Files
WLED/wled00/util.cpp
Frank 49a1ae54cf update for S3 buildenvs, and support for 32MB Flash
* removed obsolete "-D CONFIG_LITTLEFS_FOR_IDF_3_2" => this was only for the old "lorol/LITTLEFS" whic is not used any more in WLED
* commented out "-D ARDUINO_USB_MODE=1", because users have reported that it leads to boot "hanging" when no USB-CDC is connected
* Added buildenv and 32MB partition for esp32s3-WROOM-2 with 32MB flash
* disabled "-mfix-esp32-psram-cache-issue" warning for -S2 and -S3 (only necessary for classic esp32 "rev.1", but harmful on S3 or S2)
2025-11-22 20:35:53 +01:00

1226 lines
45 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#include "wled.h"
#include "fcn_declare.h"
#include "const.h"
#ifdef ESP8266
#include "user_interface.h" // for bootloop detection
#include <Hash.h> // for SHA1 on ESP8266
#else
#include <Update.h>
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 0)
#include "esp32/rtc.h" // for bootloop detection
#elif ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(3, 3, 0)
#include "soc/rtc.h"
#endif
#include "mbedtls/sha1.h" // for SHA1 on ESP32
#include "esp_efuse.h"
#endif
//helper to get int value at a position in string
int getNumVal(const String &req, uint16_t pos)
{
return req.substring(pos+3).toInt();
}
//helper to get int value with in/decrementing support via ~ syntax
void parseNumber(const char* str, byte &val, byte minv, byte maxv)
{
if (str == nullptr || str[0] == '\0') return;
if (str[0] == 'r') {val = hw_random8(minv,maxv?maxv:255); return;} // maxv for random cannot be 0
bool wrap = false;
if (str[0] == 'w' && strlen(str) > 1) {str++; wrap = true;}
if (str[0] == '~') {
int out = atoi(str +1);
if (out == 0) {
if (str[1] == '0') return;
if (str[1] == '-') {
val = (int)(val -1) < (int)minv ? maxv : min((int)maxv,(val -1)); //-1, wrap around
} else {
val = (int)(val +1) > (int)maxv ? minv : max((int)minv,(val +1)); //+1, wrap around
}
} else {
if (wrap && val == maxv && out > 0) out = minv;
else if (wrap && val == minv && out < 0) out = maxv;
else {
out += val;
if (out > maxv) out = maxv;
if (out < minv) out = minv;
}
val = out;
}
return;
} else if (minv == maxv && minv == 0) { // limits "unset" i.e. both 0
byte p1 = atoi(str);
const char* str2 = strchr(str,'~'); // min/max range (for preset cycle, e.g. "1~5~")
if (str2) {
byte p2 = atoi(++str2); // skip ~
if (p2 > 0) {
while (isdigit(*(++str2))); // skip digits
parseNumber(str2, val, p1, p2);
return;
}
}
}
val = atoi(str);
}
//getVal supports inc/decrementing and random ("X~Y(r|~[w][-][Z])" form)
bool getVal(JsonVariant elem, byte &val, byte vmin, byte vmax) {
if (elem.is<int>()) {
if (elem < 0) return false; //ignore e.g. {"ps":-1}
val = elem;
return true;
} else if (elem.is<const char*>()) {
const char* str = elem;
size_t len = strnlen(str, 14);
if (len == 0 || len > 12) return false;
// fix for #3605 & #4346
// ignore vmin and vmax and use as specified in API
if (len > 3 && (strchr(str,'r') || strchr(str,'~') != strrchr(str,'~'))) vmax = vmin = 0; // we have "X~Y(r|~[w][-][Z])" form
// end fix
parseNumber(str, val, vmin, vmax);
return true;
}
return false; //key does not exist
}
bool getBoolVal(const JsonVariant &elem, bool dflt) {
if (elem.is<const char*>() && elem.as<const char*>()[0] == 't') {
return !dflt;
} else {
return elem | dflt;
}
}
bool updateVal(const char* req, const char* key, byte &val, byte minv, byte maxv)
{
const char *v = strstr(req, key);
if (v) v += strlen(key);
else return false;
parseNumber(v, val, minv, maxv);
return true;
}
static size_t printSetFormInput(Print& settingsScript, const char* key, const char* selector, int value) {
return settingsScript.printf_P(PSTR("d.Sf.%s.%s=%d;"), key, selector, value);
}
size_t printSetFormCheckbox(Print& settingsScript, const char* key, int val) {
return printSetFormInput(settingsScript, key, PSTR("checked"), val);
}
size_t printSetFormValue(Print& settingsScript, const char* key, int val) {
return printSetFormInput(settingsScript, key, PSTR("value"), val);
}
size_t printSetFormIndex(Print& settingsScript, const char* key, int index) {
return printSetFormInput(settingsScript, key, PSTR("selectedIndex"), index);
}
size_t printSetFormValue(Print& settingsScript, const char* key, const char* val) {
return settingsScript.printf_P(PSTR("d.Sf.%s.value=\"%s\";"),key,val);
}
size_t printSetClassElementHTML(Print& settingsScript, const char* key, const int index, const char* val) {
return settingsScript.printf_P(PSTR("d.getElementsByClassName(\"%s\")[%d].innerHTML=\"%s\";"), key, index, val);
}
void prepareHostname(char* hostname)
{
sprintf_P(hostname, PSTR("wled-%*s"), 6, escapedMac.c_str() + 6);
const char *pC = serverDescription;
unsigned pos = 5; // keep "wled-"
while (*pC && pos < 24) { // while !null and not over length
if (isalnum(*pC)) { // if the current char is alpha-numeric append it to the hostname
hostname[pos] = *pC;
pos++;
} else if (*pC == ' ' || *pC == '_' || *pC == '-' || *pC == '+' || *pC == '!' || *pC == '?' || *pC == '*') {
hostname[pos] = '-';
pos++;
}
// else do nothing - no leading hyphens and do not include hyphens for all other characters.
pC++;
}
//last character must not be hyphen
if (pos > 5) {
while (pos > 4 && hostname[pos -1] == '-') pos--;
hostname[pos] = '\0'; // terminate string (leave at least "wled")
}
}
bool isAsterisksOnly(const char* str, byte maxLen)
{
for (unsigned i = 0; i < maxLen; i++) {
if (str[i] == 0) break;
if (str[i] != '*') return false;
}
//at this point the password contains asterisks only
return (str[0] != 0); //false on empty string
}
//threading/network callback details: https://github.com/wled-dev/WLED/pull/2336#discussion_r762276994
bool requestJSONBufferLock(uint8_t moduleID)
{
if (pDoc == nullptr) {
DEBUG_PRINTLN(F("ERROR: JSON buffer not allocated!"));
return false;
}
#if defined(ARDUINO_ARCH_ESP32)
// Use a recursive mutex type in case our task is the one holding the JSON buffer.
// This can happen during large JSON web transactions. In this case, we continue immediately
// and then will return out below if the lock is still held.
if (xSemaphoreTakeRecursive(jsonBufferLockMutex, 250) == pdFALSE) return false; // timed out waiting
#elif defined(ARDUINO_ARCH_ESP8266)
// If we're in system context, delay() won't return control to the user context, so there's
// no point in waiting.
if (can_yield()) {
unsigned long now = millis();
while (jsonBufferLock && (millis()-now < 250)) delay(1); // wait for fraction for buffer lock
}
#else
#error Unsupported task framework - fix requestJSONBufferLock
#endif
// If the lock is still held - by us, or by another task
if (jsonBufferLock) {
DEBUG_PRINTF_P(PSTR("ERROR: Locking JSON buffer (%d) failed! (still locked by %d)\n"), moduleID, jsonBufferLock);
#ifdef ARDUINO_ARCH_ESP32
xSemaphoreGiveRecursive(jsonBufferLockMutex);
#endif
return false;
}
jsonBufferLock = moduleID ? moduleID : 255;
DEBUG_PRINTF_P(PSTR("JSON buffer locked. (%d)\n"), jsonBufferLock);
pDoc->clear();
return true;
}
void releaseJSONBufferLock()
{
DEBUG_PRINTF_P(PSTR("JSON buffer released. (%d)\n"), jsonBufferLock);
jsonBufferLock = 0;
#ifdef ARDUINO_ARCH_ESP32
xSemaphoreGiveRecursive(jsonBufferLockMutex);
#endif
}
// extracts effect mode (or palette) name from names serialized string
// caller must provide large enough buffer for name (including SR extensions)!
uint8_t extractModeName(uint8_t mode, const char *src, char *dest, uint8_t maxLen)
{
if (src == JSON_mode_names || src == nullptr) {
if (mode < strip.getModeCount()) {
char lineBuffer[256];
//strcpy_P(lineBuffer, (const char*)pgm_read_dword(&(WS2812FX::_modeData[mode])));
strncpy_P(lineBuffer, strip.getModeData(mode), sizeof(lineBuffer)/sizeof(char)-1);
lineBuffer[sizeof(lineBuffer)/sizeof(char)-1] = '\0'; // terminate string
size_t len = strlen(lineBuffer);
size_t j = 0;
for (; j < maxLen && j < len; j++) {
if (lineBuffer[j] == '\0' || lineBuffer[j] == '@') break;
dest[j] = lineBuffer[j];
}
dest[j] = 0; // terminate string
return strlen(dest);
} else return 0;
}
if (src == JSON_palette_names && mode > 255-customPalettes.size()) {
snprintf_P(dest, maxLen, PSTR("~ Custom %d ~"), 255-mode);
dest[maxLen-1] = '\0';
return strlen(dest);
}
unsigned qComma = 0;
bool insideQuotes = false;
unsigned printedChars = 0;
char singleJsonSymbol;
size_t len = strlen_P(src);
// Find the mode name in JSON
for (size_t i = 0; i < len; i++) {
singleJsonSymbol = pgm_read_byte_near(src + i);
if (singleJsonSymbol == '\0') break;
if (singleJsonSymbol == '@' && insideQuotes && qComma == mode) break; //stop when SR extension encountered
switch (singleJsonSymbol) {
case '"':
insideQuotes = !insideQuotes;
break;
case '[':
case ']':
break;
case ',':
if (!insideQuotes) qComma++;
default:
if (!insideQuotes || (qComma != mode)) break;
dest[printedChars++] = singleJsonSymbol;
}
if ((qComma > mode) || (printedChars >= maxLen)) break;
}
dest[printedChars] = '\0';
return strlen(dest);
}
// extracts effect slider data (1st group after @)
uint8_t extractModeSlider(uint8_t mode, uint8_t slider, char *dest, uint8_t maxLen, uint8_t *var)
{
dest[0] = '\0'; // start by clearing buffer
if (mode < strip.getModeCount()) {
String lineBuffer = FPSTR(strip.getModeData(mode));
if (lineBuffer.length() > 0) {
int start = lineBuffer.indexOf('@'); // String::indexOf() returns an int, not an unsigned; -1 means "not found"
int stop = lineBuffer.indexOf(';', start);
if (start>0 && stop>0) {
String names = lineBuffer.substring(start, stop); // include @
int nameBegin = 1, nameEnd, nameDefault;
if (slider < 10) {
for (size_t i=0; i<=slider; i++) {
const char *tmpstr;
dest[0] = '\0'; //clear dest buffer
if (nameBegin <= 0) break; // there are no more names
nameEnd = names.indexOf(',', nameBegin);
if (i == slider) {
nameDefault = names.indexOf('=', nameBegin); // find default value
if (nameDefault > 0 && var && ((nameEnd>0 && nameDefault<nameEnd) || nameEnd<0)) {
*var = (uint8_t)atoi(names.substring(nameDefault+1).c_str());
}
if (names.charAt(nameBegin) == '!') {
switch (slider) {
case 0: tmpstr = PSTR("FX Speed"); break;
case 1: tmpstr = PSTR("FX Intensity"); break;
case 2: tmpstr = PSTR("FX Custom 1"); break;
case 3: tmpstr = PSTR("FX Custom 2"); break;
case 4: tmpstr = PSTR("FX Custom 3"); break;
default: tmpstr = PSTR("FX Custom"); break;
}
strncpy_P(dest, tmpstr, maxLen); // copy the name into buffer (replacing previous)
dest[maxLen-1] = '\0';
} else {
if (nameEnd<0) tmpstr = names.substring(nameBegin).c_str(); // did not find ",", last name?
else tmpstr = names.substring(nameBegin, nameEnd).c_str();
strlcpy(dest, tmpstr, maxLen); // copy the name into buffer (replacing previous)
}
}
nameBegin = nameEnd+1; // next name (if "," is not found it will be 0)
} // next slider
} else if (slider == 255) {
// palette
strlcpy(dest, "pal", maxLen);
names = lineBuffer.substring(stop+1); // stop has index of color slot names
nameBegin = names.indexOf(';'); // look for palette
if (nameBegin >= 0) {
nameEnd = names.indexOf(';', nameBegin+1);
if (!isdigit(names[nameBegin+1])) nameBegin = names.indexOf('=', nameBegin+1); // look for default value
if (nameEnd >= 0 && nameBegin > nameEnd) nameBegin = -1;
if (nameBegin >= 0 && var) {
*var = (uint8_t)atoi(names.substring(nameBegin+1).c_str());
}
}
}
// we have slider name (including default value) in the dest buffer
for (size_t i=0; i<strlen(dest); i++) if (dest[i]=='=') { dest[i]='\0'; break; } // truncate default value
} else {
// defaults to just speed and intensity since there is no slider data
switch (slider) {
case 0: strncpy_P(dest, PSTR("FX Speed"), maxLen); break;
case 1: strncpy_P(dest, PSTR("FX Intensity"), maxLen); break;
}
dest[maxLen] = '\0'; // strncpy does not necessarily null terminate string
}
}
return strlen(dest);
}
return 0;
}
// extracts mode parameter defaults from last section of mode data (e.g. "Juggle@!,Trail;!,!,;!;012;sx=16,ix=240")
int16_t extractModeDefaults(uint8_t mode, const char *segVar)
{
if (mode < strip.getModeCount()) {
char lineBuffer[256];
strncpy_P(lineBuffer, strip.getModeData(mode), sizeof(lineBuffer)/sizeof(char)-1);
lineBuffer[sizeof(lineBuffer)/sizeof(char)-1] = '\0'; // terminate string
if (lineBuffer[0] != 0) {
char* startPtr = strrchr(lineBuffer, ';'); // last ";" in FX data
if (!startPtr) return -1;
char* stopPtr = strstr(startPtr, segVar);
if (!stopPtr) return -1;
stopPtr += strlen(segVar) +1; // skip "="
return atoi(stopPtr);
}
}
return -1;
}
void checkSettingsPIN(const char* pin) {
if (!pin) return;
if (!correctPIN && millis() - lastEditTime < PIN_RETRY_COOLDOWN) return; // guard against PIN brute force
bool correctBefore = correctPIN;
correctPIN = (strlen(settingsPIN) == 0 || strncmp(settingsPIN, pin, 4) == 0);
lastEditTime = millis();
}
uint16_t crc16(const unsigned char* data_p, size_t length) {
uint8_t x;
uint16_t crc = 0xFFFF;
if (!length) return 0x1D0F;
while (length--) {
x = crc >> 8 ^ *data_p++;
x ^= x>>4;
crc = (crc << 8) ^ ((uint16_t)(x << 12)) ^ ((uint16_t)(x <<5)) ^ ((uint16_t)x);
}
return crc;
}
// fastled beatsin: 1:1 replacements to remove the use of fastled sin16()
// Generates a 16-bit sine wave at a given BPM that oscillates within a given range. see fastled for details.
uint16_t beatsin88_t(accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
{
uint16_t beat = beat88( beats_per_minute_88, timebase);
uint16_t beatsin (sin16_t( beat + phase_offset) + 32768);
uint16_t rangewidth = highest - lowest;
uint16_t scaledbeat = scale16( beatsin, rangewidth);
uint16_t result = lowest + scaledbeat;
return result;
}
// Generates a 16-bit sine wave at a given BPM that oscillates within a given range. see fastled for details.
uint16_t beatsin16_t(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
{
uint16_t beat = beat16( beats_per_minute, timebase);
uint16_t beatsin = (sin16_t( beat + phase_offset) + 32768);
uint16_t rangewidth = highest - lowest;
uint16_t scaledbeat = scale16( beatsin, rangewidth);
uint16_t result = lowest + scaledbeat;
return result;
}
// Generates an 8-bit sine wave at a given BPM that oscillates within a given range. see fastled for details.
uint8_t beatsin8_t(accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
{
uint8_t beat = beat8( beats_per_minute, timebase);
uint8_t beatsin = sin8_t( beat + phase_offset);
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8( beatsin, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Begin simulateSound (to enable audio enhanced effects to display something)
///////////////////////////////////////////////////////////////////////////////
// Currently 4 types defined, to be fine tuned and new types added
// (only 2 used as stored in 1 bit in segment options, consider switching to a single global simulation type)
typedef enum UM_SoundSimulations {
UMS_BeatSin = 0,
UMS_WeWillRockYou,
UMS_10_13,
UMS_14_3
} um_soundSimulations_t;
um_data_t* simulateSound(uint8_t simulationId)
{
static uint8_t samplePeak;
static float FFT_MajorPeak;
static uint8_t maxVol;
static uint8_t binNum;
static float volumeSmth;
static uint16_t volumeRaw;
static float my_magnitude;
//arrays
uint8_t *fftResult;
static um_data_t* um_data = nullptr;
if (!um_data) {
//claim storage for arrays
fftResult = (uint8_t *)malloc(sizeof(uint8_t) * 16);
// initialize um_data pointer structure
// NOTE!!!
// This may change as AudioReactive usermod may change
um_data = new um_data_t;
um_data->u_size = 8;
um_data->u_type = new um_types_t[um_data->u_size];
um_data->u_data = new void*[um_data->u_size];
um_data->u_data[0] = &volumeSmth;
um_data->u_data[1] = &volumeRaw;
um_data->u_data[2] = fftResult;
um_data->u_data[3] = &samplePeak;
um_data->u_data[4] = &FFT_MajorPeak;
um_data->u_data[5] = &my_magnitude;
um_data->u_data[6] = &maxVol;
um_data->u_data[7] = &binNum;
} else {
// get arrays from um_data
fftResult = (uint8_t*)um_data->u_data[2];
}
uint32_t ms = millis();
switch (simulationId) {
default:
case UMS_BeatSin:
for (int i = 0; i<16; i++)
fftResult[i] = beatsin8_t(120 / (i+1), 0, 255);
// fftResult[i] = (beatsin8_t(120, 0, 255) + (256/16 * i)) % 256;
volumeSmth = fftResult[8];
break;
case UMS_WeWillRockYou:
if (ms%2000 < 200) {
volumeSmth = hw_random8();
for (int i = 0; i<5; i++)
fftResult[i] = hw_random8();
}
else if (ms%2000 < 400) {
volumeSmth = 0;
for (int i = 0; i<16; i++)
fftResult[i] = 0;
}
else if (ms%2000 < 600) {
volumeSmth = hw_random8();
for (int i = 5; i<11; i++)
fftResult[i] = hw_random8();
}
else if (ms%2000 < 800) {
volumeSmth = 0;
for (int i = 0; i<16; i++)
fftResult[i] = 0;
}
else if (ms%2000 < 1000) {
volumeSmth = hw_random8();
for (int i = 11; i<16; i++)
fftResult[i] = hw_random8();
}
else {
volumeSmth = 0;
for (int i = 0; i<16; i++)
fftResult[i] = 0;
}
break;
case UMS_10_13:
for (int i = 0; i<16; i++)
fftResult[i] = perlin8(beatsin8_t(90 / (i+1), 0, 200)*15 + (ms>>10), ms>>3);
volumeSmth = fftResult[8];
break;
case UMS_14_3:
for (int i = 0; i<16; i++)
fftResult[i] = perlin8(beatsin8_t(120 / (i+1), 10, 30)*10 + (ms>>14), ms>>3);
volumeSmth = fftResult[8];
break;
}
samplePeak = hw_random8() > 250;
FFT_MajorPeak = 21 + (volumeSmth*volumeSmth) / 8.0f; // walk thru full range of 21hz...8200hz
maxVol = 31; // this gets feedback fro UI
binNum = 8; // this gets feedback fro UI
volumeRaw = volumeSmth;
my_magnitude = 10000.0f / 8.0f; //no idea if 10000 is a good value for FFT_Magnitude ???
if (volumeSmth < 1 ) my_magnitude = 0.001f; // noise gate closed - mute
return um_data;
}
static const char s_ledmap_tmpl[] PROGMEM = "ledmap%d.json";
// enumerate all ledmapX.json files on FS and extract ledmap names if existing
void enumerateLedmaps() {
StaticJsonDocument<64> filter;
filter["n"] = true;
ledMaps = 1;
for (size_t i=1; i<WLED_MAX_LEDMAPS; i++) {
char fileName[33] = "/";
sprintf_P(fileName+1, s_ledmap_tmpl, i);
bool isFile = WLED_FS.exists(fileName);
#ifndef ESP8266
if (ledmapNames[i-1]) { //clear old name
free(ledmapNames[i-1]);
ledmapNames[i-1] = nullptr;
}
#endif
if (isFile) {
ledMaps |= 1 << i;
#ifndef ESP8266
if (requestJSONBufferLock(21)) {
if (readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
size_t len = 0;
JsonObject root = pDoc->as<JsonObject>();
if (!root["n"].isNull()) {
// name field exists
const char *name = root["n"].as<const char*>();
if (name != nullptr) len = strlen(name);
if (len > 0 && len < 33) {
ledmapNames[i-1] = static_cast<char*>(malloc(len+1));
if (ledmapNames[i-1]) strlcpy(ledmapNames[i-1], name, 33);
}
}
if (!ledmapNames[i-1]) {
char tmp[33];
snprintf_P(tmp, 32, s_ledmap_tmpl, i);
len = strlen(tmp);
ledmapNames[i-1] = static_cast<char*>(malloc(len+1));
if (ledmapNames[i-1]) strlcpy(ledmapNames[i-1], tmp, 33);
}
}
releaseJSONBufferLock();
}
#endif
}
}
}
/*
* Returns a new, random color wheel index with a minimum distance of 42 from pos.
*/
uint8_t get_random_wheel_index(uint8_t pos) {
uint8_t r = 0, x = 0, y = 0, d = 0;
while (d < 42) {
r = hw_random8();
x = abs(pos - r);
y = 255 - x;
d = MIN(x, y);
}
return r;
}
// float version of map()
float mapf(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
uint32_t hashInt(uint32_t s) {
// borrowed from https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key
s = ((s >> 16) ^ s) * 0x45d9f3b;
s = ((s >> 16) ^ s) * 0x45d9f3b;
return (s >> 16) ^ s;
}
// 32 bit random number generator, inlining uses more code, use hw_random16() if speed is critical (see fcn_declare.h)
uint32_t hw_random(uint32_t upperlimit) {
uint32_t rnd = hw_random();
uint64_t scaled = uint64_t(rnd) * uint64_t(upperlimit);
return scaled >> 32;
}
int32_t hw_random(int32_t lowerlimit, int32_t upperlimit) {
if(lowerlimit >= upperlimit) {
return lowerlimit;
}
uint32_t diff = upperlimit - lowerlimit;
return hw_random(diff) + lowerlimit;
}
// PSRAM compile time checks to provide info for misconfigured env
#if defined(BOARD_HAS_PSRAM)
#if defined(IDF_TARGET_ESP32C3) || defined(ESP8266)
#error "ESP32-C3 and ESP8266 with PSRAM is not supported, please remove BOARD_HAS_PSRAM definition"
#else
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32S3) // PSRAM fix only needed for classic esp32
// BOARD_HAS_PSRAM also means that compiler flag "-mfix-esp32-psram-cache-issue" has to be used for old "rev.1" esp32
#warning "BOARD_HAS_PSRAM defined, make sure to use -mfix-esp32-psram-cache-issue to prevent issues on rev.1 ESP32 boards \
see https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/external-ram.html#esp32-rev-v1-0"
#endif
#endif
#else
#if !defined(IDF_TARGET_ESP32C3) && !defined(ESP8266)
#pragma message("BOARD_HAS_PSRAM not defined, not using PSRAM.")
#endif
#endif
// memory allocation functions with minimum free heap size check
#ifdef ESP8266
static void *validateFreeHeap(void *buffer) {
// make sure there is enough free heap left if buffer was allocated in DRAM region, free it if not
// note: ESP826 needs very little contiguous heap for webserver, checking total free heap works better
if (getFreeHeapSize() < MIN_HEAP_SIZE) {
free(buffer);
return nullptr;
}
return buffer;
}
void *d_malloc(size_t size) {
// note: using "if (getContiguousFreeHeap() > MIN_HEAP_SIZE + size)" did perform worse in tests with regards to keeping heap healthy and UI working
void *buffer = malloc(size);
return validateFreeHeap(buffer);
}
void *d_calloc(size_t count, size_t size) {
void *buffer = calloc(count, size);
return validateFreeHeap(buffer);
}
// realloc with malloc fallback, note: on ESPS8266 there is no safe way to ensure MIN_HEAP_SIZE during realloc()s, free buffer and allocate new one
void *d_realloc_malloc(void *ptr, size_t size) {
//void *buffer = realloc(ptr, size);
//buffer = validateFreeHeap(buffer);
//if (buffer) return buffer; // realloc successful
//d_free(ptr); // free old buffer if realloc failed (or min heap was exceeded)
//return d_malloc(size); // fallback to malloc
free(ptr);
return d_malloc(size);
}
#else
static void *validateFreeHeap(void *buffer) {
// make sure there is enough free heap left if buffer was allocated in DRAM region, free it if not
// TODO: between allocate and free, heap can run low (async web access), only IDF V5 allows for a pre-allocation-check of all free blocks
if ((uintptr_t)buffer > SOC_DRAM_LOW && (uintptr_t)buffer < SOC_DRAM_HIGH && getContiguousFreeHeap() < MIN_HEAP_SIZE) {
free(buffer);
return nullptr;
}
return buffer;
}
void *d_malloc(size_t size) {
void *buffer;
#if defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
// the newer ESP32 variants have byte-accessible fast RTC memory that can be used as heap, access speed is on-par with DRAM
// the system does prefer normal DRAM until full, since free RTC memory is ~7.5k only, its below the minimum heap threshold and needs to be allocated explicitly
// use RTC RAM for small allocations to improve fragmentation or if DRAM is running low
if (size < 256 || getContiguousFreeHeap() < 2*MIN_HEAP_SIZE + size)
buffer = heap_caps_malloc_prefer(size, 2, MALLOC_CAP_RTCRAM, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
else
#endif
buffer = heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); // allocate in any available heap memory
buffer = validateFreeHeap(buffer); // make sure there is enough free heap left
#ifdef BOARD_HAS_PSRAM
if (!buffer)
return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); // DRAM failed, use PSRAM if available
#endif
return buffer;
}
void *d_calloc(size_t count, size_t size) {
void *buffer = d_malloc(count * size);
if (buffer) memset(buffer, 0, count * size); // clear allocated buffer
return buffer;
}
// realloc with malloc fallback, original buffer is freed if realloc fails but not copied!
void *d_realloc_malloc(void *ptr, size_t size) {
void *buffer = heap_caps_realloc(ptr, size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
buffer = validateFreeHeap(buffer);
if (buffer) return buffer; // realloc successful
d_free(ptr); // free old buffer if realloc failed (or min heap was exceeded)
return d_malloc(size); // fallback to malloc
}
#ifdef BOARD_HAS_PSRAM
// p_xalloc: prefer PSRAM, use DRAM as fallback
void *p_malloc(size_t size) {
void *buffer = heap_caps_malloc_prefer(size, 2, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
return validateFreeHeap(buffer);
}
void *p_calloc(size_t count, size_t size) {
void *buffer = p_malloc(count * size);
if (buffer) memset(buffer, 0, count * size); // clear allocated buffer
return buffer;
}
// realloc with malloc fallback, original buffer is freed if realloc fails but not copied!
void *p_realloc_malloc(void *ptr, size_t size) {
void *buffer = heap_caps_realloc(ptr, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if (buffer) return buffer; // realloc successful
p_free(ptr); // free old buffer if realloc failed
return p_malloc(size); // fallback to malloc
}
#endif
#endif
// allocation function for buffers like pixel-buffers and segment data
// optimises the use of memory types to balance speed and heap availability, always favours DRAM if possible
// if multiple conflicting types are defined, the lowest bits of "type" take priority (see fcn_declare.h for types)
void *allocate_buffer(size_t size, uint32_t type) {
void *buffer = nullptr;
#ifdef CONFIG_IDF_TARGET_ESP32
// only classic ESP32 has "32bit accessible only" aka IRAM type. Using it frees up normal DRAM for other purposes
// this memory region is used for IRAM_ATTR functions, whatever is left is unused and can be used for pixel buffers
// prefer this type over PSRAM as it is slightly faster, except for _pixels where it is on-par as PSRAM-caching does a good job for mostly sequential access
if (type & BFRALLOC_NOBYTEACCESS) {
// prefer 32bit region, then PSRAM, fallback to any heap. Note: if adding "INTERNAL"-flag this wont work
buffer = heap_caps_malloc_prefer(size, 3, MALLOC_CAP_32BIT, MALLOC_CAP_SPIRAM, MALLOC_CAP_8BIT);
buffer = validateFreeHeap(buffer);
}
else
#endif
#if !defined(BOARD_HAS_PSRAM)
buffer = d_malloc(size);
#else
if (type & BFRALLOC_PREFER_DRAM) {
if (getContiguousFreeHeap() < 3*(MIN_HEAP_SIZE/2) + size && size > PSRAM_THRESHOLD)
buffer = p_malloc(size); // prefer PSRAM for large allocations & when DRAM is low
else
buffer = d_malloc(size); // allocate in DRAM if enough free heap is available, PSRAM as fallback
}
else if (type & BFRALLOC_ENFORCE_DRAM)
buffer = heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); // use DRAM only, otherwise return nullptr
else if (type & BFRALLOC_PREFER_PSRAM) {
// if DRAM is plenty, prefer it over PSRAM for speed, reserve enough DRAM for segment data: if MAX_SEGMENT_DATA is exceeded, always uses PSRAM
if (getContiguousFreeHeap() > 4*MIN_HEAP_SIZE + size + ((uint32_t)(MAX_SEGMENT_DATA - Segment::getUsedSegmentData())))
buffer = d_malloc(size);
else
buffer = p_malloc(size); // prefer PSRAM
}
else if (type & BFRALLOC_ENFORCE_PSRAM)
buffer = heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); // use PSRAM only, otherwise return nullptr
buffer = validateFreeHeap(buffer);
#endif
if (buffer && (type & BFRALLOC_CLEAR))
memset(buffer, 0, size); // clear allocated buffer
/*
#if !defined(ESP8266) && defined(WLED_DEBUG)
if (buffer) {
DEBUG_PRINTF_P(PSTR("*Buffer allocated: size:%d, address:%p"), size, (uintptr_t)buffer);
if ((uintptr_t)buffer > SOC_DRAM_LOW && (uintptr_t)buffer < SOC_DRAM_HIGH)
DEBUG_PRINTLN(F(" in DRAM"));
#ifndef CONFIG_IDF_TARGET_ESP32C3
else if ((uintptr_t)buffer > SOC_EXTRAM_DATA_LOW && (uintptr_t)buffer < SOC_EXTRAM_DATA_HIGH)
DEBUG_PRINTLN(F(" in PSRAM"));
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
else if ((uintptr_t)buffer > SOC_IRAM_LOW && (uintptr_t)buffer < SOC_IRAM_HIGH)
DEBUG_PRINTLN(F(" in IRAM")); // only used on ESP32 (MALLOC_CAP_32BIT)
#else
else if ((uintptr_t)buffer > SOC_RTC_DRAM_LOW && (uintptr_t)buffer < SOC_RTC_DRAM_HIGH)
DEBUG_PRINTLN(F(" in RTCRAM")); // not available on ESP32
#endif
else
DEBUG_PRINTLN(F(" in ???")); // unknown (check soc.h for other memory regions)
} else
DEBUG_PRINTF_P(PSTR("Buffer allocation failed: size:%d\n"), size);
#endif
*/
return buffer;
}
// bootloop detection and handling
// checks if the ESP reboots multiple times due to a crash or watchdog timeout
// if a bootloop is detected: restore settings from backup, then reset settings, then switch boot image (and repeat)
#define BOOTLOOP_INTERVAL_MILLIS 120000 // time limit between crashes: 120 seconds (2 minutes)
#define BOOTLOOP_THRESHOLD 5 // number of consecutive crashes to trigger bootloop detection
#define BOOTLOOP_ACTION_RESTORE 0 // default action: restore config from /bkp.cfg.json
#define BOOTLOOP_ACTION_RESET 1 // if restore does not work, reset config (rename /cfg.json to /rst.cfg.json)
#define BOOTLOOP_ACTION_OTA 2 // swap the boot partition
#define BOOTLOOP_ACTION_DUMP 3 // nothing seems to help, dump files to serial and reboot (until hardware reset)
// Platform-agnostic abstraction
enum class ResetReason {
Power,
Software,
Crash,
Brownout
};
#ifdef ESP8266
// Place variables in RTC memory via references, since RTC memory is not exposed via the linker in the Non-OS SDK
// Use an offset of 32 as there's some hints that the first 128 bytes of "user" memory are used by the OTA system
// Ref: https://github.com/esp8266/Arduino/blob/78d0d0aceacc1553f45ad8154592b0af22d1eede/cores/esp8266/Esp.cpp#L168
static volatile uint32_t& bl_last_boottime = *(RTC_USER_MEM + 32);
static volatile uint32_t& bl_crashcounter = *(RTC_USER_MEM + 33);
static volatile uint32_t& bl_actiontracker = *(RTC_USER_MEM + 34);
static inline ResetReason rebootReason() {
uint32_t resetReason = system_get_rst_info()->reason;
if (resetReason == REASON_EXCEPTION_RST
|| resetReason == REASON_WDT_RST
|| resetReason == REASON_SOFT_WDT_RST)
return ResetReason::Crash;
if (resetReason == REASON_SOFT_RESTART)
return ResetReason::Software;
return ResetReason::Power;
}
static inline uint32_t getRtcMillis() { return system_get_rtc_time() / 160; }; // rtc ticks ~160000Hz
#else
// variables in RTC_NOINIT memory persist between reboots (but not on hardware reset)
RTC_NOINIT_ATTR static uint32_t bl_last_boottime;
RTC_NOINIT_ATTR static uint32_t bl_crashcounter;
RTC_NOINIT_ATTR static uint32_t bl_actiontracker;
static inline ResetReason rebootReason() {
esp_reset_reason_t reason = esp_reset_reason();
if (reason == ESP_RST_BROWNOUT) return ResetReason::Brownout;
if (reason == ESP_RST_SW) return ResetReason::Software;
if (reason == ESP_RST_PANIC || reason == ESP_RST_WDT || reason == ESP_RST_INT_WDT || reason == ESP_RST_TASK_WDT) return ResetReason::Crash;
return ResetReason::Power;
}
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 0)
static inline uint32_t getRtcMillis() { return esp_rtc_get_time_us() / 1000; }
#elif ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(3, 3, 0)
static inline uint32_t getRtcMillis() { return rtc_time_slowclk_to_us(rtc_time_get(), rtc_clk_slow_freq_get_hz()) / 1000; }
#endif
void bootloopCheckOTA() { bl_actiontracker = BOOTLOOP_ACTION_OTA; } // swap boot image if bootloop is detected instead of restoring config
#endif
// detect bootloop by checking the reset reason and the time since last boot
static bool detectBootLoop() {
uint32_t rtctime = getRtcMillis();
bool result = false;
switch(rebootReason()) {
case ResetReason::Power:
bl_actiontracker = BOOTLOOP_ACTION_RESTORE; // init action tracker if not an intentional reboot (e.g. from OTA or bootloop handler)
// fall through
case ResetReason::Software:
// no crash detected, reset counter
bl_crashcounter = 0;
break;
case ResetReason::Crash:
{
DEBUG_PRINTLN(F("crash detected!"));
uint32_t rebootinterval = rtctime - bl_last_boottime;
if (rebootinterval < BOOTLOOP_INTERVAL_MILLIS) {
bl_crashcounter++;
if (bl_crashcounter >= BOOTLOOP_THRESHOLD) {
DEBUG_PRINTLN(F("!BOOTLOOP DETECTED!"));
bl_crashcounter = 0;
if(bl_actiontracker > BOOTLOOP_ACTION_DUMP) bl_actiontracker = BOOTLOOP_ACTION_RESTORE; // reset action tracker if out of bounds
result = true;
}
} else {
// Reset counter on long intervals to track only consecutive short-interval crashes
bl_crashcounter = 0;
// TODO: crash reporting goes here
}
break;
}
case ResetReason::Brownout:
// crash due to brownout can't be detected unless using flash memory to store bootloop variables
DEBUG_PRINTLN(F("brownout detected"));
//restoreConfig(); // TODO: blindly restoring config if brownout detected is a bad idea, need a better way (if at all)
break;
}
bl_last_boottime = rtctime; // store current runtime for next reboot
return result;
}
void handleBootLoop() {
DEBUG_PRINTF_P(PSTR("checking for bootloop: time %d, counter %d, action %d\n"), bl_last_boottime, bl_crashcounter, bl_actiontracker);
if (!detectBootLoop()) return; // no bootloop detected
switch(bl_actiontracker) {
case BOOTLOOP_ACTION_RESTORE:
restoreConfig();
++bl_actiontracker;
break;
case BOOTLOOP_ACTION_RESET:
resetConfig();
++bl_actiontracker;
break;
case BOOTLOOP_ACTION_OTA:
#ifndef ESP8266
if(Update.canRollBack()) {
DEBUG_PRINTLN(F("Swapping boot partition..."));
Update.rollBack(); // swap boot partition
}
++bl_actiontracker;
break;
#else
// fall through
#endif
case BOOTLOOP_ACTION_DUMP:
dumpFilesToSerial();
break;
}
ESP.restart(); // restart cleanly and don't wait for another crash
}
/*
* Fixed point integer based Perlin noise functions by @dedehai
* Note: optimized for speed and to mimic fastled inoise functions, not for accuracy or best randomness
*/
#define PERLIN_SHIFT 1
// calculate gradient for corner from hash value
static inline __attribute__((always_inline)) int32_t hashToGradient(uint32_t h) {
// using more steps yields more "detailed" perlin noise but looks less like the original fastled version (adjust PERLIN_SHIFT to compensate, also changes range and needs proper adustment)
// return (h & 0xFF) - 128; // use PERLIN_SHIFT 7
// return (h & 0x0F) - 8; // use PERLIN_SHIFT 3
// return (h & 0x07) - 4; // use PERLIN_SHIFT 2
return (h & 0x03) - 2; // use PERLIN_SHIFT 1 -> closest to original fastled version
}
// Gradient functions for 1D, 2D and 3D Perlin noise note: forcing inline produces smaller code and makes it 3x faster!
static inline __attribute__((always_inline)) int32_t gradient1D(uint32_t x0, int32_t dx) {
uint32_t h = x0 * 0x27D4EB2D;
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
h ^= h >> 7;
return (hashToGradient(h) * dx) >> PERLIN_SHIFT;
}
static inline __attribute__((always_inline)) int32_t gradient2D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy) {
uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D);
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
return (hashToGradient(h) * dx + hashToGradient(h>>PERLIN_SHIFT) * dy) >> (1 + PERLIN_SHIFT);
}
static inline __attribute__((always_inline)) int32_t gradient3D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy, uint32_t z0, int32_t dz) {
// fast and good entropy hash from corner coordinates
uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D) ^ (z0 * 0x1B56C4E9);
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
return ((hashToGradient(h) * dx + hashToGradient(h>>(1+PERLIN_SHIFT)) * dy + hashToGradient(h>>(1 + 2*PERLIN_SHIFT)) * dz) * 85) >> (8 + PERLIN_SHIFT); // scale to 16bit, x*85 >> 8 = x/3
}
// fast cubic smoothstep: t*(3 - 2t²), optimized for fixed point, scaled to avoid overflows
static uint32_t smoothstep(const uint32_t t) {
uint32_t t_squared = (t * t) >> 16;
uint32_t factor = (3 << 16) - ((t << 1));
return (t_squared * factor) >> 18; // scale to avoid overflows and give best resolution
}
// simple linear interpolation for fixed-point values, scaled for perlin noise use
static inline int32_t lerpPerlin(int32_t a, int32_t b, int32_t t) {
return a + (((b - a) * t) >> 14); // match scaling with smoothstep to yield 16.16bit values
}
// 1D Perlin noise function that returns a value in range of -24691 to 24689
int32_t perlin1D_raw(uint32_t x, bool is16bit) {
// integer and fractional part coordinates
int32_t x0 = x >> 16;
int32_t x1 = x0 + 1;
if(is16bit) x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
int32_t dx0 = x & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
// gradient values for the two corners
int32_t g0 = gradient1D(x0, dx0);
int32_t g1 = gradient1D(x1, dx1);
// interpolate and smooth function
int32_t tx = smoothstep(dx0);
int32_t noise = lerpPerlin(g0, g1, tx);
return noise;
}
// 2D Perlin noise function that returns a value in range of -20633 to 20629
int32_t perlin2D_raw(uint32_t x, uint32_t y, bool is16bit) {
int32_t x0 = x >> 16;
int32_t y0 = y >> 16;
int32_t x1 = x0 + 1;
int32_t y1 = y0 + 1;
if(is16bit) {
x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
y1 = y1 & 0xFF;
}
int32_t dx0 = x & 0xFFFF;
int32_t dy0 = y & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
int32_t dy1 = dy0 - 0x10000;
int32_t g00 = gradient2D(x0, dx0, y0, dy0);
int32_t g10 = gradient2D(x1, dx1, y0, dy0);
int32_t g01 = gradient2D(x0, dx0, y1, dy1);
int32_t g11 = gradient2D(x1, dx1, y1, dy1);
uint32_t tx = smoothstep(dx0);
uint32_t ty = smoothstep(dy0);
int32_t nx0 = lerpPerlin(g00, g10, tx);
int32_t nx1 = lerpPerlin(g01, g11, tx);
int32_t noise = lerpPerlin(nx0, nx1, ty);
return noise;
}
// 3D Perlin noise function that returns a value in range of -16788 to 16381
int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z, bool is16bit) {
int32_t x0 = x >> 16;
int32_t y0 = y >> 16;
int32_t z0 = z >> 16;
int32_t x1 = x0 + 1;
int32_t y1 = y0 + 1;
int32_t z1 = z0 + 1;
if(is16bit) {
x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
y1 = y1 & 0xFF;
z1 = z1 & 0xFF;
}
int32_t dx0 = x & 0xFFFF;
int32_t dy0 = y & 0xFFFF;
int32_t dz0 = z & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
int32_t dy1 = dy0 - 0x10000;
int32_t dz1 = dz0 - 0x10000;
int32_t g000 = gradient3D(x0, dx0, y0, dy0, z0, dz0);
int32_t g001 = gradient3D(x0, dx0, y0, dy0, z1, dz1);
int32_t g010 = gradient3D(x0, dx0, y1, dy1, z0, dz0);
int32_t g011 = gradient3D(x0, dx0, y1, dy1, z1, dz1);
int32_t g100 = gradient3D(x1, dx1, y0, dy0, z0, dz0);
int32_t g101 = gradient3D(x1, dx1, y0, dy0, z1, dz1);
int32_t g110 = gradient3D(x1, dx1, y1, dy1, z0, dz0);
int32_t g111 = gradient3D(x1, dx1, y1, dy1, z1, dz1);
uint32_t tx = smoothstep(dx0);
uint32_t ty = smoothstep(dy0);
uint32_t tz = smoothstep(dz0);
int32_t nx0 = lerpPerlin(g000, g100, tx);
int32_t nx1 = lerpPerlin(g010, g110, tx);
int32_t nx2 = lerpPerlin(g001, g101, tx);
int32_t nx3 = lerpPerlin(g011, g111, tx);
int32_t ny0 = lerpPerlin(nx0, nx1, ty);
int32_t ny1 = lerpPerlin(nx2, nx3, ty);
int32_t noise = lerpPerlin(ny0, ny1, tz);
return noise;
}
// scaling functions for fastled replacement
uint16_t perlin16(uint32_t x) {
return ((perlin1D_raw(x) * 1159) >> 10) + 32803; //scale to 16bit and offset (fastled range: about 4838 to 60766)
}
uint16_t perlin16(uint32_t x, uint32_t y) {
return ((perlin2D_raw(x, y) * 1537) >> 10) + 32725; //scale to 16bit and offset (fastled range: about 1748 to 63697)
}
uint16_t perlin16(uint32_t x, uint32_t y, uint32_t z) {
return ((perlin3D_raw(x, y, z) * 1731) >> 10) + 33147; //scale to 16bit and offset (fastled range: about 4766 to 60840)
}
uint8_t perlin8(uint16_t x) {
return (((perlin1D_raw((uint32_t)x << 8, true) * 1353) >> 10) + 32769) >> 8; //scale to 16 bit, offset, then scale to 8bit
}
uint8_t perlin8(uint16_t x, uint16_t y) {
return (((perlin2D_raw((uint32_t)x << 8, (uint32_t)y << 8, true) * 1620) >> 10) + 32771) >> 8; //scale to 16 bit, offset, then scale to 8bit
}
uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z) {
return (((perlin3D_raw((uint32_t)x << 8, (uint32_t)y << 8, (uint32_t)z << 8, true) * 2015) >> 10) + 33168) >> 8; //scale to 16 bit, offset, then scale to 8bit
}
// Platform-agnostic SHA1 computation from String input
String computeSHA1(const String& input) {
#ifdef ESP8266
return sha1(input); // ESP8266 has built-in sha1() function
#else
// ESP32: Compute SHA1 hash using mbedtls
unsigned char shaResult[20]; // SHA1 produces 20 bytes
mbedtls_sha1_context ctx;
mbedtls_sha1_init(&ctx);
mbedtls_sha1_starts_ret(&ctx);
mbedtls_sha1_update_ret(&ctx, (const unsigned char*)input.c_str(), input.length());
mbedtls_sha1_finish_ret(&ctx, shaResult);
mbedtls_sha1_free(&ctx);
// Convert to hexadecimal string
char hexString[41];
for (int i = 0; i < 20; i++) {
sprintf(&hexString[i*2], "%02x", shaResult[i]);
}
hexString[40] = '\0';
return String(hexString);
#endif
}
#ifdef ESP32
static String dump_raw_block(esp_efuse_block_t block)
{
const int WORDS = 8; // ESP32: 8×32-bit words per block i.e. 256bits
uint32_t buf[WORDS] = {0};
const esp_efuse_desc_t d = {
.efuse_block = block,
.bit_start = 0,
.bit_count = WORDS * 32
};
const esp_efuse_desc_t* field[2] = { &d, NULL };
esp_err_t err = esp_efuse_read_field_blob(field, buf, WORDS * 32);
if (err != ESP_OK) {
return "";
}
String result = "";
for (const unsigned int i : buf) {
char line[32];
sprintf(line, "0x%08X", i);
result += line;
}
return result;
}
#endif
// Generate a device ID based on SHA1 hash of MAC address salted with "WLED"
// Returns: original SHA1 + last 2 chars of double-hashed SHA1 (42 chars total)
String getDeviceId() {
static String cachedDeviceId = "";
if (cachedDeviceId.length() > 0) return cachedDeviceId;
uint8_t mac[6];
WiFi.macAddress(mac);
char macStr[18];
sprintf(macStr, "%02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
// The device string is deterministic as it needs to be consistent for the same device, even after a full flash erase
// MAC is salted with other consistent device info to avoid rainbow table attacks.
// If the MAC address is known by malicious actors, they could precompute SHA1 hashes to impersonate devices,
// but as WLED developers are just looking at statistics and not authenticating devices, this is acceptable.
// If the usage data was exfiltrated, you could not easily determine the MAC from the device ID without brute forcing SHA1
#ifdef ESP8266
String deviceString = String(macStr) + "WLED" + ESP.getFlashChipId();
#else
String deviceString = String(macStr) + "WLED" + ESP.getChipModel() + ESP.getChipRevision();
deviceString += dump_raw_block(EFUSE_BLK0);
deviceString += dump_raw_block(EFUSE_BLK1);
deviceString += dump_raw_block(EFUSE_BLK2);
deviceString += dump_raw_block(EFUSE_BLK3);
#endif
String firstHash = computeSHA1(deviceString);
// Second hash: SHA1 of the first hash
String secondHash = computeSHA1(firstHash);
// Concatenate first hash + last 2 chars of second hash
cachedDeviceId = firstHash + secondHash.substring(38);
return cachedDeviceId;
}