even if there are no RGB busses
|
||
if (!whiteSlider) capabilities |= SEG_CAPABILITY_RGB;
|
||
// if auto white calculation from RGB is disabled/optional (None/Dual), allow white channel adjustments
|
||
if ( whiteSlider) capabilities |= SEG_CAPABILITY_W;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
_capabilities = capabilities;
|
||
}
|
||
|
||
/*
|
||
* Fills segment with color
|
||
*/
|
||
void Segment::fill(uint32_t c) const {
|
||
if (!isActive()) return; // not active
|
||
for (unsigned i = 0; i < length(); i++) setPixelColorRaw(i,c); // always fill all pixels (blending will take care of grouping, spacing and clipping)
|
||
}
|
||
|
||
/*
|
||
* fade out function, higher rate = quicker fade
|
||
* fading is highly dependant on frame rate (higher frame rates, faster fading)
|
||
* each frame will fade at max 9% or as little as 0.8%
|
||
*/
|
||
void Segment::fade_out(uint8_t rate) const {
|
||
if (!isActive()) return; // not active
|
||
rate = (256-rate) >> 1;
|
||
const int mappedRate = 256 / (rate + 1);
|
||
const size_t rlength = rawLength(); // calculate only once
|
||
for (unsigned j = 0; j < rlength; j++) {
|
||
uint32_t color = getPixelColorRaw(j);
|
||
if (color == colors[1]) continue; // already at target color
|
||
for (int i = 0; i < 32; i += 8) {
|
||
uint8_t c2 = (colors[1]>>i); // get background channel
|
||
uint8_t c1 = (color>>i); // get foreground channel
|
||
// we can't use bitshift since we are using int
|
||
int delta = (c2 - c1) * mappedRate / 256;
|
||
// if fade isn't complete, make sure delta is at least 1 (fixes rounding issues)
|
||
if (delta == 0) delta += (c2 == c1) ? 0 : (c2 > c1) ? 1 : -1;
|
||
// stuff new value back into color
|
||
color &= ~(0xFF<<i);
|
||
color |= ((c1 + delta) & 0xFF) << i;
|
||
}
|
||
setPixelColorRaw(j, color);
|
||
}
|
||
}
|
||
|
||
// fades all pixels to secondary color
|
||
void Segment::fadeToSecondaryBy(uint8_t fadeBy) const {
|
||
if (!isActive() || fadeBy == 0) return; // optimization - no scaling to apply
|
||
const size_t rlength = rawLength(); // calculate only once
|
||
for (unsigned i = 0; i < rlength; i++) setPixelColorRaw(i, color_blend(getPixelColorRaw(i), colors[1], fadeBy));
|
||
}
|
||
|
||
// fades all pixels to black using nscale8()
|
||
void Segment::fadeToBlackBy(uint8_t fadeBy) const {
|
||
if (!isActive() || fadeBy == 0) return; // optimization - no scaling to apply
|
||
const size_t rlength = rawLength(); // calculate only once
|
||
for (unsigned i = 0; i < rlength; i++) setPixelColorRaw(i, color_fade(getPixelColorRaw(i), 255-fadeBy));
|
||
}
|
||
|
||
/*
|
||
* blurs segment content, source: FastLED colorutils.cpp
|
||
* Note: for blur_amount > 215 this function does not work properly (creates alternating pattern)
|
||
*/
|
||
void Segment::blur(uint8_t blur_amount, bool smear) const {
|
||
if (!isActive() || blur_amount == 0) return; // optimization: 0 means "don't blur"
|
||
#ifndef WLED_DISABLE_2D
|
||
if (is2D()) {
|
||
// compatibility with 2D
|
||
blur2D(blur_amount, blur_amount, smear); // symmetrical 2D blur
|
||
//box_blur(map(blur_amount,1,255,1,3), smear);
|
||
return;
|
||
}
|
||
#endif
|
||
uint8_t keep = smear ? 255 : 255 - blur_amount;
|
||
uint8_t seep = blur_amount >> 1;
|
||
unsigned vlength = vLength();
|
||
uint32_t carryover = BLACK;
|
||
uint32_t lastnew; // not necessary to initialize lastnew and last, as both will be initialized by the first loop iteration
|
||
uint32_t last;
|
||
uint32_t curnew = BLACK;
|
||
for (unsigned i = 0; i < vlength; i++) {
|
||
uint32_t cur = getPixelColorRaw(i);
|
||
uint32_t part = color_fade(cur, seep);
|
||
curnew = color_fade(cur, keep);
|
||
if (i > 0) {
|
||
if (carryover) curnew = color_add(curnew, carryover);
|
||
uint32_t prev = color_add(lastnew, part);
|
||
// optimization: only set pixel if color has changed
|
||
if (last != prev) setPixelColorRaw(i - 1, prev);
|
||
} else setPixelColorRaw(i, curnew); // first pixel
|
||
lastnew = curnew;
|
||
last = cur; // save original value for comparison on next iteration
|
||
carryover = part;
|
||
}
|
||
setPixelColorRaw(vlength - 1, curnew);
|
||
}
|
||
|
||
/*
|
||
* Put a value 0 to 255 in to get a color value.
|
||
* The colours are a transition r -> g -> b -> back to r
|
||
* Inspired by the Adafruit examples.
|
||
*/
|
||
uint32_t Segment::color_wheel(uint8_t pos) const {
|
||
if (palette) return color_from_palette(pos, false, false, 0); // never wrap palette
|
||
uint8_t w = W(getCurrentColor(0));
|
||
pos = 255 - pos;
|
||
if (useRainbowWheel) {
|
||
CRGB rgb;
|
||
hsv2rgb_rainbow(CHSV(pos, 255, 255), rgb);
|
||
return RGBW32(rgb.r, rgb.g, rgb.b, w);
|
||
} else {
|
||
if (pos < 85) {
|
||
return RGBW32((255 - pos * 3), 0, (pos * 3), w);
|
||
} else if (pos < 170) {
|
||
pos -= 85;
|
||
return RGBW32(0, (pos * 3), (255 - pos * 3), w);
|
||
} else {
|
||
pos -= 170;
|
||
return RGBW32((pos * 3), (255 - pos * 3), 0, w);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Gets a single color from the currently selected palette.
|
||
* @param i Palette Index (if mapping is true, the full palette will be _virtualSegmentLength long, if false, 255). Will wrap around automatically.
|
||
* @param mapping if true, LED position in segment is considered for color
|
||
* @param moving FastLED palettes will usually wrap back to the start smoothly. Set to true if effect has moving palette and you want wrap.
|
||
* @param mcol If the default palette 0 is selected, return the standard color 0, 1 or 2 instead. If >2, Party palette is used instead
|
||
* @param pbri Value to scale the brightness of the returned color by. Default is 255. (no scaling)
|
||
* @returns Single color from palette
|
||
*/
|
||
uint32_t Segment::color_from_palette(uint16_t i, bool mapping, bool moving, uint8_t mcol, uint8_t pbri) const {
|
||
uint32_t color = getCurrentColor(mcol);
|
||
// default palette or no RGB support on segment
|
||
if ((palette == 0 && mcol < NUM_COLORS) || !_isRGB) {
|
||
return color_fade(color, pbri, true);
|
||
}
|
||
|
||
unsigned paletteIndex = i;
|
||
if (mapping) paletteIndex = min((i*255)/vLength(), 255U);
|
||
// paletteBlend: 0 - wrap when moving, 1 - always wrap, 2 - never wrap, 3 - none (undefined/no interpolation of palette entries)
|
||
// ColorFromPalette interpolations are: NOBLEND, LINEARBLEND, LINEARBLEND_NOWRAP
|
||
TBlendType blend = NOBLEND;
|
||
switch (paletteBlend) {
|
||
case 0: blend = moving ? LINEARBLEND : LINEARBLEND_NOWRAP; break;
|
||
case 1: blend = LINEARBLEND; break;
|
||
case 2: blend = LINEARBLEND_NOWRAP; break;
|
||
}
|
||
CRGBW palcol = ColorFromPalette(_currentPalette, paletteIndex, pbri, blend);
|
||
palcol.w = W(color);
|
||
|
||
return palcol.color32;
|
||
}
|
||
|
||
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
// WS2812FX class implementation
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
|
||
//do not call this method from system context (network callback)
|
||
void WS2812FX::finalizeInit() {
|
||
//reset segment runtimes
|
||
restartRuntime();
|
||
|
||
// for the lack of better place enumerate ledmaps here
|
||
// if we do it in json.cpp (serializeInfo()) we are getting flashes on LEDs
|
||
// unfortunately this means we do not get updates after uploads
|
||
// the other option is saving UI settings which will cause enumeration
|
||
enumerateLedmaps();
|
||
|
||
_hasWhiteChannel = _isOffRefreshRequired = false;
|
||
BusManager::removeAll();
|
||
|
||
unsigned digitalCount = 0;
|
||
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
||
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
|
||
unsigned maxLedsOnBus = 0;
|
||
for (const auto &bus : busConfigs) {
|
||
if (Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type)) {
|
||
digitalCount++;
|
||
if (bus.count > maxLedsOnBus) maxLedsOnBus = bus.count;
|
||
}
|
||
}
|
||
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
|
||
// we may remove 300 LEDs per bus limit when NeoPixelBus is updated beyond 2.9.0
|
||
if (maxLedsOnBus <= 300 && useParallelI2S) BusManager::useParallelOutput(); // must call before creating buses
|
||
else useParallelI2S = false; // enforce single I2S
|
||
#endif
|
||
|
||
// create buses/outputs
|
||
unsigned mem = 0;
|
||
digitalCount = 0;
|
||
for (const auto &bus : busConfigs) {
|
||
mem += bus.memUsage(Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type) ? digitalCount++ : 0); // includes global buffer
|
||
if (mem <= MAX_LED_MEMORY) {
|
||
if (BusManager::add(bus) == -1) break;
|
||
} else DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus %d (%d) #%u not created."), (int)bus.type, (int)bus.count, digitalCount);
|
||
}
|
||
busConfigs.clear();
|
||
busConfigs.shrink_to_fit();
|
||
|
||
_length = 0;
|
||
for (size_t i=0; i<BusManager::getNumBusses(); i++) {
|
||
Bus *bus = BusManager::getBus(i);
|
||
if (!bus || !bus->isOk() || bus->getStart() + bus->getLength() > MAX_LEDS) break;
|
||
//RGBW mode is enabled if at least one of the strips is RGBW
|
||
_hasWhiteChannel |= bus->hasWhite();
|
||
//refresh is required to remain off if at least one of the strips requires the refresh.
|
||
_isOffRefreshRequired |= bus->isOffRefreshRequired() && !bus->isPWM(); // use refresh bit for phase shift with analog
|
||
unsigned busEnd = bus->getStart() + bus->getLength();
|
||
if (busEnd > _length) _length = busEnd;
|
||
// This must be done after all buses have been created, as some kinds (parallel I2S) interact
|
||
bus->begin();
|
||
bus->setBrightness(bri);
|
||
}
|
||
DEBUG_PRINTF_P(PSTR("Heap after buses: %d\n"), ESP.getFreeHeap());
|
||
|
||
Segment::maxWidth = _length;
|
||
Segment::maxHeight = 1;
|
||
|
||
//segments are created in makeAutoSegments();
|
||
DEBUG_PRINTLN(F("Loading custom palettes"));
|
||
loadCustomPalettes(); // (re)load all custom palettes
|
||
DEBUG_PRINTLN(F("Loading custom ledmaps"));
|
||
deserializeMap(); // (re)load default ledmap (will also setUpMatrix() if ledmap does not exist)
|
||
|
||
// allocate frame buffer after matrix has been set up (gaps!)
|
||
if (_pixels) _pixels = static_cast<uint32_t*>(d_realloc(_pixels, getLengthTotal() * sizeof(uint32_t)));
|
||
else _pixels = static_cast<uint32_t*>(d_malloc(getLengthTotal() * sizeof(uint32_t)));
|
||
DEBUG_PRINTF_P(PSTR("strip buffer size: %uB\n"), getLengthTotal() * sizeof(uint32_t));
|
||
|
||
DEBUG_PRINTF_P(PSTR("Heap after strip init: %uB\n"), ESP.getFreeHeap());
|
||
}
|
||
|
||
void WS2812FX::service() {
|
||
unsigned long nowUp = millis(); // Be aware, millis() rolls over every 49 days
|
||
now = nowUp + timebase;
|
||
unsigned long elapsed = nowUp - _lastServiceShow;
|
||
if (_suspend || elapsed <= MIN_FRAME_DELAY) return; // keep wifi alive - no matter if triggered or unlimited
|
||
if (!_triggered && (_targetFps != FPS_UNLIMITED)) { // unlimited mode = no frametime
|
||
if (elapsed < _frametime) return; // too early for service
|
||
}
|
||
|
||
bool doShow = false;
|
||
|
||
_isServicing = true;
|
||
_segment_index = 0;
|
||
|
||
for (Segment &seg : _segments) {
|
||
if (_suspend) break; // immediately stop processing segments if suspend requested during service()
|
||
|
||
// process transition (also pre-calculates progress value)
|
||
seg.handleTransition();
|
||
// reset the segment runtime data if needed
|
||
seg.resetIfRequired();
|
||
|
||
if (!seg.isActive()) continue;
|
||
|
||
// last condition ensures all solid segments are updated at the same time
|
||
if (nowUp > seg.next_time || _triggered || (doShow && seg.mode == FX_MODE_STATIC))
|
||
{
|
||
doShow = true;
|
||
unsigned frameDelay = FRAMETIME;
|
||
|
||
if (!seg.freeze) { //only run effect function if not frozen
|
||
// Effect blending
|
||
uint16_t prog = seg.progress();
|
||
seg.beginDraw(prog); // set up parameters for get/setPixelColor() (will also blend colors and palette if blend style is FADE)
|
||
_currentSegment = &seg; // set current segment for effect functions (SEGMENT & SEGENV)
|
||
// workaround for on/off transition to respect blending style
|
||
frameDelay = (*_mode[seg.mode])(); // run new/current mode (needed for bri workaround)
|
||
seg.call++;
|
||
// if segment is in transition and no old segment exists we don't need to run the old mode
|
||
// (blendSegments() takes care of On/Off transitions and clipping)
|
||
Segment *segO = seg.getOldSegment();
|
||
if (segO && (seg.mode != segO->mode || blendingStyle != BLEND_STYLE_FADE)) {
|
||
Segment::modeBlend(true); // set semaphore for beginDraw() to blend colors and palette
|
||
segO->beginDraw(prog); // set up palette & colors (also sets draw dimensions), parent segment has transition progress
|
||
_currentSegment = segO; // set current segment
|
||
// workaround for on/off transition to respect blending style
|
||
frameDelay = min(frameDelay, (unsigned)(*_mode[segO->mode])()); // run old mode (needed for bri workaround; semaphore!!)
|
||
segO->call++; // increment old mode run counter
|
||
Segment::modeBlend(false); // unset semaphore
|
||
}
|
||
if (seg.isInTransition() && frameDelay > FRAMETIME) frameDelay = FRAMETIME; // force faster updates during transition
|
||
}
|
||
|
||
seg.next_time = nowUp + frameDelay;
|
||
}
|
||
_segment_index++;
|
||
}
|
||
|
||
#ifdef WLED_DEBUG
|
||
if ((_targetFps != FPS_UNLIMITED) && (millis() - nowUp > _frametime)) DEBUG_PRINTF_P(PSTR("Slow effects %u/%d.\n"), (unsigned)(millis()-nowUp), (int)_frametime);
|
||
#endif
|
||
if (doShow && !_suspend) {
|
||
yield();
|
||
Segment::handleRandomPalette(); // slowly transition random palette; move it into for loop when each segment has individual random palette
|
||
_lastServiceShow = nowUp; // update timestamp, for precise FPS control
|
||
show();
|
||
}
|
||
#ifdef WLED_DEBUG
|
||
if ((_targetFps != FPS_UNLIMITED) && (millis() - nowUp > _frametime)) DEBUG_PRINTF_P(PSTR("Slow strip %u/%d.\n"), (unsigned)(millis()-nowUp), (int)_frametime);
|
||
#endif
|
||
|
||
_triggered = false;
|
||
_isServicing = false;
|
||
}
|
||
|
||
// https://en.wikipedia.org/wiki/Blend_modes but using a for top layer & b for bottom layer
|
||
static uint8_t _top (uint8_t a, uint8_t b) { return a; }
|
||
static uint8_t _bottom (uint8_t a, uint8_t b) { return b; }
|
||
static uint8_t _add (uint8_t a, uint8_t b) { unsigned t = a + b; return t > 255 ? 255 : t; }
|
||
static uint8_t _subtract (uint8_t a, uint8_t b) { return b > a ? (b - a) : 0; }
|
||
static uint8_t _difference(uint8_t a, uint8_t b) { return b > a ? (b - a) : (a - b); }
|
||
static uint8_t _average (uint8_t a, uint8_t b) { return (a + b) >> 1; }
|
||
#ifdef CONFIG_IDF_TARGET_ESP32C3
|
||
static uint8_t _multiply (uint8_t a, uint8_t b) { return ((a * b) + 255) >> 8; } // faster than division on C3 but slightly less accurate
|
||
#else
|
||
static uint8_t _multiply (uint8_t a, uint8_t b) { return (a * b) / 255; } // origianl uses a & b in range [0,1]
|
||
#endif
|
||
static uint8_t _divide (uint8_t a, uint8_t b) { return a > b ? (b * 255) / a : 255; }
|
||
static uint8_t _lighten (uint8_t a, uint8_t b) { return a > b ? a : b; }
|
||
static uint8_t _darken (uint8_t a, uint8_t b) { return a < b ? a : b; }
|
||
static uint8_t _screen (uint8_t a, uint8_t b) { return 255 - _multiply(~a,~b); } // 255 - (255-a)*(255-b)/255
|
||
static uint8_t _overlay (uint8_t a, uint8_t b) { return b < 128 ? 2 * _multiply(a,b) : (255 - 2 * _multiply(~a,~b)); }
|
||
static uint8_t _hardlight (uint8_t a, uint8_t b) { return a < 128 ? 2 * _multiply(a,b) : (255 - 2 * _multiply(~a,~b)); }
|
||
#ifdef CONFIG_IDF_TARGET_ESP32C3
|
||
static uint8_t _softlight (uint8_t a, uint8_t b) { return (((b * b * (255 - 2 * a) + 255) >> 8) + 2 * a * b + 255) >> 8; } // Pegtop's formula (1 - 2a)b^2 + 2ab
|
||
#else
|
||
static uint8_t _softlight (uint8_t a, uint8_t b) { return (b * b * (255 - 2 * a) / 255 + 2 * a * b) / 255; } // Pegtop's formula (1 - 2a)b^2 + 2ab
|
||
#endif
|
||
static uint8_t _dodge (uint8_t a, uint8_t b) { return _divide(~a,b); }
|
||
static uint8_t _burn (uint8_t a, uint8_t b) { return ~_divide(a,~b); }
|
||
|
||
void WS2812FX::blendSegment(const Segment &topSegment) const {
|
||
|
||
typedef uint8_t(*FuncType)(uint8_t, uint8_t);
|
||
FuncType funcs[] = {
|
||
_top, _bottom,
|
||
_add, _subtract, _difference, _average,
|
||
_multiply, _divide, _lighten, _darken, _screen, _overlay,
|
||
_hardlight, _softlight, _dodge, _burn
|
||
};
|
||
|
||
const size_t blendMode = topSegment.blendMode < (sizeof(funcs) / sizeof(FuncType)) ? topSegment.blendMode : 0;
|
||
const auto func = funcs[blendMode]; // blendMode % (sizeof(funcs) / sizeof(FuncType))
|
||
const auto blend = [&](uint32_t top, uint32_t bottom){ return RGBW32(func(R(top),R(bottom)), func(G(top),G(bottom)), func(B(top),B(bottom)), func(W(top),W(bottom))); };
|
||
|
||
const int length = topSegment.length(); // physical segment length (counts all pixels in 2D segment)
|
||
const int width = topSegment.width();
|
||
const int height = topSegment.height();
|
||
const auto XY = [](int x, int y){ return x + y*Segment::maxWidth; };
|
||
const size_t matrixSize = Segment::maxWidth * Segment::maxHeight;
|
||
const size_t startIndx = XY(topSegment.start, topSegment.startY);
|
||
const size_t stopIndx = startIndx + length;
|
||
const unsigned progress = topSegment.progress();
|
||
const unsigned progInv = 0xFFFFU - progress;
|
||
uint8_t opacity = topSegment.currentBri(); // returns transitioned opacity for style FADE
|
||
uint8_t cct = topSegment.currentCCT();
|
||
|
||
Segment::setClippingRect(0, 0); // disable clipping by default
|
||
|
||
const unsigned dw = (blendingStyle==BLEND_STYLE_OUTSIDE_IN ? progInv : progress) * width / 0xFFFFU + 1;
|
||
const unsigned dh = (blendingStyle==BLEND_STYLE_OUTSIDE_IN ? progInv : progress) * height / 0xFFFFU + 1;
|
||
const unsigned orgBS = blendingStyle;
|
||
if (width*height == 1) blendingStyle = BLEND_STYLE_FADE; // disable style for single pixel segments (use fade instead)
|
||
switch (blendingStyle) {
|
||
case BLEND_STYLE_CIRCULAR_IN: // (must set entire segment, see isPixelXYClipped())
|
||
case BLEND_STYLE_CIRCULAR_OUT:// (must set entire segment, see isPixelXYClipped())
|
||
case BLEND_STYLE_FAIRY_DUST: // fairy dust (must set entire segment, see isPixelXYClipped())
|
||
Segment::setClippingRect(0, width, 0, height);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_RIGHT: // left-to-right
|
||
case BLEND_STYLE_PUSH_RIGHT: // left-to-right
|
||
Segment::setClippingRect(0, dw, 0, height);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_LEFT: // right-to-left
|
||
case BLEND_STYLE_PUSH_LEFT: // right-to-left
|
||
Segment::setClippingRect(width - dw, width, 0, height);
|
||
break;
|
||
case BLEND_STYLE_OUTSIDE_IN: // corners
|
||
Segment::setClippingRect((width + dw)/2, (width - dw)/2, (height + dh)/2, (height - dh)/2); // inverted!!
|
||
break;
|
||
case BLEND_STYLE_INSIDE_OUT: // outward
|
||
Segment::setClippingRect((width - dw)/2, (width + dw)/2, (height - dh)/2, (height + dh)/2);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_DOWN: // top-to-bottom (2D)
|
||
case BLEND_STYLE_PUSH_DOWN: // top-to-bottom (2D)
|
||
Segment::setClippingRect(0, width, 0, dh);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_UP: // bottom-to-top (2D)
|
||
case BLEND_STYLE_PUSH_UP: // bottom-to-top (2D)
|
||
Segment::setClippingRect(0, width, height - dh, height);
|
||
break;
|
||
case BLEND_STYLE_OPEN_H: // horizontal-outward (2D) same look as INSIDE_OUT on 1D
|
||
Segment::setClippingRect((width - dw)/2, (width + dw)/2, 0, height);
|
||
break;
|
||
case BLEND_STYLE_OPEN_V: // vertical-outward (2D)
|
||
Segment::setClippingRect(0, width, (height - dh)/2, (height + dh)/2);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_TL: // TL-to-BR (2D)
|
||
case BLEND_STYLE_PUSH_TL: // TL-to-BR (2D)
|
||
Segment::setClippingRect(0, dw, 0, dh);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_TR: // TR-to-BL (2D)
|
||
case BLEND_STYLE_PUSH_TR: // TR-to-BL (2D)
|
||
Segment::setClippingRect(width - dw, width, 0, dh);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_BR: // BR-to-TL (2D)
|
||
case BLEND_STYLE_PUSH_BR: // BR-to-TL (2D)
|
||
Segment::setClippingRect(width - dw, width, height - dh, height);
|
||
break;
|
||
case BLEND_STYLE_SWIPE_BL: // BL-to-TR (2D)
|
||
case BLEND_STYLE_PUSH_BL: // BL-to-TR (2D)
|
||
Segment::setClippingRect(0, dw, height - dh, height);
|
||
break;
|
||
}
|
||
|
||
if (isMatrix && stopIndx <= matrixSize) {
|
||
#ifndef WLED_DISABLE_2D
|
||
const int nCols = topSegment.virtualWidth();
|
||
const int nRows = topSegment.virtualHeight();
|
||
const Segment *segO = topSegment.getOldSegment();
|
||
const int oCols = segO ? segO->virtualWidth() : nCols;
|
||
const int oRows = segO ? segO->virtualHeight() : nRows;
|
||
|
||
const auto setMirroredPixel = [&](int x, int y, uint32_t c, uint8_t o) {
|
||
const int baseX = topSegment.start + x;
|
||
const int baseY = topSegment.startY + y;
|
||
size_t indx = XY(baseX, baseY); // absolute address on strip
|
||
_pixels[indx] = color_blend(_pixels[indx], blend(c, _pixels[indx]), o);
|
||
if (_pixelCCT) _pixelCCT[indx] = cct;
|
||
// Apply mirroring
|
||
if (topSegment.mirror || topSegment.mirror_y) {
|
||
const int mirrorX = topSegment.start + width - x - 1;
|
||
const int mirrorY = topSegment.startY + height - y - 1;
|
||
const size_t idxMX = XY(topSegment.transpose ? baseX : mirrorX, topSegment.transpose ? mirrorY : baseY);
|
||
const size_t idxMY = XY(topSegment.transpose ? mirrorX : baseX, topSegment.transpose ? baseY : mirrorY);
|
||
const size_t idxMM = XY(mirrorX, mirrorY);
|
||
if (topSegment.mirror) _pixels[idxMX] = color_blend(_pixels[idxMX], blend(c, _pixels[idxMX]), o);
|
||
if (topSegment.mirror_y) _pixels[idxMY] = color_blend(_pixels[idxMY], blend(c, _pixels[idxMY]), o);
|
||
if (topSegment.mirror && topSegment.mirror_y) _pixels[idxMM] = color_blend(_pixels[idxMM], blend(c, _pixels[idxMM]), o);
|
||
if (_pixelCCT) {
|
||
if (topSegment.mirror) _pixelCCT[idxMX] = cct;
|
||
if (topSegment.mirror_y) _pixelCCT[idxMY] = cct;
|
||
if (topSegment.mirror && topSegment.mirror_y) _pixelCCT[idxMM] = cct;
|
||
}
|
||
}
|
||
};
|
||
|
||
// if we blend using "push" style we need to "shift" canvas to left/right/up/down
|
||
unsigned offsetX = (blendingStyle == BLEND_STYLE_PUSH_UP || blendingStyle == BLEND_STYLE_PUSH_DOWN) ? 0 : progInv * nCols / 0xFFFFU;
|
||
unsigned offsetY = (blendingStyle == BLEND_STYLE_PUSH_LEFT || blendingStyle == BLEND_STYLE_PUSH_RIGHT) ? 0 : progInv * nRows / 0xFFFFU;
|
||
|
||
// we only traverse new segment, not old one
|
||
for (int r = 0; r < nRows; r++) for (int c = 0; c < nCols; c++) {
|
||
const bool clipped = topSegment.isPixelXYClipped(c, r);
|
||
// if segment is in transition and pixel is clipped take old segment's pixel and opacity
|
||
const Segment *seg = clipped && segO ? segO : &topSegment; // pixel is never clipped for FADE
|
||
int vCols = seg == segO ? oCols : nCols; // old segment may have different dimensions
|
||
int vRows = seg == segO ? oRows : nRows; // old segment may have different dimensions
|
||
int x = c;
|
||
int y = r;
|
||
// if we blend using "push" style we need to "shift" canvas to left/right/up/down
|
||
switch (blendingStyle) {
|
||
case BLEND_STYLE_PUSH_RIGHT: x = (x + offsetX) % nCols; break;
|
||
case BLEND_STYLE_PUSH_LEFT: x = (x - offsetX + nCols) % nCols; break;
|
||
case BLEND_STYLE_PUSH_DOWN: y = (y + offsetY) % nRows; break;
|
||
case BLEND_STYLE_PUSH_UP: y = (y - offsetY + nRows) % nRows; break;
|
||
}
|
||
uint32_t c_a = BLACK;
|
||
if (x < vCols && y < vRows) c_a = seg->getPixelColorRaw(x + y*vCols); // will get clipped pixel from old segment or unclipped pixel from new segment
|
||
if (segO && blendingStyle == BLEND_STYLE_FADE && topSegment.mode != segO->mode && x < oCols && y < oRows) {
|
||
// we need to blend old segment using fade as pixels ae not clipped
|
||
c_a = color_blend16(c_a, segO->getPixelColorRaw(x + y*oCols), progInv);
|
||
} else if (blendingStyle != BLEND_STYLE_FADE) {
|
||
// workaround for On/Off transition
|
||
// (bri != briT) && !bri => from On to Off
|
||
// (bri != briT) && bri => from Off to On
|
||
if ((!clipped && (bri != briT) && !bri) || (clipped && (bri != briT) && bri)) c_a = BLACK;
|
||
}
|
||
// map it into frame buffer
|
||
x = c; // restore coordiates if we were PUSHing
|
||
y = r;
|
||
if (topSegment.reverse ) x = nCols - x - 1;
|
||
if (topSegment.reverse_y) y = nRows - y - 1;
|
||
if (topSegment.transpose) std::swap(x,y); // swap X & Y if segment transposed
|
||
// expand pixel
|
||
const unsigned groupLen = topSegment.groupLength();
|
||
if (groupLen == 1) {
|
||
setMirroredPixel(x, y, c_a, opacity);
|
||
} else {
|
||
// handle grouping and spacing
|
||
x *= groupLen; // expand to physical pixels
|
||
y *= groupLen; // expand to physical pixels
|
||
const int maxX = std::min(x + topSegment.grouping, width);
|
||
const int maxY = std::min(y + topSegment.grouping, height);
|
||
while (y < maxY) {
|
||
int _x = x;
|
||
while (_x < maxX) setMirroredPixel(_x++, y, c_a, opacity);
|
||
y++;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
} else {
|
||
const int nLen = topSegment.virtualLength();
|
||
const Segment *segO = topSegment.getOldSegment();
|
||
const int oLen = segO ? segO->virtualLength() : nLen;
|
||
|
||
const auto setMirroredPixel = [&](int i, uint32_t c, uint8_t o) {
|
||
int indx = topSegment.start + i;
|
||
// Apply mirroring
|
||
if (topSegment.mirror) {
|
||
unsigned indxM = topSegment.stop - i - 1;
|
||
indxM += topSegment.offset; // offset/phase
|
||
if (indxM >= topSegment.stop) indxM -= length; // wrap
|
||
_pixels[indxM] = color_blend(_pixels[indxM], blend(c, _pixels[indxM]), o);
|
||
if (_pixelCCT) _pixelCCT[indxM] = cct;
|
||
}
|
||
indx += topSegment.offset; // offset/phase
|
||
if (indx >= topSegment.stop) indx -= length; // wrap
|
||
_pixels[indx] = color_blend(_pixels[indx], blend(c, _pixels[indx]), o);
|
||
if (_pixelCCT) _pixelCCT[indx] = cct;
|
||
};
|
||
|
||
// if we blend using "push" style we need to "shift" canvas to left/right/
|
||
unsigned offsetI = progInv * nLen / 0xFFFFU;
|
||
|
||
for (int k = 0; k < nLen; k++) {
|
||
const bool clipped = topSegment.isPixelClipped(k);
|
||
// if segment is in transition and pixel is clipped take old segment's pixel and opacity
|
||
const Segment *seg = clipped && segO ? segO : &topSegment; // pixel is never clipped for FADE
|
||
const int vLen = seg == segO ? oLen : nLen;
|
||
int i = k;
|
||
// if we blend using "push" style we need to "shift" canvas to left or right
|
||
switch (blendingStyle) {
|
||
case BLEND_STYLE_PUSH_RIGHT: i = (i + offsetI) % nLen; break;
|
||
case BLEND_STYLE_PUSH_LEFT: i = (i - offsetI + nLen) % nLen; break;
|
||
}
|
||
uint32_t c_a = BLACK;
|
||
if (i < vLen) c_a = seg->getPixelColorRaw(i); // will get clipped pixel from old segment or unclipped pixel from new segment
|
||
if (segO && blendingStyle == BLEND_STYLE_FADE && topSegment.mode != segO->mode && i < oLen) {
|
||
// we need to blend old segment using fade as pixels are not clipped
|
||
c_a = color_blend16(c_a, segO->getPixelColorRaw(i), progInv);
|
||
} else if (blendingStyle != BLEND_STYLE_FADE) {
|
||
// workaround for On/Off transition
|
||
// (bri != briT) && !bri => from On to Off
|
||
// (bri != briT) && bri => from Off to On
|
||
if ((!clipped && (bri != briT) && !bri) || (clipped && (bri != briT) && bri)) c_a = BLACK;
|
||
}
|
||
// map into frame buffer
|
||
i = k; // restore index if we were PUSHing
|
||
if (topSegment.reverse) i = nLen - i - 1; // is segment reversed?
|
||
// expand pixel
|
||
i *= topSegment.groupLength();
|
||
// set all the pixels in the group
|
||
const int maxI = std::min(i + topSegment.grouping, length); // make sure to not go beyond physical length
|
||
while (i < maxI) setMirroredPixel(i++, c_a, opacity);
|
||
}
|
||
}
|
||
|
||
blendingStyle = orgBS;
|
||
Segment::setClippingRect(0, 0); // disable clipping for overlays
|
||
}
|
||
|
||
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
|
||
static uint8_t estimateCurrentAndLimitBri(uint8_t brightness, uint32_t *pixels) {
|
||
unsigned milliAmpsMax = BusManager::ablMilliampsMax();
|
||
if (milliAmpsMax > 0) {
|
||
unsigned milliAmpsTotal = 0;
|
||
unsigned avgMilliAmpsPerLED = 0;
|
||
unsigned lengthDigital = 0;
|
||
bool useWackyWS2815PowerModel = false;
|
||
|
||
for (size_t i = 0; i < BusManager::getNumBusses(); i++) {
|
||
const Bus *bus = BusManager::getBus(i);
|
||
if (!(bus && bus->isDigital() && bus->isOk())) continue;
|
||
unsigned maPL = bus->getLEDCurrent();
|
||
if (maPL == 0 || bus->getMaxCurrent() > 0) continue; // skip buses with 0 mA per LED or max current per bus defined (PP-ABL)
|
||
if (maPL == 255) {
|
||
useWackyWS2815PowerModel = true;
|
||
maPL = 12; // WS2815 uses 12mA per channel
|
||
}
|
||
avgMilliAmpsPerLED += maPL * bus->getLength();
|
||
lengthDigital += bus->getLength();
|
||
// sum up the usage of each LED on digital bus
|
||
uint32_t busPowerSum = 0;
|
||
for (unsigned j = 0; j < bus->getLength(); j++) {
|
||
uint32_t c = pixels[j + bus->getStart()];
|
||
byte r = R(c), g = G(c), b = B(c), w = W(c);
|
||
if (useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
|
||
busPowerSum += (max(max(r,g),b)) * 3;
|
||
} else {
|
||
busPowerSum += (r + g + b + w);
|
||
}
|
||
}
|
||
// RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
|
||
if (bus->hasWhite()) {
|
||
busPowerSum *= 3;
|
||
busPowerSum >>= 2; //same as /= 4
|
||
}
|
||
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
|
||
milliAmpsTotal += (busPowerSum * maPL * brightness) / (765*255);
|
||
}
|
||
if (lengthDigital > 0) {
|
||
avgMilliAmpsPerLED /= lengthDigital;
|
||
|
||
if (milliAmpsMax > MA_FOR_ESP && avgMilliAmpsPerLED > 0) { //0 mA per LED and too low numbers turn off calculation
|
||
unsigned powerBudget = (milliAmpsMax - MA_FOR_ESP); //80/120mA for ESP power
|
||
if (powerBudget > lengthDigital) { //each LED uses about 1mA in standby, exclude that from power budget
|
||
powerBudget -= lengthDigital;
|
||
} else {
|
||
powerBudget = 0;
|
||
}
|
||
if (milliAmpsTotal > powerBudget) {
|
||
//scale brightness down to stay in current limit
|
||
unsigned scaleB = powerBudget * 255 / milliAmpsTotal;
|
||
brightness = ((brightness * scaleB) >> 8) + 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return brightness;
|
||
}
|
||
|
||
void WS2812FX::show() {
|
||
unsigned long showNow = millis();
|
||
size_t diff = showNow - _lastShow;
|
||
|
||
size_t totalLen = getLengthTotal();
|
||
// WARNING: as WLED doesn't handle CCT on pixel level but on Segment level instead
|
||
// we need to keep track of each pixel's CCT when blending segments (if CCT is present)
|
||
// and then set appropriate CCT from that pixel during paint (see below).
|
||
if ((hasCCTBus() || correctWB) && !cctFromRgb)
|
||
_pixelCCT = static_cast<uint8_t*>(d_malloc(totalLen * sizeof(uint8_t))); // allocate CCT buffer if necessary
|
||
if (_pixelCCT) memset(_pixelCCT, 127, totalLen); // set neutral (50:50) CCT
|
||
|
||
if (realtimeMode == REALTIME_MODE_INACTIVE || useMainSegmentOnly || realtimeOverride > REALTIME_OVERRIDE_NONE) {
|
||
// clear frame buffer
|
||
for (size_t i = 0; i < totalLen; i++) _pixels[i] = BLACK; // memset(_pixels, 0, sizeof(uint32_t) * getLengthTotal());
|
||
// blend all segments into (cleared) buffer
|
||
for (Segment &seg : _segments) if (seg.isActive() && (seg.on || seg.isInTransition())) {
|
||
blendSegment(seg); // blend segment's buffer into frame buffer
|
||
}
|
||
}
|
||
|
||
// avoid race condition, capture _callback value
|
||
show_callback callback = _callback;
|
||
if (callback) callback(); // will call setPixelColor or setRealtimePixelColor
|
||
|
||
// determine ABL brightness
|
||
uint8_t newBri = estimateCurrentAndLimitBri(_brightness, _pixels);
|
||
if (newBri != _brightness) BusManager::setBrightness(newBri);
|
||
|
||
// paint actual pixels
|
||
int oldCCT = Bus::getCCT(); // store original CCT value (since it is global)
|
||
// when cctFromRgb is true we implicitly calculate WW and CW from RGB values (cct==-1)
|
||
if (cctFromRgb) BusManager::setSegmentCCT(-1);
|
||
for (size_t i = 0; i < totalLen; i++) {
|
||
// when correctWB is true setSegmentCCT() will convert CCT into K with which we can then
|
||
// correct/adjust RGB value according to desired CCT value, it will still affect actual WW/CW ratio
|
||
if (_pixelCCT) { // cctFromRgb already exluded at allocation
|
||
if (i == 0 || _pixelCCT[i-1] != _pixelCCT[i]) BusManager::setSegmentCCT(_pixelCCT[i], correctWB);
|
||
}
|
||
BusManager::setPixelColor(getMappedPixelIndex(i), realtimeMode && arlsDisableGammaCorrection ? _pixels[i] : gamma32(_pixels[i]));
|
||
}
|
||
Bus::setCCT(oldCCT); // restore old CCT for ABL adjustments
|
||
|
||
d_free(_pixelCCT);
|
||
_pixelCCT = nullptr;
|
||
|
||
// some buses send asynchronously and this method will return before
|
||
// all of the data has been sent.
|
||
// See https://github.com/Makuna/NeoPixelBus/wiki/ESP32-NeoMethods#neoesp32rmt-methods
|
||
BusManager::show();
|
||
|
||
// restore brightness for next frame
|
||
if (newBri != _brightness) BusManager::setBrightness(_brightness);
|
||
|
||
if (diff > 0) { // skip calculation if no time has passed
|
||
size_t fpsCurr = (1000 << FPS_CALC_SHIFT) / diff; // fixed point math
|
||
_cumulativeFps = (FPS_CALC_AVG * _cumulativeFps + fpsCurr + FPS_CALC_AVG / 2) / (FPS_CALC_AVG + 1); // "+FPS_CALC_AVG/2" for proper rounding
|
||
_lastShow = showNow;
|
||
}
|
||
}
|
||
|
||
void WS2812FX::setRealtimePixelColor(unsigned i, uint32_t c) {
|
||
if (useMainSegmentOnly) {
|
||
const Segment &seg = getMainSegment();
|
||
if (seg.isActive() && i < seg.length()) seg.setPixelColorRaw(i, c);
|
||
} else {
|
||
setPixelColor(i, c);
|
||
}
|
||
}
|
||
|
||
// reset all segments
|
||
void WS2812FX::restartRuntime() {
|
||
suspend();
|
||
waitForIt();
|
||
for (Segment &seg : _segments) seg.markForReset().resetIfRequired();
|
||
resume();
|
||
}
|
||
|
||
// start or stop transition for all segments
|
||
void WS2812FX::setTransitionMode(bool t) {
|
||
suspend();
|
||
waitForIt();
|
||
for (Segment &seg : _segments) seg.startTransition(t ? _transitionDur : 0);
|
||
resume();
|
||
}
|
||
|
||
// wait until frame is over (service() has finished or time for 1 frame has passed; yield() crashes on 8266)
|
||
void WS2812FX::waitForIt() {
|
||
unsigned long maxWait = millis() + getFrameTime();
|
||
while (isServicing() && maxWait > millis()) delay(1);
|
||
#ifdef WLED_DEBUG
|
||
if (millis() >= maxWait) DEBUG_PRINTLN(F("Waited for strip to finish servicing."));
|
||
#endif
|
||
};
|
||
|
||
void WS2812FX::setTargetFps(unsigned fps) {
|
||
if (fps <= 250) _targetFps = fps;
|
||
if (_targetFps > 0) _frametime = 1000 / _targetFps;
|
||
else _frametime = MIN_FRAME_DELAY; // unlimited mode
|
||
}
|
||
|
||
void WS2812FX::setCCT(uint16_t k) {
|
||
for (Segment &seg : _segments) {
|
||
if (seg.isActive() && seg.isSelected()) {
|
||
seg.setCCT(k);
|
||
}
|
||
}
|
||
}
|
||
|
||
// direct=true either expects the caller to call show() themselves (realtime modes) or be ok waiting for the next frame for the change to apply
|
||
// direct=false immediately triggers an effect redraw
|
||
void WS2812FX::setBrightness(uint8_t b, bool direct) {
|
||
if (gammaCorrectBri) b = gamma8(b);
|
||
if (_brightness == b) return;
|
||
_brightness = b;
|
||
if (_brightness == 0) { //unfreeze all segments on power off
|
||
for (const Segment &seg : _segments) seg.freeze = false; // freeze is mutable
|
||
}
|
||
BusManager::setBrightness(b);
|
||
if (!direct) {
|
||
unsigned long t = millis();
|
||
if (_segments[0].next_time > t + 22 && t - _lastShow > MIN_SHOW_DELAY) trigger(); //apply brightness change immediately if no refresh soon
|
||
}
|
||
}
|
||
|
||
uint8_t WS2812FX::getActiveSegsLightCapabilities(bool selectedOnly) const {
|
||
uint8_t totalLC = 0;
|
||
for (const Segment &seg : _segments) {
|
||
if (seg.isActive() && (!selectedOnly || seg.isSelected())) totalLC |= seg.getLightCapabilities();
|
||
}
|
||
return totalLC;
|
||
}
|
||
|
||
uint8_t WS2812FX::getFirstSelectedSegId() const {
|
||
size_t i = 0;
|
||
for (const Segment &seg : _segments) {
|
||
if (seg.isActive() && seg.isSelected()) return i;
|
||
i++;
|
||
}
|
||
// if none selected, use the main segment
|
||
return getMainSegmentId();
|
||
}
|
||
|
||
void WS2812FX::setMainSegmentId(unsigned n) {
|
||
_mainSegment = getLastActiveSegmentId();
|
||
if (n < _segments.size() && _segments[n].isActive()) { // only set if segment is active
|
||
_mainSegment = n;
|
||
}
|
||
return;
|
||
}
|
||
|
||
uint8_t WS2812FX::getLastActiveSegmentId() const {
|
||
for (size_t i = _segments.size() -1; i > 0; i--) {
|
||
if (_segments[i].isActive()) return i;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
uint8_t WS2812FX::getActiveSegmentsNum() const {
|
||
unsigned c = 0;
|
||
for (const Segment &seg : _segments) if (seg.isActive()) c++;
|
||
return c;
|
||
}
|
||
|
||
uint16_t WS2812FX::getLengthTotal() const {
|
||
unsigned len = Segment::maxWidth * Segment::maxHeight; // will be _length for 1D (see finalizeInit()) but should cover whole matrix for 2D
|
||
if (isMatrix && _length > len) len = _length; // for 2D with trailing strip
|
||
return len;
|
||
}
|
||
|
||
uint16_t WS2812FX::getLengthPhysical() const {
|
||
return BusManager::getTotalLength(true);
|
||
}
|
||
|
||
//used for JSON API info.leds.rgbw. Little practical use, deprecate with info.leds.rgbw.
|
||
//returns if there is an RGBW bus (supports RGB and White, not only white)
|
||
//not influenced by auto-white mode, also true if white slider does not affect output white channel
|
||
bool WS2812FX::hasRGBWBus() const {
|
||
for (size_t b = 0; b < BusManager::getNumBusses(); b++) {
|
||
const Bus *bus = BusManager::getBus(b);
|
||
if (!bus || !bus->isOk()) break;
|
||
if (bus->hasRGB() && bus->hasWhite()) return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool WS2812FX::hasCCTBus() const {
|
||
if (cctFromRgb && !correctWB) return false;
|
||
for (size_t b = 0; b < BusManager::getNumBusses(); b++) {
|
||
const Bus *bus = BusManager::getBus(b);
|
||
if (!bus || !bus->isOk()) break;
|
||
if (bus->hasCCT()) return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void WS2812FX::purgeSegments() {
|
||
// remove all inactive segments (from the back)
|
||
int deleted = 0;
|
||
if (_segments.size() <= 1) return;
|
||
for (size_t i = _segments.size()-1; i > 0; i--)
|
||
if (_segments[i].stop == 0) {
|
||
deleted++;
|
||
_segments.erase(_segments.begin() + i);
|
||
}
|
||
if (deleted) {
|
||
_segments.shrink_to_fit();
|
||
setMainSegmentId(0);
|
||
}
|
||
}
|
||
|
||
Segment& WS2812FX::getSegment(unsigned id) {
|
||
return _segments[id >= _segments.size() ? getMainSegmentId() : id]; // vectors
|
||
}
|
||
|
||
void WS2812FX::resetSegments() {
|
||
_segments.clear(); // destructs all Segment as part of clearing
|
||
_segments.emplace_back(0, isMatrix ? Segment::maxWidth : _length, 0, isMatrix ? Segment::maxHeight : 1);
|
||
_segments.shrink_to_fit(); // just in case ...
|
||
_mainSegment = 0;
|
||
}
|
||
|
||
void WS2812FX::makeAutoSegments(bool forceReset) {
|
||
if (autoSegments) { //make one segment per bus
|
||
unsigned segStarts[MAX_NUM_SEGMENTS] = {0};
|
||
unsigned segStops [MAX_NUM_SEGMENTS] = {0};
|
||
size_t s = 0;
|
||
|
||
#ifndef WLED_DISABLE_2D
|
||
// 2D segment is the 1st one using entire matrix
|
||
if (isMatrix) {
|
||
segStarts[0] = 0;
|
||
segStops[0] = Segment::maxWidth*Segment::maxHeight;
|
||
s++;
|
||
}
|
||
#endif
|
||
|
||
for (size_t i = s; i < BusManager::getNumBusses(); i++) {
|
||
const Bus *bus = BusManager::getBus(i);
|
||
if (!bus || !bus->isOk()) break;
|
||
|
||
segStarts[s] = bus->getStart();
|
||
segStops[s] = segStarts[s] + bus->getLength();
|
||
|
||
#ifndef WLED_DISABLE_2D
|
||
if (isMatrix && segStops[s] <= Segment::maxWidth*Segment::maxHeight) continue; // ignore buses comprising matrix
|
||
if (isMatrix && segStarts[s] < Segment::maxWidth*Segment::maxHeight) segStarts[s] = Segment::maxWidth*Segment::maxHeight;
|
||
#endif
|
||
|
||
//check for overlap with previous segments
|
||
for (size_t j = 0; j < s; j++) {
|
||
if (segStops[j] > segStarts[s] && segStarts[j] < segStops[s]) {
|
||
//segments overlap, merge
|
||
segStarts[j] = min(segStarts[s],segStarts[j]);
|
||
segStops [j] = max(segStops [s],segStops [j]); segStops[s] = 0;
|
||
s--;
|
||
}
|
||
}
|
||
s++;
|
||
}
|
||
|
||
_segments.clear();
|
||
_segments.reserve(s); // prevent reallocations
|
||
// there is always at least one segment (but we need to differentiate between 1D and 2D)
|
||
#ifndef WLED_DISABLE_2D
|
||
if (isMatrix)
|
||
_segments.emplace_back(0, Segment::maxWidth, 0, Segment::maxHeight);
|
||
else
|
||
#endif
|
||
_segments.emplace_back(segStarts[0], segStops[0]);
|
||
for (size_t i = 1; i < s; i++) {
|
||
_segments.emplace_back(segStarts[i], segStops[i]);
|
||
}
|
||
DEBUG_PRINTF_P(PSTR("%d auto segments created.\n"), _segments.size());
|
||
|
||
} else {
|
||
|
||
if (forceReset || getSegmentsNum() == 0) resetSegments();
|
||
//expand the main seg to the entire length, but only if there are no other segments, or reset is forced
|
||
else if (getActiveSegmentsNum() == 1) {
|
||
size_t i = getLastActiveSegmentId();
|
||
#ifndef WLED_DISABLE_2D
|
||
_segments[i].setGeometry(0, Segment::maxWidth, 1, 0, 0xFFFF, 0, Segment::maxHeight);
|
||
#else
|
||
_segments[i].setGeometry(0, _length);
|
||
#endif
|
||
}
|
||
}
|
||
_mainSegment = 0;
|
||
|
||
fixInvalidSegments();
|
||
}
|
||
|
||
void WS2812FX::fixInvalidSegments() {
|
||
//make sure no segment is longer than total (sanity check)
|
||
for (size_t i = getSegmentsNum()-1; i > 0; i--) {
|
||
if (isMatrix) {
|
||
#ifndef WLED_DISABLE_2D
|
||
if (_segments[i].start >= Segment::maxWidth * Segment::maxHeight) {
|
||
// 1D segment at the end of matrix
|
||
if (_segments[i].start >= _length || _segments[i].startY > 0 || _segments[i].stopY > 1) { _segments.erase(_segments.begin()+i); continue; }
|
||
if (_segments[i].stop > _length) _segments[i].stop = _length;
|
||
continue;
|
||
}
|
||
if (_segments[i].start >= Segment::maxWidth || _segments[i].startY >= Segment::maxHeight) { _segments.erase(_segments.begin()+i); continue; }
|
||
if (_segments[i].stop > Segment::maxWidth) _segments[i].stop = Segment::maxWidth;
|
||
if (_segments[i].stopY > Segment::maxHeight) _segments[i].stopY = Segment::maxHeight;
|
||
#endif
|
||
} else {
|
||
if (_segments[i].start >= _length) { _segments.erase(_segments.begin()+i); continue; }
|
||
if (_segments[i].stop > _length) _segments[i].stop = _length;
|
||
}
|
||
}
|
||
// if any segments were deleted free memory
|
||
purgeSegments();
|
||
// this is always called as the last step after finalizeInit(), update covered bus types
|
||
for (const Segment &seg : _segments)
|
||
seg.refreshLightCapabilities();
|
||
}
|
||
|
||
//true if all segments align with a bus, or if a segment covers the total length
|
||
//irrelevant in 2D set-up
|
||
bool WS2812FX::checkSegmentAlignment() const {
|
||
bool aligned = false;
|
||
for (const Segment &seg : _segments) {
|
||
for (unsigned b = 0; b<BusManager::getNumBusses(); b++) {
|
||
const Bus *bus = BusManager::getBus(b);
|
||
if (!bus || !bus->isOk()) break;
|
||
if (seg.start == bus->getStart() && seg.stop == bus->getStart() + bus->getLength()) aligned = true;
|
||
}
|
||
if (seg.start == 0 && seg.stop == _length) aligned = true;
|
||
if (!aligned) return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// used by analog clock overlay
|
||
void WS2812FX::setRange(uint16_t i, uint16_t i2, uint32_t col) {
|
||
if (i2 < i) std::swap(i,i2);
|
||
for (unsigned x = i; x <= i2; x++) setPixelColor(x, col);
|
||
}
|
||
|
||
#ifdef WLED_DEBUG
|
||
void WS2812FX::printSize() {
|
||
size_t size = 0;
|
||
for (const Segment &seg : _segments) size += seg.getSize();
|
||
DEBUG_PRINTF_P(PSTR("Segments: %d -> %u/%dB\n"), _segments.size(), size, Segment::getUsedSegmentData());
|
||
for (const Segment &seg : _segments) DEBUG_PRINTF_P(PSTR(" Seg: %d,%d [A=%d, 2D=%d, RGB=%d, W=%d, CCT=%d]\n"), seg.width(), seg.height(), seg.isActive(), seg.is2D(), seg.hasRGB(), seg.hasWhite(), seg.isCCT());
|
||
DEBUG_PRINTF_P(PSTR("Modes: %d*%d=%uB\n"), sizeof(mode_ptr), _mode.size(), (_mode.capacity()*sizeof(mode_ptr)));
|
||
DEBUG_PRINTF_P(PSTR("Data: %d*%d=%uB\n"), sizeof(const char *), _modeData.size(), (_modeData.capacity()*sizeof(const char *)));
|
||
DEBUG_PRINTF_P(PSTR("Map: %d*%d=%uB\n"), sizeof(uint16_t), (int)customMappingSize, customMappingSize*sizeof(uint16_t));
|
||
}
|
||
#endif
|
||
|
||
// load custom mapping table from JSON file (called from finalizeInit() or deserializeState())
|
||
// if this is a matrix set-up and default ledmap.json file does not exist, create mapping table using setUpMatrix() from panel information
|
||
bool WS2812FX::deserializeMap(unsigned n) {
|
||
char fileName[32];
|
||
strcpy_P(fileName, PSTR("/ledmap"));
|
||
if (n) sprintf(fileName +7, "%d", n);
|
||
strcat_P(fileName, PSTR(".json"));
|
||
bool isFile = WLED_FS.exists(fileName);
|
||
|
||
customMappingSize = 0; // prevent use of mapping if anything goes wrong
|
||
currentLedmap = 0;
|
||
if (n == 0 || isFile) interfaceUpdateCallMode = CALL_MODE_WS_SEND; // schedule WS update (to inform UI)
|
||
|
||
if (!isFile && n==0 && isMatrix) {
|
||
// 2D panel support creates its own ledmap (on the fly) if a ledmap.json does not exist
|
||
setUpMatrix();
|
||
return false;
|
||
}
|
||
|
||
if (!isFile || !requestJSONBufferLock(7)) return false;
|
||
|
||
StaticJsonDocument<64> filter;
|
||
filter[F("width")] = true;
|
||
filter[F("height")] = true;
|
||
if (!readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
|
||
DEBUG_PRINTF_P(PSTR("ERROR Invalid ledmap in %s\n"), fileName);
|
||
releaseJSONBufferLock();
|
||
return false; // if file does not load properly then exit
|
||
} else
|
||
DEBUG_PRINTF_P(PSTR("Reading LED map from %s\n"), fileName);
|
||
|
||
suspend();
|
||
waitForIt();
|
||
|
||
JsonObject root = pDoc->as<JsonObject>();
|
||
// if we are loading default ledmap (at boot) set matrix width and height from the ledmap (compatible with WLED MM ledmaps)
|
||
if (n == 0 && (!root[F("width")].isNull() || !root[F("height")].isNull())) {
|
||
Segment::maxWidth = min(max(root[F("width")].as<int>(), 1), 255);
|
||
Segment::maxHeight = min(max(root[F("height")].as<int>(), 1), 255);
|
||
isMatrix = true;
|
||
}
|
||
|
||
d_free(customMappingTable);
|
||
customMappingTable = static_cast<uint16_t*>(d_malloc(sizeof(uint16_t)*getLengthTotal())); // do not use SPI RAM
|
||
|
||
if (customMappingTable) {
|
||
DEBUG_PRINTF_P(PSTR("ledmap allocated: %uB\n"), sizeof(uint16_t)*getLengthTotal());
|
||
File f = WLED_FS.open(fileName, "r");
|
||
f.find("\"map\":[");
|
||
while (f.available()) { // f.position() < f.size() - 1
|
||
char number[32];
|
||
size_t numRead = f.readBytesUntil(',', number, sizeof(number)-1); // read a single number (may include array terminating "]" but not number separator ',')
|
||
number[numRead] = 0;
|
||
if (numRead > 0) {
|
||
char *end = strchr(number,']'); // we encountered end of array so stop processing if no digit found
|
||
bool foundDigit = (end == nullptr);
|
||
int i = 0;
|
||
if (end != nullptr) do {
|
||
if (number[i] >= '0' && number[i] <= '9') foundDigit = true;
|
||
if (foundDigit || &number[i++] == end) break;
|
||
} while (i < 32);
|
||
if (!foundDigit) break;
|
||
int index = atoi(number);
|
||
if (index < 0 || index > 16384) index = 0xFFFF;
|
||
customMappingTable[customMappingSize++] = index;
|
||
if (customMappingSize > getLengthTotal()) break;
|
||
} else break; // there was nothing to read, stop
|
||
}
|
||
currentLedmap = n;
|
||
f.close();
|
||
|
||
#ifdef WLED_DEBUG
|
||
DEBUG_PRINT(F("Loaded ledmap:"));
|
||
for (unsigned i=0; i<customMappingSize; i++) {
|
||
if (!(i%Segment::maxWidth)) DEBUG_PRINTLN();
|
||
DEBUG_PRINTF_P(PSTR("%4d,"), customMappingTable[i]);
|
||
}
|
||
DEBUG_PRINTLN();
|
||
#endif
|
||
/*
|
||
JsonArray map = root[F("map")];
|
||
if (!map.isNull() && map.size()) { // not an empty map
|
||
customMappingSize = min((unsigned)map.size(), (unsigned)getLengthTotal());
|
||
for (unsigned i=0; i<customMappingSize; i++) customMappingTable[i] = (uint16_t) (map[i]<0 ? 0xFFFFU : map[i]);
|
||
currentLedmap = n;
|
||
}
|
||
*/
|
||
} else {
|
||
DEBUG_PRINTLN(F("ERROR LED map allocation error."));
|
||
}
|
||
|
||
resume();
|
||
|
||
releaseJSONBufferLock();
|
||
return (customMappingSize > 0);
|
||
}
|
||
|
||
|
||
const char JSON_mode_names[] PROGMEM = R"=====(["FX names moved"])=====";
|
||
const char JSON_palette_names[] PROGMEM = R"=====([
|
||
"Default","* Random Cycle","* Color 1","* Colors 1&2","* Color Gradient","* Colors Only","Party","Cloud","Lava","Ocean",
|
||
"Forest","Rainbow","Rainbow Bands","Sunset","Rivendell","Breeze","Red & Blue","Yellowout","Analogous","Splash",
|
||
"Pastel","Sunset 2","Beach","Vintage","Departure","Landscape","Beech","Sherbet","Hult","Hult 64",
|
||
"Drywet","Jul","Grintage","Rewhi","Tertiary","Fire","Icefire","Cyane","Light Pink","Autumn",
|
||
"Magenta","Magred","Yelmag","Yelblu","Orange & Teal","Tiamat","April Night","Orangery","C9","Sakura",
|
||
"Aurora","Atlantica","C9 2","C9 New","Temperature","Aurora 2","Retro Clown","Candy","Toxy Reaf","Fairy Reaf",
|
||
"Semi Blue","Pink Candy","Red Reaf","Aqua Flash","Yelblu Hot","Lite Light","Red Flash","Blink Red","Red Shift","Red Tide",
|
||
"Candy2","Traffic Light"
|
||
])=====";
|