WLED/wled00/FX_2Dfcn.cpp
2025-02-06 15:12:04 +01:00

732 lines
29 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
FX_2Dfcn.cpp contains all 2D utility functions
Copyright (c) 2022 Blaz Kristan (https://blaz.at/home)
Licensed under the EUPL v. 1.2 or later
Adapted from code originally licensed under the MIT license
Parts of the code adapted from WLED Sound Reactive
*/
#include "wled.h"
#include "FX.h"
#include "palettes.h"
// setUpMatrix() - constructs ledmap array from matrix of panels with WxH pixels
// this converts physical (possibly irregular) LED arrangement into well defined
// array of logical pixels: fist entry corresponds to left-topmost logical pixel
// followed by horizontal pixels, when Segment::maxWidth logical pixels are added they
// are followed by next row (down) of Segment::maxWidth pixels (and so forth)
// note: matrix may be comprised of multiple panels each with different orientation
// but ledmap takes care of that. ledmap is constructed upon initialization
// so matrix should disable regular ledmap processing
void WS2812FX::setUpMatrix() {
#ifndef WLED_DISABLE_2D
// isMatrix is set in cfg.cpp or set.cpp
if (isMatrix) {
// calculate width dynamically because it may have gaps
Segment::maxWidth = 1;
Segment::maxHeight = 1;
for (size_t i = 0; i < panel.size(); i++) {
Panel &p = panel[i];
if (p.xOffset + p.width > Segment::maxWidth) {
Segment::maxWidth = p.xOffset + p.width;
}
if (p.yOffset + p.height > Segment::maxHeight) {
Segment::maxHeight = p.yOffset + p.height;
}
}
// safety check
if (Segment::maxWidth * Segment::maxHeight > MAX_LEDS || Segment::maxWidth <= 1 || Segment::maxHeight <= 1) {
DEBUG_PRINTLN(F("2D Bounds error."));
isMatrix = false;
Segment::maxWidth = _length;
Segment::maxHeight = 1;
panels = 0;
panel.clear(); // release memory allocated by panels
resetSegments();
return;
}
customMappingSize = 0; // prevent use of mapping if anything goes wrong
if (customMappingTable) free(customMappingTable);
customMappingTable = static_cast<uint16_t*>(malloc(sizeof(uint16_t)*getLengthTotal()));
if (customMappingTable) {
customMappingSize = getLengthTotal();
// fill with empty in case we don't fill the entire matrix
unsigned matrixSize = Segment::maxWidth * Segment::maxHeight;
for (unsigned i = 0; i<matrixSize; i++) customMappingTable[i] = 0xFFFFU;
for (unsigned i = matrixSize; i<getLengthTotal(); i++) customMappingTable[i] = i; // trailing LEDs for ledmap (after matrix) if it exist
// we will try to load a "gap" array (a JSON file)
// the array has to have the same amount of values as mapping array (or larger)
// "gap" array is used while building ledmap (mapping array)
// and discarded afterwards as it has no meaning after the process
// content of the file is just raw JSON array in the form of [val1,val2,val3,...]
// there are no other "key":"value" pairs in it
// allowed values are: -1 (missing pixel/no LED attached), 0 (inactive/unused pixel), 1 (active/used pixel)
char fileName[32]; strcpy_P(fileName, PSTR("/2d-gaps.json"));
bool isFile = WLED_FS.exists(fileName);
size_t gapSize = 0;
int8_t *gapTable = nullptr;
if (isFile && requestJSONBufferLock(20)) {
DEBUG_PRINT(F("Reading LED gap from "));
DEBUG_PRINTLN(fileName);
// read the array into global JSON buffer
if (readObjectFromFile(fileName, nullptr, pDoc)) {
// the array is similar to ledmap, except it has only 3 values:
// -1 ... missing pixel (do not increase pixel count)
// 0 ... inactive pixel (it does count, but should be mapped out (-1))
// 1 ... active pixel (it will count and will be mapped)
JsonArray map = pDoc->as<JsonArray>();
gapSize = map.size();
if (!map.isNull() && gapSize >= matrixSize) { // not an empty map
gapTable = static_cast<int8_t*>(malloc(gapSize));
if (gapTable) for (size_t i = 0; i < gapSize; i++) {
gapTable[i] = constrain(map[i], -1, 1);
}
}
}
DEBUG_PRINTLN(F("Gaps loaded."));
releaseJSONBufferLock();
}
unsigned x, y, pix=0; //pixel
for (size_t pan = 0; pan < panel.size(); pan++) {
Panel &p = panel[pan];
unsigned h = p.vertical ? p.height : p.width;
unsigned v = p.vertical ? p.width : p.height;
for (size_t j = 0; j < v; j++){
for(size_t i = 0; i < h; i++) {
y = (p.vertical?p.rightStart:p.bottomStart) ? v-j-1 : j;
x = (p.vertical?p.bottomStart:p.rightStart) ? h-i-1 : i;
x = p.serpentine && j%2 ? h-x-1 : x;
size_t index = (p.yOffset + (p.vertical?x:y)) * Segment::maxWidth + p.xOffset + (p.vertical?y:x);
if (!gapTable || (gapTable && gapTable[index] > 0)) customMappingTable[index] = pix; // a useful pixel (otherwise -1 is retained)
if (!gapTable || (gapTable && gapTable[index] >= 0)) pix++; // not a missing pixel
}
}
}
// delete gap array as we no longer need it
if (gapTable) free(gapTable);
#ifdef WLED_DEBUG
DEBUG_PRINT(F("Matrix ledmap:"));
for (unsigned i=0; i<customMappingSize; i++) {
if (!(i%Segment::maxWidth)) DEBUG_PRINTLN();
DEBUG_PRINTF_P(PSTR("%4d,"), customMappingTable[i]);
}
DEBUG_PRINTLN();
#endif
} else { // memory allocation error
DEBUG_PRINTLN(F("ERROR 2D LED map allocation error."));
isMatrix = false;
panels = 0;
panel.clear();
Segment::maxWidth = _length;
Segment::maxHeight = 1;
resetSegments();
}
}
#else
isMatrix = false; // no matter what config says
#endif
}
///////////////////////////////////////////////////////////
// Segment:: routines
///////////////////////////////////////////////////////////
#ifndef WLED_DISABLE_2D
// raw setColor function without checks (checks are done in setPixelColorXY())
void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(const int& x, const int& y, uint32_t& col) const
{
const int baseX = start + x;
const int baseY = startY + y;
#ifndef WLED_DISABLE_MODE_BLEND
// if blending modes, blend with underlying pixel
if (_modeBlend && blendingStyle == BLEND_STYLE_FADE) col = color_blend16(strip.getPixelColorXY(baseX, baseY), col, 0xFFFFU - progress());
#endif
strip.setPixelColorXY(baseX, baseY, col);
// Apply mirroring
if (mirror || mirror_y) {
const int mirrorX = start + width() - x - 1;
const int mirrorY = startY + height() - y - 1;
if (mirror) strip.setPixelColorXY(transpose ? baseX : mirrorX, transpose ? mirrorY : baseY, col);
if (mirror_y) strip.setPixelColorXY(transpose ? mirrorX : baseX, transpose ? baseY : mirrorY, col);
if (mirror && mirror_y) strip.setPixelColorXY(mirrorX, mirrorY, col);
}
}
// pixel is clipped if it falls outside clipping range (_modeBlend==true) or is inside clipping range (_modeBlend==false)
// if clipping start > stop the clipping range is inverted
// _modeBlend==true -> old effect during transition
// _modeBlend==false -> new effect during transition
bool IRAM_ATTR_YN Segment::isPixelXYClipped(int x, int y) const {
#ifndef WLED_DISABLE_MODE_BLEND
if (_clipStart != _clipStop && blendingStyle != BLEND_STYLE_FADE) {
const bool invertX = _clipStart > _clipStop;
const bool invertY = _clipStartY > _clipStopY;
const int startX = invertX ? _clipStop : _clipStart;
const int stopX = invertX ? _clipStart : _clipStop;
const int startY = invertY ? _clipStopY : _clipStartY;
const int stopY = invertY ? _clipStartY : _clipStopY;
if (blendingStyle == BLEND_STYLE_FAIRY_DUST) {
const unsigned width = stopX - startX; // assumes full segment width (faster than virtualWidth())
const unsigned len = width * (stopY - startY); // assumes full segment height (faster than virtualHeight())
if (len < 2) return false;
const unsigned shuffled = hashInt(x + y * width) % len;
const unsigned pos = (shuffled * 0xFFFFU) / len;
return progress() > pos;
}
bool xInside = (x >= startX && x < stopX); if (invertX) xInside = !xInside;
bool yInside = (y >= startY && y < stopY); if (invertY) yInside = !yInside;
const bool clip = (invertX && invertY) ? !_modeBlend : _modeBlend;
if (xInside && yInside) return clip; // covers window & corners (inverted)
return !clip;
}
#endif
return false;
}
void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col) const
{
if (!isActive()) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
#ifndef WLED_DISABLE_MODE_BLEND
unsigned prog = 0xFFFF - progress();
if (!prog && !_modeBlend && (blendingStyle & BLEND_STYLE_PUSH_MASK)) {
unsigned dX = (blendingStyle == BLEND_STYLE_PUSH_UP || blendingStyle == BLEND_STYLE_PUSH_DOWN) ? 0 : prog * vW / 0xFFFF;
unsigned dY = (blendingStyle == BLEND_STYLE_PUSH_LEFT || blendingStyle == BLEND_STYLE_PUSH_RIGHT) ? 0 : prog * vH / 0xFFFF;
if (blendingStyle == BLEND_STYLE_PUSH_LEFT || blendingStyle == BLEND_STYLE_PUSH_TL || blendingStyle == BLEND_STYLE_PUSH_BL) x += dX;
else x -= dX;
if (blendingStyle == BLEND_STYLE_PUSH_DOWN || blendingStyle == BLEND_STYLE_PUSH_TL || blendingStyle == BLEND_STYLE_PUSH_TR) y -= dY;
else y += dY;
}
#endif
if (x >= vW || y >= vH || x < 0 || y < 0 || isPixelXYClipped(x,y)) return; // if pixel would fall out of virtual segment just exit
// if color is unscaled
if (!_colorScaled) col = color_fade(col, _segBri);
if (reverse ) x = vW - x - 1;
if (reverse_y) y = vH - y - 1;
if (transpose) { std::swap(x,y); } // swap X & Y if segment transposed
unsigned groupLen = groupLength();
if (groupLen > 1) {
int W = width();
int H = height();
x *= groupLen; // expand to physical pixels
y *= groupLen; // expand to physical pixels
const int maxY = std::min(y + grouping, H);
const int maxX = std::min(x + grouping, W);
for (int yY = y; yY < maxY; yY++) {
for (int xX = x; xX < maxX; xX++) {
_setPixelColorXY_raw(xX, yY, col);
}
}
} else {
_setPixelColorXY_raw(x, y, col);
}
}
#ifdef WLED_USE_AA_PIXELS
// anti-aliased version of setPixelColorXY()
void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa) const
{
if (!isActive()) return; // not active
if (x<0.0f || x>1.0f || y<0.0f || y>1.0f) return; // not normalized
float fX = x * (vWidth()-1);
float fY = y * (vHeight()-1);
if (aa) {
unsigned xL = roundf(fX-0.49f);
unsigned xR = roundf(fX+0.49f);
unsigned yT = roundf(fY-0.49f);
unsigned yB = roundf(fY+0.49f);
float dL = (fX - xL)*(fX - xL);
float dR = (xR - fX)*(xR - fX);
float dT = (fY - yT)*(fY - yT);
float dB = (yB - fY)*(yB - fY);
uint32_t cXLYT = getPixelColorXY(xL, yT);
uint32_t cXRYT = getPixelColorXY(xR, yT);
uint32_t cXLYB = getPixelColorXY(xL, yB);
uint32_t cXRYB = getPixelColorXY(xR, yB);
if (xL!=xR && yT!=yB) {
setPixelColorXY(xL, yT, color_blend(col, cXLYT, uint8_t(sqrtf(dL*dT)*255.0f))); // blend TL pixel
setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(sqrtf(dR*dT)*255.0f))); // blend TR pixel
setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(sqrtf(dL*dB)*255.0f))); // blend BL pixel
setPixelColorXY(xR, yB, color_blend(col, cXRYB, uint8_t(sqrtf(dR*dB)*255.0f))); // blend BR pixel
} else if (xR!=xL && yT==yB) {
setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dL*255.0f))); // blend L pixel
setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(dR*255.0f))); // blend R pixel
} else if (xR==xL && yT!=yB) {
setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dT*255.0f))); // blend T pixel
setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(dB*255.0f))); // blend B pixel
} else {
setPixelColorXY(xL, yT, col); // exact match (x & y land on a pixel)
}
} else {
setPixelColorXY(uint16_t(roundf(fX)), uint16_t(roundf(fY)), col);
}
}
#endif
// returns RGBW values of pixel
uint32_t IRAM_ATTR_YN Segment::getPixelColorXY(int x, int y) const {
if (!isActive()) return 0; // not active
const int vW = vWidth();
const int vH = vHeight();
#ifndef WLED_DISABLE_MODE_BLEND
unsigned prog = 0xFFFF - progress();
if (!prog && !_modeBlend && (blendingStyle & BLEND_STYLE_PUSH_MASK)) {
unsigned dX = (blendingStyle == BLEND_STYLE_PUSH_UP || blendingStyle == BLEND_STYLE_PUSH_DOWN) ? 0 : prog * vW / 0xFFFF;
unsigned dY = (blendingStyle == BLEND_STYLE_PUSH_LEFT || blendingStyle == BLEND_STYLE_PUSH_RIGHT) ? 0 : prog * vH / 0xFFFF;
if (blendingStyle == BLEND_STYLE_PUSH_LEFT || blendingStyle == BLEND_STYLE_PUSH_TL || blendingStyle == BLEND_STYLE_PUSH_BL) x -= dX;
else x += dX;
if (blendingStyle == BLEND_STYLE_PUSH_DOWN || blendingStyle == BLEND_STYLE_PUSH_TL || blendingStyle == BLEND_STYLE_PUSH_TR) y -= dY;
else y += dY;
}
#endif
if (x >= vW || y >= vH || x<0 || y<0 || isPixelXYClipped(x,y)) return 0; // if pixel would fall out of virtual segment just exit
if (reverse ) x = vW - x - 1;
if (reverse_y) y = vH - y - 1;
if (transpose) { std::swap(x,y); } // swap X & Y if segment transposed
x *= groupLength(); // expand to physical pixels
y *= groupLength(); // expand to physical pixels
if (x >= width() || y >= height()) return 0;
return strip.getPixelColorXY(start + x, startY + y);
}
// 2D blurring, can be asymmetrical
void Segment::blur2D(uint8_t blur_x, uint8_t blur_y, bool smear) {
if (!isActive()) return; // not active
const unsigned cols = vWidth();
const unsigned rows = vHeight();
uint32_t lastnew; // not necessary to initialize lastnew and last, as both will be initialized by the first loop iteration
uint32_t last;
if (blur_x) {
const uint8_t keepx = smear ? 255 : 255 - blur_x;
const uint8_t seepx = blur_x >> 1;
for (unsigned row = 0; row < rows; row++) { // blur rows (x direction)
uint32_t carryover = BLACK;
uint32_t curnew = BLACK;
for (unsigned x = 0; x < cols; x++) {
uint32_t cur = getPixelColorXY(x, row);
uint32_t part = color_fade(cur, seepx);
curnew = color_fade(cur, keepx);
if (x > 0) {
if (carryover) curnew = color_add(curnew, carryover);
uint32_t prev = color_add(lastnew, part);
// optimization: only set pixel if color has changed
if (last != prev) setPixelColorXY(x - 1, row, prev);
} else setPixelColorXY(x, row, curnew); // first pixel
lastnew = curnew;
last = cur; // save original value for comparison on next iteration
carryover = part;
}
setPixelColorXY(cols-1, row, curnew); // set last pixel
}
}
if (blur_y) {
const uint8_t keepy = smear ? 255 : 255 - blur_y;
const uint8_t seepy = blur_y >> 1;
for (unsigned col = 0; col < cols; col++) {
uint32_t carryover = BLACK;
uint32_t curnew = BLACK;
for (unsigned y = 0; y < rows; y++) {
uint32_t cur = getPixelColorXY(col, y);
uint32_t part = color_fade(cur, seepy);
curnew = color_fade(cur, keepy);
if (y > 0) {
if (carryover) curnew = color_add(curnew, carryover);
uint32_t prev = color_add(lastnew, part);
// optimization: only set pixel if color has changed
if (last != prev) setPixelColorXY(col, y - 1, prev);
} else setPixelColorXY(col, y, curnew); // first pixel
lastnew = curnew;
last = cur; //save original value for comparison on next iteration
carryover = part;
}
setPixelColorXY(col, rows - 1, curnew);
}
}
}
/*
// 2D Box blur
void Segment::box_blur(unsigned radius, bool smear) {
if (!isActive() || radius == 0) return; // not active
if (radius > 3) radius = 3;
const unsigned d = (1 + 2*radius) * (1 + 2*radius); // averaging divisor
const unsigned cols = vWidth();
const unsigned rows = vHeight();
uint16_t *tmpRSum = new uint16_t[cols*rows];
uint16_t *tmpGSum = new uint16_t[cols*rows];
uint16_t *tmpBSum = new uint16_t[cols*rows];
uint16_t *tmpWSum = new uint16_t[cols*rows];
// fill summed-area table (https://en.wikipedia.org/wiki/Summed-area_table)
for (unsigned x = 0; x < cols; x++) {
unsigned rS, gS, bS, wS;
unsigned index;
rS = gS = bS = wS = 0;
for (unsigned y = 0; y < rows; y++) {
index = x * cols + y;
if (x > 0) {
unsigned index2 = (x - 1) * cols + y;
tmpRSum[index] = tmpRSum[index2];
tmpGSum[index] = tmpGSum[index2];
tmpBSum[index] = tmpBSum[index2];
tmpWSum[index] = tmpWSum[index2];
} else {
tmpRSum[index] = 0;
tmpGSum[index] = 0;
tmpBSum[index] = 0;
tmpWSum[index] = 0;
}
uint32_t c = getPixelColorXY(x, y);
rS += R(c);
gS += G(c);
bS += B(c);
wS += W(c);
tmpRSum[index] += rS;
tmpGSum[index] += gS;
tmpBSum[index] += bS;
tmpWSum[index] += wS;
}
}
// do a box blur using pre-calculated sums
for (unsigned x = 0; x < cols; x++) {
for (unsigned y = 0; y < rows; y++) {
// sum = D + A - B - C where k = (x,y)
// +----+-+---- (x)
// | | |
// +----A-B
// | |k|
// +----C-D
// |
//(y)
unsigned x0 = x < radius ? 0 : x - radius;
unsigned y0 = y < radius ? 0 : y - radius;
unsigned x1 = x >= cols - radius ? cols - 1 : x + radius;
unsigned y1 = y >= rows - radius ? rows - 1 : y + radius;
unsigned A = x0 * cols + y0;
unsigned B = x1 * cols + y0;
unsigned C = x0 * cols + y1;
unsigned D = x1 * cols + y1;
unsigned r = tmpRSum[D] + tmpRSum[A] - tmpRSum[C] - tmpRSum[B];
unsigned g = tmpGSum[D] + tmpGSum[A] - tmpGSum[C] - tmpGSum[B];
unsigned b = tmpBSum[D] + tmpBSum[A] - tmpBSum[C] - tmpBSum[B];
unsigned w = tmpWSum[D] + tmpWSum[A] - tmpWSum[C] - tmpWSum[B];
setPixelColorXY(x, y, RGBW32(r/d, g/d, b/d, w/d));
}
}
delete[] tmpRSum;
delete[] tmpGSum;
delete[] tmpBSum;
delete[] tmpWSum;
}
*/
void Segment::moveX(int delta, bool wrap) {
if (!isActive() || !delta) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
int absDelta = abs(delta);
if (absDelta >= vW) return;
uint32_t newPxCol[vW];
int newDelta;
int stop = vW;
int start = 0;
if (wrap) newDelta = (delta + vW) % vW; // +cols in case delta < 0
else {
if (delta < 0) start = absDelta;
stop = vW - absDelta;
newDelta = delta > 0 ? delta : 0;
}
for (int y = 0; y < vH; y++) {
for (int x = 0; x < stop; x++) {
int srcX = x + newDelta;
if (wrap) srcX %= vW; // Wrap using modulo when `wrap` is true
newPxCol[x] = getPixelColorXY(srcX, y);
}
for (int x = 0; x < stop; x++) setPixelColorXY(x + start, y, newPxCol[x]);
}
}
void Segment::moveY(int delta, bool wrap) {
if (!isActive() || !delta) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
int absDelta = abs(delta);
if (absDelta >= vH) return;
uint32_t newPxCol[vH];
int newDelta;
int stop = vH;
int start = 0;
if (wrap) newDelta = (delta + vH) % vH; // +rows in case delta < 0
else {
if (delta < 0) start = absDelta;
stop = vH - absDelta;
newDelta = delta > 0 ? delta : 0;
}
for (int x = 0; x < vW; x++) {
for (int y = 0; y < stop; y++) {
int srcY = y + newDelta;
if (wrap) srcY %= vH; // Wrap using modulo when `wrap` is true
newPxCol[y] = getPixelColorXY(x, srcY);
}
for (int y = 0; y < stop; y++) setPixelColorXY(x, y + start, newPxCol[y]);
}
}
// move() - move all pixels in desired direction delta number of pixels
// @param dir direction: 0=left, 1=left-up, 2=up, 3=right-up, 4=right, 5=right-down, 6=down, 7=left-down
// @param delta number of pixels to move
// @param wrap around
void Segment::move(unsigned dir, unsigned delta, bool wrap) {
if (delta==0) return;
switch (dir) {
case 0: moveX( delta, wrap); break;
case 1: moveX( delta, wrap); moveY( delta, wrap); break;
case 2: moveY( delta, wrap); break;
case 3: moveX(-delta, wrap); moveY( delta, wrap); break;
case 4: moveX(-delta, wrap); break;
case 5: moveX(-delta, wrap); moveY(-delta, wrap); break;
case 6: moveY(-delta, wrap); break;
case 7: moveX( delta, wrap); moveY(-delta, wrap); break;
}
}
void Segment::drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) {
if (!isActive() || radius == 0) return; // not active
if (soft) {
// Xiaolin Wus algorithm
const int rsq = radius*radius;
int x = 0;
int y = radius;
unsigned oldFade = 0;
while (x < y) {
float yf = sqrtf(float(rsq - x*x)); // needs to be floating point
uint8_t fade = float(0xFF) * (ceilf(yf) - yf); // how much color to keep
if (oldFade > fade) y--;
oldFade = fade;
int px, py;
for (uint8_t i = 0; i < 16; i++) {
int swaps = (i & 0x4 ? 1 : 0); // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
int adj = (i < 8) ? 0 : 1; // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
int dx = (i & 1) ? -1 : 1; // 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1
int dy = (i & 2) ? -1 : 1; // 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
if (swaps) {
px = cx + (y - adj) * dx;
py = cy + x * dy;
} else {
px = cx + x * dx;
py = cy + (y - adj) * dy;
}
uint32_t pixCol = getPixelColorXY(px, py);
setPixelColorXY(px, py, adj ?
color_blend(pixCol, col, fade) :
color_blend(col, pixCol, fade));
}
x++;
}
} else {
// pre-scale color for all pixels
col = color_fade(col, _segBri);
_colorScaled = true;
// Bresenhams Algorithm
int d = 3 - (2*radius);
int y = radius, x = 0;
while (y >= x) {
for (int i = 0; i < 4; i++) {
int dx = (i & 1) ? -x : x;
int dy = (i & 2) ? -y : y;
setPixelColorXY(cx + dx, cy + dy, col);
setPixelColorXY(cx + dy, cy + dx, col);
}
x++;
if (d > 0) {
y--;
d += 4 * (x - y) + 10;
} else {
d += 4 * x + 6;
}
}
_colorScaled = false;
}
}
// by stepko, taken from https://editor.soulmatelights.com/gallery/573-blobs
void Segment::fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) {
if (!isActive() || radius == 0) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
// draw soft bounding circle
if (soft) drawCircle(cx, cy, radius, col, soft);
// pre-scale color for all pixels
col = color_fade(col, _segBri);
_colorScaled = true;
// fill it
for (int y = -radius; y <= radius; y++) {
for (int x = -radius; x <= radius; x++) {
if (x * x + y * y <= radius * radius &&
int(cx)+x >= 0 && int(cy)+y >= 0 &&
int(cx)+x < vW && int(cy)+y < vH)
setPixelColorXY(cx + x, cy + y, col);
}
}
_colorScaled = false;
}
//line function
void Segment::drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft) {
if (!isActive()) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
if (x0 >= vW || x1 >= vW || y0 >= vH || y1 >= vH) return;
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; // x distance & step
const int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; // y distance & step
// single pixel (line length == 0)
if (dx+dy == 0) {
setPixelColorXY(x0, y0, c);
return;
}
if (soft) {
// Xiaolin Wus algorithm
const bool steep = dy > dx;
if (steep) {
// we need to go along longest dimension
std::swap(x0,y0);
std::swap(x1,y1);
}
if (x0 > x1) {
// we need to go in increasing fashion
std::swap(x0,x1);
std::swap(y0,y1);
}
float gradient = x1-x0 == 0 ? 1.0f : float(y1-y0) / float(x1-x0);
float intersectY = y0;
for (int x = x0; x <= x1; x++) {
uint8_t keep = float(0xFF) * (intersectY-int(intersectY)); // how much color to keep
uint8_t seep = 0xFF - keep; // how much background to keep
int y = int(intersectY);
if (steep) std::swap(x,y); // temporaryly swap if steep
// pixel coverage is determined by fractional part of y co-ordinate
setPixelColorXY(x, y, color_blend(c, getPixelColorXY(x, y), keep));
setPixelColorXY(x+int(steep), y+int(!steep), color_blend(c, getPixelColorXY(x+int(steep), y+int(!steep)), seep));
intersectY += gradient;
if (steep) std::swap(x,y); // restore if steep
}
} else {
// pre-scale color for all pixels
c = color_fade(c, _segBri);
_colorScaled = true;
// Bresenham's algorithm
int err = (dx>dy ? dx : -dy)/2; // error direction
for (;;) {
setPixelColorXY(x0, y0, c);
if (x0==x1 && y0==y1) break;
int e2 = err;
if (e2 >-dx) { err -= dy; x0 += sx; }
if (e2 < dy) { err += dx; y0 += sy; }
}
_colorScaled = false;
}
}
#include "src/font/console_font_4x6.h"
#include "src/font/console_font_5x8.h"
#include "src/font/console_font_5x12.h"
#include "src/font/console_font_6x8.h"
#include "src/font/console_font_7x9.h"
// draws a raster font character on canvas
// only supports: 4x6=24, 5x8=40, 5x12=60, 6x8=48 and 7x9=63 fonts ATM
void Segment::drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t col2, int8_t rotate, bool usePalGrad) {
if (!isActive()) return; // not active
if (chr < 32 || chr > 126) return; // only ASCII 32-126 supported
chr -= 32; // align with font table entries
const int font = w*h;
CRGB col = CRGB(color);
CRGBPalette16 grad = CRGBPalette16(col, col2 ? CRGB(col2) : col);
if(usePalGrad) grad = SEGPALETTE; // selected palette as gradient
//if (w<5 || w>6 || h!=8) return;
for (int i = 0; i<h; i++) { // character height
uint8_t bits = 0;
switch (font) {
case 24: bits = pgm_read_byte_near(&console_font_4x6[(chr * h) + i]); break; // 5x8 font
case 40: bits = pgm_read_byte_near(&console_font_5x8[(chr * h) + i]); break; // 5x8 font
case 48: bits = pgm_read_byte_near(&console_font_6x8[(chr * h) + i]); break; // 6x8 font
case 63: bits = pgm_read_byte_near(&console_font_7x9[(chr * h) + i]); break; // 7x9 font
case 60: bits = pgm_read_byte_near(&console_font_5x12[(chr * h) + i]); break; // 5x12 font
default: return;
}
uint32_t c = ColorFromPaletteWLED(grad, (i+1)*255/h, 255, NOBLEND);
// pre-scale color for all pixels
c = color_fade(c, _segBri);
_colorScaled = true;
for (int j = 0; j<w; j++) { // character width
int x0, y0;
switch (rotate) {
case -1: x0 = x + (h-1) - i; y0 = y + (w-1) - j; break; // -90 deg
case -2:
case 2: x0 = x + j; y0 = y + (h-1) - i; break; // 180 deg
case 1: x0 = x + i; y0 = y + j; break; // +90 deg
default: x0 = x + (w-1) - j; y0 = y + i; break; // no rotation
}
if (x0 < 0 || x0 >= (int)vWidth() || y0 < 0 || y0 >= (int)vHeight()) continue; // drawing off-screen
if (((bits>>(j+(8-w))) & 0x01)) { // bit set
setPixelColorXY(x0, y0, c);
}
}
_colorScaled = false;
}
}
#define WU_WEIGHT(a,b) ((uint8_t) (((a)*(b)+(a)+(b))>>8))
void Segment::wu_pixel(uint32_t x, uint32_t y, CRGB c) { //awesome wu_pixel procedure by reddit u/sutaburosu
if (!isActive()) return; // not active
// extract the fractional parts and derive their inverses
unsigned xx = x & 0xff, yy = y & 0xff, ix = 255 - xx, iy = 255 - yy;
// calculate the intensities for each affected pixel
uint8_t wu[4] = {WU_WEIGHT(ix, iy), WU_WEIGHT(xx, iy),
WU_WEIGHT(ix, yy), WU_WEIGHT(xx, yy)};
// multiply the intensities by the colour, and saturating-add them to the pixels
for (int i = 0; i < 4; i++) {
int wu_x = (x >> 8) + (i & 1); // precalculate x
int wu_y = (y >> 8) + ((i >> 1) & 1); // precalculate y
CRGB led = getPixelColorXY(wu_x, wu_y);
CRGB oldLed = led;
led.r = qadd8(led.r, c.r * wu[i] >> 8);
led.g = qadd8(led.g, c.g * wu[i] >> 8);
led.b = qadd8(led.b, c.b * wu[i] >> 8);
if (led != oldLed) setPixelColorXY(wu_x, wu_y, led); // don't repaint if same color
}
}
#undef WU_WEIGHT
#endif // WLED_DISABLE_2D