mirror of
https://github.com/wled/WLED.git
synced 2025-04-21 21:37:19 +00:00
1021 lines
39 KiB
C++
1021 lines
39 KiB
C++
/*
|
|
* Class implementation for addressing various light types
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include <IPAddress.h>
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
#include "driver/ledc.h"
|
|
#include "soc/ledc_struct.h"
|
|
#if !(defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3))
|
|
#define LEDC_MUTEX_LOCK() do {} while (xSemaphoreTake(_ledc_sys_lock, portMAX_DELAY) != pdPASS)
|
|
#define LEDC_MUTEX_UNLOCK() xSemaphoreGive(_ledc_sys_lock)
|
|
extern xSemaphoreHandle _ledc_sys_lock;
|
|
#else
|
|
#define LEDC_MUTEX_LOCK()
|
|
#define LEDC_MUTEX_UNLOCK()
|
|
#endif
|
|
#endif
|
|
#include "const.h"
|
|
#include "pin_manager.h"
|
|
#include "bus_wrapper.h"
|
|
#include "bus_manager.h"
|
|
|
|
extern bool cctICused;
|
|
|
|
//colors.cpp
|
|
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
|
|
|
|
//udp.cpp
|
|
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
|
|
|
|
// enable additional debug output
|
|
#if defined(WLED_DEBUG_HOST)
|
|
#include "net_debug.h"
|
|
#define DEBUGOUT NetDebug
|
|
#else
|
|
#define DEBUGOUT Serial
|
|
#endif
|
|
|
|
#ifdef WLED_DEBUG
|
|
#ifndef ESP8266
|
|
#include <rom/rtc.h>
|
|
#endif
|
|
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
|
|
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
|
|
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
|
|
#define DEBUG_PRINTF_P(x...) DEBUGOUT.printf_P(x)
|
|
#else
|
|
#define DEBUG_PRINT(x)
|
|
#define DEBUG_PRINTLN(x)
|
|
#define DEBUG_PRINTF(x...)
|
|
#define DEBUG_PRINTF_P(x...)
|
|
#endif
|
|
|
|
//color mangling macros
|
|
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
|
|
#define R(c) (byte((c) >> 16))
|
|
#define G(c) (byte((c) >> 8))
|
|
#define B(c) (byte(c))
|
|
#define W(c) (byte((c) >> 24))
|
|
|
|
|
|
bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
|
|
if (count() >= WLED_MAX_COLOR_ORDER_MAPPINGS || len == 0 || (colorOrder & 0x0F) > COL_ORDER_MAX) return false; // upper nibble contains W swap information
|
|
_mappings.push_back({start,len,colorOrder});
|
|
return true;
|
|
}
|
|
|
|
uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
|
|
// upper nibble contains W swap information
|
|
// when ColorOrderMap's upper nibble contains value >0 then swap information is used from it, otherwise global swap is used
|
|
for (unsigned i = 0; i < count(); i++) {
|
|
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
|
|
return _mappings[i].colorOrder | ((_mappings[i].colorOrder >> 4) ? 0 : (defaultColorOrder & 0xF0));
|
|
}
|
|
}
|
|
return defaultColorOrder;
|
|
}
|
|
|
|
|
|
void Bus::calculateCCT(uint32_t c, uint8_t &ww, uint8_t &cw) {
|
|
unsigned cct = 0; //0 - full warm white, 255 - full cold white
|
|
unsigned w = W(c);
|
|
|
|
if (_cct > -1) { // using RGB?
|
|
if (_cct >= 1900) cct = (_cct - 1900) >> 5; // convert K in relative format
|
|
else if (_cct < 256) cct = _cct; // already relative
|
|
} else {
|
|
cct = (approximateKelvinFromRGB(c) - 1900) >> 5; // convert K (from RGB value) to relative format
|
|
}
|
|
|
|
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
|
|
if (cct < _cctBlend) ww = 255;
|
|
else ww = ((255-cct) * 255) / (255 - _cctBlend);
|
|
if ((255-cct) < _cctBlend) cw = 255;
|
|
else cw = (cct * 255) / (255 - _cctBlend);
|
|
|
|
ww = (w * ww) / 255; //brightness scaling
|
|
cw = (w * cw) / 255;
|
|
}
|
|
|
|
uint32_t Bus::autoWhiteCalc(uint32_t c) const {
|
|
unsigned aWM = _autoWhiteMode;
|
|
if (_gAWM < AW_GLOBAL_DISABLED) aWM = _gAWM;
|
|
if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
|
|
unsigned w = W(c);
|
|
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
|
|
if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
|
|
unsigned r = R(c);
|
|
unsigned g = G(c);
|
|
unsigned b = B(c);
|
|
if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
|
|
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
|
|
if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
|
|
return RGBW32(r, g, b, w);
|
|
}
|
|
|
|
uint8_t *Bus::allocateData(size_t size) {
|
|
if (_data) free(_data); // should not happen, but for safety
|
|
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
|
|
}
|
|
|
|
|
|
BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
|
|
, _skip(bc.skipAmount) //sacrificial pixels
|
|
, _colorOrder(bc.colorOrder)
|
|
, _milliAmpsPerLed(bc.milliAmpsPerLed)
|
|
, _milliAmpsMax(bc.milliAmpsMax)
|
|
, _colorOrderMap(com)
|
|
{
|
|
if (!isDigital(bc.type) || !bc.count) return;
|
|
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
|
|
_frequencykHz = 0U;
|
|
_pins[0] = bc.pins[0];
|
|
if (is2Pin(bc.type)) {
|
|
if (!PinManager::allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
|
|
cleanup();
|
|
return;
|
|
}
|
|
_pins[1] = bc.pins[1];
|
|
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
|
|
}
|
|
_iType = PolyBus::getI(bc.type, _pins, nr);
|
|
if (_iType == I_NONE) return;
|
|
_hasRgb = hasRGB(bc.type);
|
|
_hasWhite = hasWhite(bc.type);
|
|
_hasCCT = hasCCT(bc.type);
|
|
if (bc.doubleBuffer && !allocateData(bc.count * Bus::getNumberOfChannels(bc.type))) return;
|
|
//_buffering = bc.doubleBuffer;
|
|
uint16_t lenToCreate = bc.count;
|
|
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
|
|
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr, _frequencykHz);
|
|
_valid = (_busPtr != nullptr);
|
|
DEBUG_PRINTF_P(PSTR("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u). mA=%d/%d\n"), _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], is2Pin(bc.type)?_pins[1]:255, _iType, _milliAmpsPerLed, _milliAmpsMax);
|
|
}
|
|
|
|
//fine tune power estimation constants for your setup
|
|
//you can set it to 0 if the ESP is powered by USB and the LEDs by external
|
|
#ifndef MA_FOR_ESP
|
|
#ifdef ESP8266
|
|
#define MA_FOR_ESP 80 //how much mA does the ESP use (Wemos D1 about 80mA)
|
|
#else
|
|
#define MA_FOR_ESP 120 //how much mA does the ESP use (ESP32 about 120mA)
|
|
#endif
|
|
#endif
|
|
|
|
//DISCLAIMER
|
|
//The following function attemps to calculate the current LED power usage,
|
|
//and will limit the brightness to stay below a set amperage threshold.
|
|
//It is NOT a measurement and NOT guaranteed to stay within the ablMilliampsMax margin.
|
|
//Stay safe with high amperage and have a reasonable safety margin!
|
|
//I am NOT to be held liable for burned down garages or houses!
|
|
|
|
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
|
|
uint8_t BusDigital::estimateCurrentAndLimitBri() {
|
|
bool useWackyWS2815PowerModel = false;
|
|
byte actualMilliampsPerLed = _milliAmpsPerLed;
|
|
|
|
if (_milliAmpsMax < MA_FOR_ESP/BusManager::getNumBusses() || actualMilliampsPerLed == 0) { //0 mA per LED and too low numbers turn off calculation
|
|
return _bri;
|
|
}
|
|
|
|
if (_milliAmpsPerLed == 255) {
|
|
useWackyWS2815PowerModel = true;
|
|
actualMilliampsPerLed = 12; // from testing an actual strip
|
|
}
|
|
|
|
size_t powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
|
|
if (powerBudget > getLength()) { //each LED uses about 1mA in standby, exclude that from power budget
|
|
powerBudget -= getLength();
|
|
} else {
|
|
powerBudget = 0;
|
|
}
|
|
|
|
uint32_t busPowerSum = 0;
|
|
for (unsigned i = 0; i < getLength(); i++) { //sum up the usage of each LED
|
|
uint32_t c = getPixelColor(i); // always returns original or restored color without brightness scaling
|
|
byte r = R(c), g = G(c), b = B(c), w = W(c);
|
|
|
|
if (useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
|
|
busPowerSum += (max(max(r,g),b)) * 3;
|
|
} else {
|
|
busPowerSum += (r + g + b + w);
|
|
}
|
|
}
|
|
|
|
if (hasWhite()) { //RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
|
|
busPowerSum *= 3;
|
|
busPowerSum >>= 2; //same as /= 4
|
|
}
|
|
|
|
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
|
|
busPowerSum = (busPowerSum * actualMilliampsPerLed) / 765;
|
|
_milliAmpsTotal = busPowerSum * _bri / 255;
|
|
|
|
uint8_t newBri = _bri;
|
|
if (busPowerSum * _bri / 255 > powerBudget) { //scale brightness down to stay in current limit
|
|
float scale = (float)(powerBudget * 255) / (float)(busPowerSum * _bri);
|
|
if (scale >= 1.0f) return _bri;
|
|
_milliAmpsTotal = ceilf((float)_milliAmpsTotal * scale);
|
|
uint8_t scaleB = min((int)(scale * 255), 255);
|
|
newBri = unsigned(_bri * scaleB) / 256 + 1;
|
|
}
|
|
return newBri;
|
|
}
|
|
|
|
void BusDigital::show() {
|
|
_milliAmpsTotal = 0;
|
|
if (!_valid) return;
|
|
|
|
uint8_t cctWW = 0, cctCW = 0;
|
|
unsigned newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal
|
|
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, newBri); // limit brightness to stay within current limits
|
|
|
|
if (_data) {
|
|
size_t channels = getNumberOfChannels();
|
|
int16_t oldCCT = Bus::_cct; // temporarily save bus CCT
|
|
for (size_t i=0; i<_len; i++) {
|
|
size_t offset = i * channels;
|
|
unsigned co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder);
|
|
uint32_t c;
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs (_len is always a multiple of 3)
|
|
switch (i%3) {
|
|
case 0: c = RGBW32(_data[offset] , _data[offset+1], _data[offset+2], 0); break;
|
|
case 1: c = RGBW32(_data[offset-1], _data[offset] , _data[offset+1], 0); break;
|
|
case 2: c = RGBW32(_data[offset-2], _data[offset-1], _data[offset] , 0); break;
|
|
}
|
|
} else {
|
|
if (hasRGB()) c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], hasWhite() ? _data[offset+3] : 0);
|
|
else c = RGBW32(0, 0, 0, _data[offset]);
|
|
}
|
|
if (hasCCT()) {
|
|
// unfortunately as a segment may span multiple buses or a bus may contain multiple segments and each segment may have different CCT
|
|
// we need to extract and appy CCT value for each pixel individually even though all buses share the same _cct variable
|
|
// TODO: there is an issue if CCT is calculated from RGB value (_cct==-1), we cannot do that with double buffer
|
|
Bus::_cct = _data[offset+channels-1];
|
|
Bus::calculateCCT(c, cctWW, cctCW);
|
|
}
|
|
unsigned pix = i;
|
|
if (_reversed) pix = _len - pix -1;
|
|
pix += _skip;
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, (cctCW<<8) | cctWW);
|
|
}
|
|
#if !defined(STATUSLED) || STATUSLED>=0
|
|
if (_skip) PolyBus::setPixelColor(_busPtr, _iType, 0, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
|
|
#endif
|
|
for (int i=1; i<_skip; i++) PolyBus::setPixelColor(_busPtr, _iType, i, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
|
|
Bus::_cct = oldCCT;
|
|
} else {
|
|
if (newBri < _bri) {
|
|
unsigned hwLen = _len;
|
|
if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
|
|
for (unsigned i = 0; i < hwLen; i++) {
|
|
// use 0 as color order, actual order does not matter here as we just update the channel values as-is
|
|
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, i, 0), _bri);
|
|
if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW); // this will unfortunately corrupt (segment) CCT data on every bus
|
|
PolyBus::setPixelColor(_busPtr, _iType, i, c, 0, (cctCW<<8) | cctWW); // repaint all pixels with new brightness
|
|
}
|
|
}
|
|
}
|
|
PolyBus::show(_busPtr, _iType, !_data); // faster if buffer consistency is not important (use !_buffering this causes 20% FPS drop)
|
|
// restore bus brightness to its original value
|
|
// this is done right after show, so this is only OK if LED updates are completed before show() returns
|
|
// or async show has a separate buffer (ESP32 RMT and I2S are ok)
|
|
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, _bri);
|
|
}
|
|
|
|
bool BusDigital::canShow() const {
|
|
if (!_valid) return true;
|
|
return PolyBus::canShow(_busPtr, _iType);
|
|
}
|
|
|
|
void BusDigital::setBrightness(uint8_t b) {
|
|
if (_bri == b) return;
|
|
Bus::setBrightness(b);
|
|
PolyBus::setBrightness(_busPtr, _iType, b);
|
|
}
|
|
|
|
//If LEDs are skipped, it is possible to use the first as a status LED.
|
|
//TODO only show if no new show due in the next 50ms
|
|
void BusDigital::setStatusPixel(uint32_t c) {
|
|
if (_valid && _skip) {
|
|
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
|
|
if (canShow()) PolyBus::show(_busPtr, _iType);
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid) return;
|
|
uint8_t cctWW = 0, cctCW = 0;
|
|
if (hasWhite()) c = autoWhiteCalc(c);
|
|
if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
|
|
if (_data) {
|
|
size_t offset = pix * getNumberOfChannels();
|
|
if (hasRGB()) {
|
|
_data[offset++] = R(c);
|
|
_data[offset++] = G(c);
|
|
_data[offset++] = B(c);
|
|
}
|
|
if (hasWhite()) _data[offset++] = W(c);
|
|
// unfortunately as a segment may span multiple buses or a bus may contain multiple segments and each segment may have different CCT
|
|
// we need to store CCT value for each pixel (if there is a color correction in play, convert K in CCT ratio)
|
|
if (hasCCT()) _data[offset] = Bus::_cct >= 1900 ? (Bus::_cct - 1900) >> 5 : (Bus::_cct < 0 ? 127 : Bus::_cct); // TODO: if _cct == -1 we simply ignore it
|
|
} else {
|
|
if (_reversed) pix = _len - pix -1;
|
|
pix += _skip;
|
|
unsigned co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
|
|
unsigned pOld = pix;
|
|
pix = IC_INDEX_WS2812_1CH_3X(pix);
|
|
uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co),_bri);
|
|
switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
|
|
case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break;
|
|
case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break;
|
|
case 2: c = RGBW32(R(cOld), G(cOld), W(c) , 0); break;
|
|
}
|
|
}
|
|
if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW);
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, (cctCW<<8) | cctWW);
|
|
}
|
|
}
|
|
|
|
// returns original color if global buffering is enabled, else returns lossly restored color from bus
|
|
uint32_t IRAM_ATTR BusDigital::getPixelColor(uint16_t pix) const {
|
|
if (!_valid) return 0;
|
|
if (_data) {
|
|
size_t offset = pix * getNumberOfChannels();
|
|
uint32_t c;
|
|
if (!hasRGB()) {
|
|
c = RGBW32(_data[offset], _data[offset], _data[offset], _data[offset]);
|
|
} else {
|
|
c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], hasWhite() ? _data[offset+3] : 0);
|
|
}
|
|
return c;
|
|
} else {
|
|
if (_reversed) pix = _len - pix -1;
|
|
pix += _skip;
|
|
unsigned co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
|
|
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
|
|
unsigned r = R(c);
|
|
unsigned g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
|
|
unsigned b = _reversed ? G(c) : B(c);
|
|
switch (pix % 3) { // get only the single channel
|
|
case 0: c = RGBW32(g, g, g, g); break;
|
|
case 1: c = RGBW32(r, r, r, r); break;
|
|
case 2: c = RGBW32(b, b, b, b); break;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
}
|
|
|
|
uint8_t BusDigital::getPins(uint8_t* pinArray) const {
|
|
unsigned numPins = is2Pin(_type) + 1;
|
|
if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
|
|
return numPins;
|
|
}
|
|
|
|
void BusDigital::setColorOrder(uint8_t colorOrder) {
|
|
// upper nibble contains W swap information
|
|
if ((colorOrder & 0x0F) > 5) return;
|
|
_colorOrder = colorOrder;
|
|
}
|
|
|
|
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
|
|
std::vector<LEDType> BusDigital::getLEDTypes() {
|
|
return {
|
|
{TYPE_WS2812_RGB, "D", PSTR("WS281x")},
|
|
{TYPE_SK6812_RGBW, "D", PSTR("SK6812/WS2814 RGBW")},
|
|
{TYPE_TM1814, "D", PSTR("TM1814")},
|
|
{TYPE_WS2811_400KHZ, "D", PSTR("400kHz")},
|
|
{TYPE_TM1829, "D", PSTR("TM1829")},
|
|
{TYPE_UCS8903, "D", PSTR("UCS8903")},
|
|
{TYPE_APA106, "D", PSTR("APA106/PL9823")},
|
|
{TYPE_TM1914, "D", PSTR("TM1914")},
|
|
{TYPE_FW1906, "D", PSTR("FW1906 GRBCW")},
|
|
{TYPE_UCS8904, "D", PSTR("UCS8904 RGBW")},
|
|
{TYPE_WS2805, "D", PSTR("WS2805 RGBCW")},
|
|
{TYPE_SM16825, "D", PSTR("SM16825 RGBCW")},
|
|
{TYPE_WS2812_1CH_X3, "D", PSTR("WS2811 White")},
|
|
//{TYPE_WS2812_2CH_X3, "D", PSTR("WS2811 CCT")}, // not implemented
|
|
//{TYPE_WS2812_WWA, "D", PSTR("WS2811 WWA")}, // not implemented
|
|
{TYPE_WS2801, "2P", PSTR("WS2801")},
|
|
{TYPE_APA102, "2P", PSTR("APA102")},
|
|
{TYPE_LPD8806, "2P", PSTR("LPD8806")},
|
|
{TYPE_LPD6803, "2P", PSTR("LPD6803")},
|
|
{TYPE_P9813, "2P", PSTR("PP9813")},
|
|
};
|
|
}
|
|
|
|
void BusDigital::reinit() {
|
|
if (!_valid) return;
|
|
PolyBus::begin(_busPtr, _iType, _pins);
|
|
}
|
|
|
|
void BusDigital::cleanup() {
|
|
DEBUG_PRINTLN(F("Digital Cleanup."));
|
|
PolyBus::cleanup(_busPtr, _iType);
|
|
_iType = I_NONE;
|
|
_valid = false;
|
|
_busPtr = nullptr;
|
|
if (_data != nullptr) freeData();
|
|
PinManager::deallocatePin(_pins[1], PinOwner::BusDigital);
|
|
PinManager::deallocatePin(_pins[0], PinOwner::BusDigital);
|
|
}
|
|
|
|
|
|
#ifdef ESP8266
|
|
// 1 MHz clock
|
|
#define CLOCK_FREQUENCY 1000000UL
|
|
#else
|
|
// Use XTAL clock if possible to avoid timer frequency error when setting APB clock < 80 Mhz
|
|
// https://github.com/espressif/arduino-esp32/blob/2.0.2/cores/esp32/esp32-hal-ledc.c
|
|
#ifdef SOC_LEDC_SUPPORT_XTAL_CLOCK
|
|
#define CLOCK_FREQUENCY 40000000UL
|
|
#else
|
|
#define CLOCK_FREQUENCY 80000000UL
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef ESP8266
|
|
#define MAX_BIT_WIDTH 10
|
|
#else
|
|
#ifdef SOC_LEDC_TIMER_BIT_WIDE_NUM
|
|
// C6/H2/P4: 20 bit, S2/S3/C2/C3: 14 bit
|
|
#define MAX_BIT_WIDTH SOC_LEDC_TIMER_BIT_WIDE_NUM
|
|
#else
|
|
// ESP32: 20 bit (but in reality we would never go beyond 16 bit as the frequency would be to low)
|
|
#define MAX_BIT_WIDTH 14
|
|
#endif
|
|
#endif
|
|
|
|
BusPwm::BusPwm(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed, bc.refreshReq) // hijack Off refresh flag to indicate usage of dithering
|
|
{
|
|
if (!isPWM(bc.type)) return;
|
|
unsigned numPins = numPWMPins(bc.type);
|
|
[[maybe_unused]] const bool dithering = _needsRefresh;
|
|
_frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ;
|
|
// duty cycle resolution (_depth) can be extracted from this formula: CLOCK_FREQUENCY > _frequency * 2^_depth
|
|
for (_depth = MAX_BIT_WIDTH; _depth > 8; _depth--) if (((CLOCK_FREQUENCY/_frequency) >> _depth) > 0) break;
|
|
|
|
managed_pin_type pins[numPins];
|
|
for (unsigned i = 0; i < numPins; i++) pins[i] = {(int8_t)bc.pins[i], true};
|
|
if (!PinManager::allocateMultiplePins(pins, numPins, PinOwner::BusPwm)) return;
|
|
|
|
#ifdef ESP8266
|
|
analogWriteRange((1<<_depth)-1);
|
|
analogWriteFreq(_frequency);
|
|
#else
|
|
// for 2 pin PWM CCT strip pinManager will make sure both LEDC channels are in the same speed group and sharing the same timer
|
|
_ledcStart = PinManager::allocateLedc(numPins);
|
|
if (_ledcStart == 255) { //no more free LEDC channels
|
|
PinManager::deallocateMultiplePins(pins, numPins, PinOwner::BusPwm);
|
|
return;
|
|
}
|
|
// if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
|
|
if (dithering) _depth = 12; // fixed 8 bit depth PWM with 4 bit dithering (ESP8266 has no hardware to support dithering)
|
|
#endif
|
|
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
_pins[i] = bc.pins[i]; // store only after allocateMultiplePins() succeeded
|
|
#ifdef ESP8266
|
|
pinMode(_pins[i], OUTPUT);
|
|
#else
|
|
unsigned channel = _ledcStart + i;
|
|
ledcSetup(channel, _frequency, _depth - (dithering*4)); // with dithering _frequency doesn't really matter as resolution is 8 bit
|
|
ledcAttachPin(_pins[i], channel);
|
|
// LEDC timer reset credit @dedehai
|
|
uint8_t group = (channel / 8), timer = ((channel / 2) % 4); // same fromula as in ledcSetup()
|
|
ledc_timer_rst((ledc_mode_t)group, (ledc_timer_t)timer); // reset timer so all timers are almost in sync (for phase shift)
|
|
#endif
|
|
}
|
|
_hasRgb = hasRGB(bc.type);
|
|
_hasWhite = hasWhite(bc.type);
|
|
_hasCCT = hasCCT(bc.type);
|
|
_data = _pwmdata; // avoid malloc() and use stack
|
|
_valid = true;
|
|
DEBUG_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
|
|
}
|
|
|
|
void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
|
|
if (Bus::_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
|
|
c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
|
|
}
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
|
|
switch (_type) {
|
|
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
|
|
_data[0] = w;
|
|
break;
|
|
case TYPE_ANALOG_2CH: //warm white + cold white
|
|
if (cctICused) {
|
|
_data[0] = w;
|
|
_data[1] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
|
|
} else {
|
|
Bus::calculateCCT(c, _data[0], _data[1]);
|
|
}
|
|
break;
|
|
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
|
|
if (cctICused)
|
|
_data[4] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
|
|
else
|
|
Bus::calculateCCT(c, w, _data[4]);
|
|
case TYPE_ANALOG_4CH: //RGBW
|
|
_data[3] = w;
|
|
case TYPE_ANALOG_3CH: //standard dumb RGB
|
|
_data[0] = r; _data[1] = g; _data[2] = b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//does no index check
|
|
uint32_t BusPwm::getPixelColor(uint16_t pix) const {
|
|
if (!_valid) return 0;
|
|
// TODO getting the reverse from CCT is involved (a quick approximation when CCT blending is ste to 0 implemented)
|
|
switch (_type) {
|
|
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
|
|
return RGBW32(0, 0, 0, _data[0]);
|
|
case TYPE_ANALOG_2CH: //warm white + cold white
|
|
if (cctICused) return RGBW32(0, 0, 0, _data[0]);
|
|
else return RGBW32(0, 0, 0, _data[0] + _data[1]);
|
|
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
|
|
if (cctICused) return RGBW32(_data[0], _data[1], _data[2], _data[3]);
|
|
else return RGBW32(_data[0], _data[1], _data[2], _data[3] + _data[4]);
|
|
case TYPE_ANALOG_4CH: //RGBW
|
|
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
|
|
case TYPE_ANALOG_3CH: //standard dumb RGB
|
|
return RGBW32(_data[0], _data[1], _data[2], 0);
|
|
}
|
|
return RGBW32(_data[0], _data[0], _data[0], _data[0]);
|
|
}
|
|
|
|
void BusPwm::show() {
|
|
if (!_valid) return;
|
|
// if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
|
|
// https://github.com/Aircoookie/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
|
|
const bool dithering = _needsRefresh; // avoid working with bitfield
|
|
const unsigned numPins = getPins();
|
|
const unsigned maxBri = (1<<_depth); // possible values: 16384 (14), 8192 (13), 4096 (12), 2048 (11), 1024 (10), 512 (9) and 256 (8)
|
|
[[maybe_unused]] const unsigned bitShift = dithering * 4; // if dithering, _depth is 12 bit but LEDC channel is set to 8 bit (using 4 fractional bits)
|
|
|
|
// use CIE brightness formula (cubic) to fit (or approximate linearity of) human eye perceived brightness
|
|
// the formula is based on 12 bit resolution as there is no need for greater precision
|
|
// see: https://en.wikipedia.org/wiki/Lightness
|
|
unsigned pwmBri = (unsigned)_bri * 100; // enlarge to use integer math for linear response
|
|
if (pwmBri < 2040) {
|
|
// linear response for values [0-20]
|
|
pwmBri = ((pwmBri << 12) + 115043) / 230087; //adding '0.5' before division for correct rounding
|
|
} else {
|
|
// cubic response for values [21-255]
|
|
pwmBri += 4080;
|
|
float temp = (float)pwmBri / 29580.0f;
|
|
temp = temp * temp * temp * (float)maxBri;
|
|
pwmBri = (unsigned)temp; // pwmBri is in range [0-maxBri]
|
|
}
|
|
|
|
[[maybe_unused]] unsigned hPoint = 0; // phase shift (0 - maxBri)
|
|
// we will be phase shifting every channel by previous pulse length (plus dead time if required)
|
|
// phase shifting is only mandatory when using H-bridge to drive reverse-polarity PWM CCT (2 wire) LED type
|
|
// CCT additive blending must be 0 (WW & CW will not overlap) otherwise signals *will* overlap
|
|
// for all other cases it will just try to "spread" the load on PSU
|
|
// Phase shifting requires that LEDC timers are synchronised (see setup()). For PWM CCT (and H-bridge) it is
|
|
// also mandatory that both channels use the same timer (pinManager takes care of that).
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
unsigned duty = (_data[i] * pwmBri) / 255;
|
|
#ifdef ESP8266
|
|
if (_reversed) duty = maxBri - duty;
|
|
analogWrite(_pins[i], duty);
|
|
#else
|
|
int deadTime = 0;
|
|
if (_type == TYPE_ANALOG_2CH && Bus::getCCTBlend() == 0) {
|
|
// add dead time between signals (when using dithering, two full 8bit pulses are required)
|
|
deadTime = (1+dithering) << bitShift;
|
|
// we only need to take care of shortening the signal at (almost) full brightness otherwise pulses may overlap
|
|
if (_bri >= 254 && duty >= maxBri / 2 && duty < maxBri) duty -= deadTime << 1; // shorten duty of larger signal except if full on
|
|
if (_reversed) deadTime = -deadTime; // need to invert dead time to make phaseshift go the opposite way so low signals dont overlap
|
|
}
|
|
if (_reversed) duty = maxBri - duty;
|
|
unsigned channel = _ledcStart + i;
|
|
unsigned gr = channel/8; // high/low speed group
|
|
unsigned ch = channel%8; // group channel
|
|
// directly write to LEDC struct as there is no HAL exposed function for dithering
|
|
// duty has 20 bit resolution with 4 fractional bits (24 bits in total)
|
|
LEDC.channel_group[gr].channel[ch].duty.duty = duty << ((!dithering)*4); // lowest 4 bits are used for dithering, shift by 4 bits if not using dithering
|
|
LEDC.channel_group[gr].channel[ch].hpoint.hpoint = hPoint >> bitShift; // hPoint is at _depth resolution (needs shifting if dithering)
|
|
ledc_update_duty((ledc_mode_t)gr, (ledc_channel_t)ch);
|
|
hPoint += duty + deadTime; // offset to cascade the signals
|
|
if (hPoint >= maxBri) hPoint = 0; // offset it out of bounds, reset
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint8_t BusPwm::getPins(uint8_t* pinArray) const {
|
|
if (!_valid) return 0;
|
|
unsigned numPins = numPWMPins(_type);
|
|
if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
|
|
return numPins;
|
|
}
|
|
|
|
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
|
|
std::vector<LEDType> BusPwm::getLEDTypes() {
|
|
return {
|
|
{TYPE_ANALOG_1CH, "A", PSTR("PWM White")},
|
|
{TYPE_ANALOG_2CH, "AA", PSTR("PWM CCT")},
|
|
{TYPE_ANALOG_3CH, "AAA", PSTR("PWM RGB")},
|
|
{TYPE_ANALOG_4CH, "AAAA", PSTR("PWM RGBW")},
|
|
{TYPE_ANALOG_5CH, "AAAAA", PSTR("PWM RGB+CCT")},
|
|
//{TYPE_ANALOG_6CH, "AAAAAA", PSTR("PWM RGB+DCCT")}, // unimplementable ATM
|
|
};
|
|
}
|
|
|
|
void BusPwm::deallocatePins() {
|
|
unsigned numPins = getPins();
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
PinManager::deallocatePin(_pins[i], PinOwner::BusPwm);
|
|
if (!PinManager::isPinOk(_pins[i])) continue;
|
|
#ifdef ESP8266
|
|
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
|
|
#else
|
|
if (_ledcStart < WLED_MAX_ANALOG_CHANNELS) ledcDetachPin(_pins[i]);
|
|
#endif
|
|
}
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
PinManager::deallocateLedc(_ledcStart, numPins);
|
|
#endif
|
|
}
|
|
|
|
|
|
BusOnOff::BusOnOff(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
|
|
, _onoffdata(0)
|
|
{
|
|
if (!Bus::isOnOff(bc.type)) return;
|
|
|
|
uint8_t currentPin = bc.pins[0];
|
|
if (!PinManager::allocatePin(currentPin, true, PinOwner::BusOnOff)) {
|
|
return;
|
|
}
|
|
_pin = currentPin; //store only after allocatePin() succeeds
|
|
pinMode(_pin, OUTPUT);
|
|
_hasRgb = false;
|
|
_hasWhite = false;
|
|
_hasCCT = false;
|
|
_data = &_onoffdata; // avoid malloc() and use stack
|
|
_valid = true;
|
|
DEBUG_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
|
|
}
|
|
|
|
void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
c = autoWhiteCalc(c);
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
_data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
|
|
}
|
|
|
|
uint32_t BusOnOff::getPixelColor(uint16_t pix) const {
|
|
if (!_valid) return 0;
|
|
return RGBW32(_data[0], _data[0], _data[0], _data[0]);
|
|
}
|
|
|
|
void BusOnOff::show() {
|
|
if (!_valid) return;
|
|
digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
|
|
}
|
|
|
|
uint8_t BusOnOff::getPins(uint8_t* pinArray) const {
|
|
if (!_valid) return 0;
|
|
if (pinArray) pinArray[0] = _pin;
|
|
return 1;
|
|
}
|
|
|
|
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
|
|
std::vector<LEDType> BusOnOff::getLEDTypes() {
|
|
return {
|
|
{TYPE_ONOFF, "", PSTR("On/Off")},
|
|
};
|
|
}
|
|
|
|
BusNetwork::BusNetwork(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, bc.count)
|
|
, _broadcastLock(false)
|
|
{
|
|
switch (bc.type) {
|
|
case TYPE_NET_ARTNET_RGB:
|
|
_UDPtype = 2;
|
|
break;
|
|
case TYPE_NET_ARTNET_RGBW:
|
|
_UDPtype = 2;
|
|
break;
|
|
case TYPE_NET_E131_RGB:
|
|
_UDPtype = 1;
|
|
break;
|
|
default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
|
|
_UDPtype = 0;
|
|
break;
|
|
}
|
|
_hasRgb = hasRGB(bc.type);
|
|
_hasWhite = hasWhite(bc.type);
|
|
_hasCCT = false;
|
|
_UDPchannels = _hasWhite + 3;
|
|
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
|
|
_valid = (allocateData(_len * _UDPchannels) != nullptr);
|
|
DEBUG_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
|
|
}
|
|
|
|
void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid || pix >= _len) return;
|
|
if (_hasWhite) c = autoWhiteCalc(c);
|
|
if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
|
|
unsigned offset = pix * _UDPchannels;
|
|
_data[offset] = R(c);
|
|
_data[offset+1] = G(c);
|
|
_data[offset+2] = B(c);
|
|
if (_hasWhite) _data[offset+3] = W(c);
|
|
}
|
|
|
|
uint32_t BusNetwork::getPixelColor(uint16_t pix) const {
|
|
if (!_valid || pix >= _len) return 0;
|
|
unsigned offset = pix * _UDPchannels;
|
|
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (hasWhite() ? _data[offset+3] : 0));
|
|
}
|
|
|
|
void BusNetwork::show() {
|
|
if (!_valid || !canShow()) return;
|
|
_broadcastLock = true;
|
|
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, hasWhite());
|
|
_broadcastLock = false;
|
|
}
|
|
|
|
uint8_t BusNetwork::getPins(uint8_t* pinArray) const {
|
|
if (pinArray) for (unsigned i = 0; i < 4; i++) pinArray[i] = _client[i];
|
|
return 4;
|
|
}
|
|
|
|
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
|
|
std::vector<LEDType> BusNetwork::getLEDTypes() {
|
|
return {
|
|
{TYPE_NET_DDP_RGB, "N", PSTR("DDP RGB (network)")}, // should be "NNNN" to determine 4 "pin" fields
|
|
{TYPE_NET_ARTNET_RGB, "N", PSTR("Art-Net RGB (network)")},
|
|
{TYPE_NET_DDP_RGBW, "N", PSTR("DDP RGBW (network)")},
|
|
{TYPE_NET_ARTNET_RGBW, "N", PSTR("Art-Net RGBW (network)")},
|
|
// hypothetical extensions
|
|
//{TYPE_VIRTUAL_I2C_W, "V", PSTR("I2C White (virtual)")}, // allows setting I2C address in _pin[0]
|
|
//{TYPE_VIRTUAL_I2C_CCT, "V", PSTR("I2C CCT (virtual)")}, // allows setting I2C address in _pin[0]
|
|
//{TYPE_VIRTUAL_I2C_RGB, "VVV", PSTR("I2C RGB (virtual)")}, // allows setting I2C address in _pin[0] and 2 additional values in _pin[1] & _pin[2]
|
|
//{TYPE_USERMOD, "VVVVV", PSTR("Usermod (virtual)")}, // 5 data fields (see https://github.com/Aircoookie/WLED/pull/4123)
|
|
};
|
|
}
|
|
|
|
void BusNetwork::cleanup() {
|
|
_type = I_NONE;
|
|
_valid = false;
|
|
freeData();
|
|
}
|
|
|
|
|
|
//utility to get the approx. memory usage of a given BusConfig
|
|
uint32_t BusManager::memUsage(BusConfig &bc) {
|
|
if (Bus::isOnOff(bc.type) || Bus::isPWM(bc.type)) return OUTPUT_MAX_PINS;
|
|
|
|
unsigned len = bc.count + bc.skipAmount;
|
|
unsigned channels = Bus::getNumberOfChannels(bc.type);
|
|
unsigned multiplier = 1;
|
|
if (Bus::isDigital(bc.type)) { // digital types
|
|
if (Bus::is16bit(bc.type)) len *= 2; // 16-bit LEDs
|
|
#ifdef ESP8266
|
|
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
|
|
multiplier = 5;
|
|
}
|
|
#else //ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
|
|
multiplier = PolyBus::isParallelI2S1Output() ? 24 : 2;
|
|
#endif
|
|
}
|
|
return (len * multiplier + bc.doubleBuffer * (bc.count + bc.skipAmount)) * channels;
|
|
}
|
|
|
|
uint32_t BusManager::memUsage(unsigned maxChannels, unsigned maxCount, unsigned minBuses) {
|
|
//ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
|
|
unsigned multiplier = PolyBus::isParallelI2S1Output() ? 3 : 2;
|
|
return (maxChannels * maxCount * minBuses * multiplier);
|
|
}
|
|
|
|
int BusManager::add(BusConfig &bc) {
|
|
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
|
|
if (Bus::isVirtual(bc.type)) {
|
|
busses[numBusses] = new BusNetwork(bc);
|
|
} else if (Bus::isDigital(bc.type)) {
|
|
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
|
|
} else if (Bus::isOnOff(bc.type)) {
|
|
busses[numBusses] = new BusOnOff(bc);
|
|
} else {
|
|
busses[numBusses] = new BusPwm(bc);
|
|
}
|
|
return numBusses++;
|
|
}
|
|
|
|
// credit @willmmiles
|
|
static String LEDTypesToJson(const std::vector<LEDType>& types) {
|
|
String json;
|
|
for (const auto &type : types) {
|
|
// capabilities follows similar pattern as JSON API
|
|
int capabilities = Bus::hasRGB(type.id) | Bus::hasWhite(type.id)<<1 | Bus::hasCCT(type.id)<<2 | Bus::is16bit(type.id)<<4 | Bus::mustRefresh(type.id)<<5;
|
|
char str[256];
|
|
sprintf_P(str, PSTR("{i:%d,c:%d,t:\"%s\",n:\"%s\"},"), type.id, capabilities, type.type, type.name);
|
|
json += str;
|
|
}
|
|
return json;
|
|
}
|
|
|
|
// credit @willmmiles & @netmindz https://github.com/Aircoookie/WLED/pull/4056
|
|
String BusManager::getLEDTypesJSONString() {
|
|
String json = "[";
|
|
json += LEDTypesToJson(BusDigital::getLEDTypes());
|
|
json += LEDTypesToJson(BusOnOff::getLEDTypes());
|
|
json += LEDTypesToJson(BusPwm::getLEDTypes());
|
|
json += LEDTypesToJson(BusNetwork::getLEDTypes());
|
|
//json += LEDTypesToJson(BusVirtual::getLEDTypes());
|
|
json.setCharAt(json.length()-1, ']'); // replace last comma with bracket
|
|
return json;
|
|
}
|
|
|
|
void BusManager::useParallelOutput() {
|
|
_parallelOutputs = 8; // hardcoded since we use NPB I2S x8 methods
|
|
PolyBus::setParallelI2S1Output();
|
|
}
|
|
|
|
//do not call this method from system context (network callback)
|
|
void BusManager::removeAll() {
|
|
DEBUG_PRINTLN(F("Removing all."));
|
|
//prevents crashes due to deleting busses while in use.
|
|
while (!canAllShow()) yield();
|
|
for (unsigned i = 0; i < numBusses; i++) delete busses[i];
|
|
numBusses = 0;
|
|
_parallelOutputs = 1;
|
|
PolyBus::setParallelI2S1Output(false);
|
|
}
|
|
|
|
#ifdef ESP32_DATA_IDLE_HIGH
|
|
// #2478
|
|
// If enabled, RMT idle level is set to HIGH when off
|
|
// to prevent leakage current when using an N-channel MOSFET to toggle LED power
|
|
void BusManager::esp32RMTInvertIdle() {
|
|
bool idle_out;
|
|
unsigned rmt = 0;
|
|
for (unsigned u = 0; u < numBusses(); u++) {
|
|
#if defined(CONFIG_IDF_TARGET_ESP32C3) // 2 RMT, only has 1 I2S but NPB does not support it ATM
|
|
if (u > 1) return;
|
|
rmt = u;
|
|
#elif defined(CONFIG_IDF_TARGET_ESP32S2) // 4 RMT, only has 1 I2S bus, supported in NPB
|
|
if (u > 3) return;
|
|
rmt = u;
|
|
#elif defined(CONFIG_IDF_TARGET_ESP32S3) // 4 RMT, has 2 I2S but NPB does not support them ATM
|
|
if (u > 3) return;
|
|
rmt = u;
|
|
#else
|
|
if (u < _parallelOutputs) continue;
|
|
if (u >= _parallelOutputs + 8) return; // only 8 RMT channels
|
|
rmt = u - _parallelOutputs;
|
|
#endif
|
|
if (busses[u]->getLength()==0 || !busses[u]->isDigital() || busses[u]->is2Pin()) continue;
|
|
//assumes that bus number to rmt channel mapping stays 1:1
|
|
rmt_channel_t ch = static_cast<rmt_channel_t>(rmt);
|
|
rmt_idle_level_t lvl;
|
|
rmt_get_idle_level(ch, &idle_out, &lvl);
|
|
if (lvl == RMT_IDLE_LEVEL_HIGH) lvl = RMT_IDLE_LEVEL_LOW;
|
|
else if (lvl == RMT_IDLE_LEVEL_LOW) lvl = RMT_IDLE_LEVEL_HIGH;
|
|
else continue;
|
|
rmt_set_idle_level(ch, idle_out, lvl);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void BusManager::on() {
|
|
#ifdef ESP8266
|
|
//Fix for turning off onboard LED breaking bus
|
|
if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
uint8_t pins[2] = {255,255};
|
|
if (busses[i]->isDigital() && busses[i]->getPins(pins)) {
|
|
if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
|
|
BusDigital *bus = static_cast<BusDigital*>(busses[i]);
|
|
bus->reinit();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef ESP32_DATA_IDLE_HIGH
|
|
esp32RMTInvertIdle();
|
|
#endif
|
|
}
|
|
|
|
void BusManager::off() {
|
|
#ifdef ESP8266
|
|
// turn off built-in LED if strip is turned off
|
|
// this will break digital bus so will need to be re-initialised on On
|
|
if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
|
|
for (unsigned i = 0; i < numBusses; i++) if (busses[i]->isOffRefreshRequired()) return;
|
|
pinMode(LED_BUILTIN, OUTPUT);
|
|
digitalWrite(LED_BUILTIN, HIGH);
|
|
}
|
|
#endif
|
|
#ifdef ESP32_DATA_IDLE_HIGH
|
|
esp32RMTInvertIdle();
|
|
#endif
|
|
}
|
|
|
|
void BusManager::show() {
|
|
_milliAmpsUsed = 0;
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
busses[i]->show();
|
|
_milliAmpsUsed += busses[i]->getUsedCurrent();
|
|
}
|
|
if (_milliAmpsUsed) _milliAmpsUsed += MA_FOR_ESP;
|
|
}
|
|
|
|
void BusManager::setStatusPixel(uint32_t c) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
busses[i]->setStatusPixel(c);
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
unsigned bstart = busses[i]->getStart();
|
|
if (pix < bstart || pix >= bstart + busses[i]->getLength()) continue;
|
|
busses[i]->setPixelColor(pix - bstart, c);
|
|
}
|
|
}
|
|
|
|
void BusManager::setBrightness(uint8_t b) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
busses[i]->setBrightness(b);
|
|
}
|
|
}
|
|
|
|
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
|
|
if (cct > 255) cct = 255;
|
|
if (cct >= 0) {
|
|
//if white balance correction allowed, save as kelvin value instead of 0-255
|
|
if (allowWBCorrection) cct = 1900 + (cct << 5);
|
|
} else cct = -1; // will use kelvin approximation from RGB
|
|
Bus::setCCT(cct);
|
|
}
|
|
|
|
uint32_t BusManager::getPixelColor(uint16_t pix) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
unsigned bstart = busses[i]->getStart();
|
|
if (!busses[i]->containsPixel(pix)) continue;
|
|
return busses[i]->getPixelColor(pix - bstart);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool BusManager::canAllShow() {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
if (!busses[i]->canShow()) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Bus* BusManager::getBus(uint8_t busNr) {
|
|
if (busNr >= numBusses) return nullptr;
|
|
return busses[busNr];
|
|
}
|
|
|
|
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
|
|
uint16_t BusManager::getTotalLength() {
|
|
unsigned len = 0;
|
|
for (unsigned i=0; i<numBusses; i++) len += busses[i]->getLength();
|
|
return len;
|
|
}
|
|
|
|
bool PolyBus::useParallelI2S = false;
|
|
|
|
// Bus static member definition
|
|
int16_t Bus::_cct = -1;
|
|
uint8_t Bus::_cctBlend = 0;
|
|
uint8_t Bus::_gAWM = 255;
|
|
|
|
uint16_t BusDigital::_milliAmpsTotal = 0;
|
|
|
|
uint8_t BusManager::numBusses = 0;
|
|
Bus* BusManager::busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
|
|
ColorOrderMap BusManager::colorOrderMap = {};
|
|
uint16_t BusManager::_milliAmpsUsed = 0;
|
|
uint16_t BusManager::_milliAmpsMax = ABL_MILLIAMPS_DEFAULT;
|
|
uint8_t BusManager::_parallelOutputs = 1;
|