WLED/wled00/json.cpp
Will Miles 22e2b6f3c5 Have json/cfg return live config
Rather than reading the file off disk, have the json/cfg endpoint
return the live config from system state data.  This can improve
UI behaviour as it can never be out of date or include values that
do not apply to the current firmware install.
2025-03-23 15:18:08 -04:00

1178 lines
40 KiB
C++

#include "wled.h"
#include "palettes.h"
/*
* JSON API (De)serialization
*/
bool deserializeSegment(JsonObject elem, byte it, byte presetId)
{
byte id = elem["id"] | it;
if (id >= strip.getMaxSegments()) return false;
bool newSeg = false;
int stop = elem["stop"] | -1;
// append segment
if (id >= strip.getSegmentsNum()) {
if (stop <= 0) return false; // ignore empty/inactive segments
strip.appendSegment(Segment(0, strip.getLengthTotal()));
id = strip.getSegmentsNum()-1; // segments are added at the end of list
newSeg = true;
}
//DEBUG_PRINTLN(F("-- JSON deserialize segment."));
Segment& seg = strip.getSegment(id);
//DEBUG_PRINTF_P(PSTR("-- Original segment: %p (%p)\n"), &seg, seg.data);
const Segment prev = seg; //make a backup so we can tell if something changed (calling copy constructor)
//DEBUG_PRINTF_P(PSTR("-- Duplicate segment: %p (%p)\n"), &prev, prev.data);
int start = elem["start"] | seg.start;
if (stop < 0) {
int len = elem["len"];
stop = (len > 0) ? start + len : seg.stop;
}
// 2D segments
int startY = elem["startY"] | seg.startY;
int stopY = elem["stopY"] | seg.stopY;
//repeat, multiplies segment until all LEDs are used, or max segments reached
bool repeat = elem["rpt"] | false;
if (repeat && stop>0) {
elem.remove("id"); // remove for recursive call
elem.remove("rpt"); // remove for recursive call
elem.remove("n"); // remove for recursive call
unsigned len = stop - start;
for (size_t i=id+1; i<strip.getMaxSegments(); i++) {
start = start + len;
if (start >= strip.getLengthTotal()) break;
//TODO: add support for 2D
elem["start"] = start;
elem["stop"] = start + len;
elem["rev"] = !elem["rev"]; // alternate reverse on even/odd segments
deserializeSegment(elem, i, presetId); // recursive call with new id
}
return true;
}
if (elem["n"]) {
// name field exists
if (seg.name) { //clear old name
free(seg.name);
seg.name = nullptr;
}
const char * name = elem["n"].as<const char*>();
size_t len = 0;
if (name != nullptr) len = strlen(name);
if (len > 0) {
if (len > WLED_MAX_SEGNAME_LEN) len = WLED_MAX_SEGNAME_LEN;
seg.name = static_cast<char*>(malloc(len+1));
if (seg.name) strlcpy(seg.name, name, WLED_MAX_SEGNAME_LEN+1);
} else {
// but is empty (already deleted above)
elem.remove("n");
}
} else if (start != seg.start || stop != seg.stop) {
// clearing or setting segment without name field
if (seg.name) {
free(seg.name);
seg.name = nullptr;
}
}
uint16_t grp = elem["grp"] | seg.grouping;
uint16_t spc = elem[F("spc")] | seg.spacing;
uint16_t of = seg.offset;
uint8_t soundSim = elem["si"] | seg.soundSim;
uint8_t map1D2D = elem["m12"] | seg.map1D2D;
uint8_t set = elem[F("set")] | seg.set;
bool selected = getBoolVal(elem["sel"], seg.selected);
bool reverse = getBoolVal(elem["rev"], seg.reverse);
bool mirror = getBoolVal(elem["mi"] , seg.mirror);
#ifndef WLED_DISABLE_2D
bool reverse_y = getBoolVal(elem["rY"] , seg.reverse_y);
bool mirror_y = getBoolVal(elem["mY"] , seg.mirror_y);
bool transpose = getBoolVal(elem[F("tp")], seg.transpose);
#endif
int len = (stop > start) ? stop - start : 1;
int offset = elem[F("of")] | INT32_MAX;
if (offset != INT32_MAX) {
int offsetAbs = abs(offset);
if (offsetAbs > len - 1) offsetAbs %= len;
if (offset < 0) offsetAbs = len - offsetAbs;
of = offsetAbs;
}
if (stop > start && of > len -1) of = len -1;
// update segment (delete if necessary)
seg.setGeometry(start, stop, grp, spc, of, startY, stopY, map1D2D); // strip needs to be suspended for this to work without issues
if (newSeg) seg.refreshLightCapabilities(); // fix for #3403
if (seg.reset && seg.stop == 0) {
if (id == strip.getMainSegmentId()) strip.setMainSegmentId(0); // fix for #3403
return true; // segment was deleted & is marked for reset, no need to change anything else
}
byte segbri = seg.opacity;
if (getVal(elem["bri"], &segbri)) {
if (segbri > 0) seg.setOpacity(segbri);
seg.setOption(SEG_OPTION_ON, segbri); // use transition
}
seg.setOption(SEG_OPTION_ON, getBoolVal(elem["on"], seg.on)); // use transition
seg.freeze = getBoolVal(elem["frz"], seg.freeze);
seg.setCCT(elem["cct"] | seg.cct);
JsonArray colarr = elem["col"];
if (!colarr.isNull())
{
if (seg.getLightCapabilities() & 3) {
// segment has RGB or White
for (size_t i = 0; i < NUM_COLORS; i++) {
// JSON "col" array can contain the following values for each of segment's colors (primary, background, custom):
// "col":[int|string|object|array, int|string|object|array, int|string|object|array]
// int = Kelvin temperature or 0 for black
// string = hex representation of [WW]RRGGBB
// object = individual channel control {"r":0,"g":127,"b":255,"w":255}, each being optional (valid to send {})
// array = direct channel values [r,g,b,w] (w element being optional)
int rgbw[] = {0,0,0,0};
bool colValid = false;
JsonArray colX = colarr[i];
if (colX.isNull()) {
JsonObject oCol = colarr[i];
if (!oCol.isNull()) {
// we have a JSON object for color {"w":123,"r":123,...}; allows individual channel control
rgbw[0] = oCol["r"] | R(seg.colors[i]);
rgbw[1] = oCol["g"] | G(seg.colors[i]);
rgbw[2] = oCol["b"] | B(seg.colors[i]);
rgbw[3] = oCol["w"] | W(seg.colors[i]);
colValid = true;
} else {
byte brgbw[] = {0,0,0,0};
const char* hexCol = colarr[i];
if (hexCol == nullptr) { //Kelvin color temperature (or invalid), e.g 2400
int kelvin = colarr[i] | -1;
if (kelvin < 0) continue;
if (kelvin == 0) seg.setColor(i, 0);
if (kelvin > 0) colorKtoRGB(kelvin, brgbw);
colValid = true;
} else { //HEX string, e.g. "FFAA00"
colValid = colorFromHexString(brgbw, hexCol);
}
for (size_t c = 0; c < 4; c++) rgbw[c] = brgbw[c];
}
} else { //Array of ints (RGB or RGBW color), e.g. [255,160,0]
byte sz = colX.size();
if (sz == 0) continue; //do nothing on empty array
copyArray(colX, rgbw, 4);
colValid = true;
}
if (!colValid) continue;
seg.setColor(i, RGBW32(rgbw[0],rgbw[1],rgbw[2],rgbw[3]));
if (seg.mode == FX_MODE_STATIC) strip.trigger(); //instant refresh
}
} else {
// non RGB & non White segment (usually On/Off bus)
seg.setColor(0, ULTRAWHITE);
seg.setColor(1, BLACK);
}
}
// lx parser
#ifdef WLED_ENABLE_LOXONE
int lx = elem[F("lx")] | -1;
if (lx >= 0) {
parseLxJson(lx, id, false);
}
int ly = elem[F("ly")] | -1;
if (ly >= 0) {
parseLxJson(ly, id, true);
}
#endif
//seg.map1D2D = constrain(map1D2D, 0, 7); // done in setGeometry()
seg.set = constrain(set, 0, 3);
seg.soundSim = constrain(soundSim, 0, 3);
seg.selected = selected;
seg.reverse = reverse;
seg.mirror = mirror;
#ifndef WLED_DISABLE_2D
seg.reverse_y = reverse_y;
seg.mirror_y = mirror_y;
seg.transpose = transpose;
#endif
byte fx = seg.mode;
if (getVal(elem["fx"], &fx, 0, strip.getModeCount())) {
if (!presetId && currentPlaylist>=0) unloadPlaylist();
if (fx != seg.mode) seg.setMode(fx, elem[F("fxdef")]);
}
getVal(elem["sx"], &seg.speed);
getVal(elem["ix"], &seg.intensity);
uint8_t pal = seg.palette;
if (seg.getLightCapabilities() & 1) { // ignore palette for White and On/Off segments
if (getVal(elem["pal"], &pal, 0, strip.getPaletteCount())) seg.setPalette(pal);
}
getVal(elem["c1"], &seg.custom1);
getVal(elem["c2"], &seg.custom2);
uint8_t cust3 = seg.custom3;
getVal(elem["c3"], &cust3, 0, 31); // we can't pass reference to bitfield
seg.custom3 = constrain(cust3, 0, 31);
seg.check1 = getBoolVal(elem["o1"], seg.check1);
seg.check2 = getBoolVal(elem["o2"], seg.check2);
seg.check3 = getBoolVal(elem["o3"], seg.check3);
JsonArray iarr = elem[F("i")]; //set individual LEDs
if (!iarr.isNull()) {
uint8_t oldMap1D2D = seg.map1D2D;
seg.map1D2D = M12_Pixels; // no mapping
// set brightness immediately and disable transition
jsonTransitionOnce = true;
seg.stopTransition();
strip.setTransition(0);
strip.setBrightness(scaledBri(bri), true);
// freeze and init to black
if (!seg.freeze) {
seg.freeze = true;
seg.fill(BLACK);
}
start = 0, stop = 0;
set = 0; //0 nothing set, 1 start set, 2 range set
for (size_t i = 0; i < iarr.size(); i++) {
if(iarr[i].is<JsonInteger>()) {
if (!set) {
start = abs(iarr[i].as<int>());
set++;
} else {
stop = abs(iarr[i].as<int>());
set++;
}
} else { //color
uint8_t rgbw[] = {0,0,0,0};
JsonArray icol = iarr[i];
if (!icol.isNull()) { //array, e.g. [255,0,0]
byte sz = icol.size();
if (sz > 0 && sz < 5) copyArray(icol, rgbw);
} else { //hex string, e.g. "FF0000"
byte brgbw[] = {0,0,0,0};
const char* hexCol = iarr[i];
if (colorFromHexString(brgbw, hexCol)) {
for (size_t c = 0; c < 4; c++) rgbw[c] = brgbw[c];
}
}
if (set < 2 || stop <= start) stop = start + 1;
uint32_t c = gamma32(RGBW32(rgbw[0], rgbw[1], rgbw[2], rgbw[3]));
while (start < stop) seg.setPixelColor(start++, c);
set = 0;
}
}
seg.map1D2D = oldMap1D2D; // restore mapping
strip.trigger(); // force segment update
}
// send UDP/WS if segment options changed (except selection; will also deselect current preset)
if (seg.differs(prev) & 0x7F) stateChanged = true;
return true;
}
// deserializes WLED state
// presetId is non-0 if called from handlePreset()
bool deserializeState(JsonObject root, byte callMode, byte presetId)
{
bool stateResponse = root[F("v")] | false;
#if defined(WLED_DEBUG) && defined(WLED_DEBUG_HOST)
netDebugEnabled = root[F("debug")] | netDebugEnabled;
#endif
bool onBefore = bri;
getVal(root["bri"], &bri);
bool on = root["on"] | (bri > 0);
if (!on != !bri) toggleOnOff();
if (root["on"].is<const char*>() && root["on"].as<const char*>()[0] == 't') {
if (onBefore || !bri) toggleOnOff(); // do not toggle off again if just turned on by bri (makes e.g. "{"on":"t","bri":32}" work)
}
if (bri && !onBefore) { // unfreeze all segments when turning on
for (size_t s=0; s < strip.getSegmentsNum(); s++) {
strip.getSegment(s).freeze = false;
}
if (realtimeMode && !realtimeOverride && useMainSegmentOnly) { // keep live segment frozen if live
strip.getMainSegment().freeze = true;
}
}
long tr = -1;
if (!presetId || currentPlaylist < 0) { //do not apply transition time from preset if playlist active, as it would override playlist transition times
tr = root[F("transition")] | -1;
if (tr >= 0) {
transitionDelay = tr * 100;
strip.setTransition(transitionDelay);
}
}
#ifndef WLED_DISABLE_MODE_BLEND
blendingStyle = root[F("bs")] | blendingStyle;
blendingStyle &= 0x1F;
#endif
// temporary transition (applies only once)
tr = root[F("tt")] | -1;
if (tr >= 0) {
jsonTransitionOnce = true;
strip.setTransition(tr * 100);
}
tr = root[F("tb")] | -1;
if (tr >= 0) strip.timebase = (unsigned long)tr - millis();
JsonObject nl = root["nl"];
nightlightActive = getBoolVal(nl["on"], nightlightActive);
nightlightDelayMins = nl["dur"] | nightlightDelayMins;
nightlightMode = nl["mode"] | nightlightMode;
nightlightTargetBri = nl[F("tbri")] | nightlightTargetBri;
JsonObject udpn = root["udpn"];
sendNotificationsRT = getBoolVal(udpn[F("send")], sendNotificationsRT);
syncGroups = udpn[F("sgrp")] | syncGroups;
receiveGroups = udpn[F("rgrp")] | receiveGroups;
if ((bool)udpn[F("nn")]) callMode = CALL_MODE_NO_NOTIFY; //send no notification just for this request
unsigned long timein = root["time"] | UINT32_MAX; //backup time source if NTP not synced
if (timein != UINT32_MAX) {
setTimeFromAPI(timein);
if (presetsModifiedTime == 0) presetsModifiedTime = timein;
}
if (root[F("psave")].isNull()) doReboot = root[F("rb")] | doReboot;
// do not allow changing main segment while in realtime mode (may get odd results else)
if (!realtimeMode) strip.setMainSegmentId(root[F("mainseg")] | strip.getMainSegmentId()); // must be before realtimeLock() if "live"
realtimeOverride = root[F("lor")] | realtimeOverride;
if (realtimeOverride > 2) realtimeOverride = REALTIME_OVERRIDE_ALWAYS;
if (realtimeMode && useMainSegmentOnly) {
strip.getMainSegment().freeze = !realtimeOverride;
}
if (root.containsKey("live")) {
if (root["live"].as<bool>()) {
jsonTransitionOnce = true;
strip.setTransition(0);
realtimeLock(65000);
} else {
exitRealtime();
}
}
int it = 0;
JsonVariant segVar = root["seg"];
if (!segVar.isNull()) {
// we may be called during strip.service() so we must not modify segments while effects are executing
strip.suspend();
const unsigned long start = millis();
while (strip.isServicing() && millis() - start < strip.getFrameTime()) yield(); // wait until frame is over
#ifdef WLED_DEBUG
if (millis() - start > 0) DEBUG_PRINTLN(F("JSON: Waited for strip to finish servicing."));
#endif
if (segVar.is<JsonObject>()) {
int id = segVar["id"] | -1;
//if "seg" is not an array and ID not specified, apply to all selected/checked segments
if (id < 0) {
//apply all selected segments
for (size_t s = 0; s < strip.getSegmentsNum(); s++) {
Segment &sg = strip.getSegment(s);
if (sg.isActive() && sg.isSelected()) {
deserializeSegment(segVar, s, presetId);
}
}
} else {
deserializeSegment(segVar, id, presetId); //apply only the segment with the specified ID
}
} else {
size_t deleted = 0;
JsonArray segs = segVar.as<JsonArray>();
for (JsonObject elem : segs) {
if (deserializeSegment(elem, it++, presetId) && !elem["stop"].isNull() && elem["stop"]==0) deleted++;
}
if (strip.getSegmentsNum() > 3 && deleted >= strip.getSegmentsNum()/2U) strip.purgeSegments(); // batch deleting more than half segments
}
strip.resume();
}
UsermodManager::readFromJsonState(root);
loadLedmap = root[F("ledmap")] | loadLedmap;
byte ps = root[F("psave")];
if (ps > 0 && ps < 251) savePreset(ps, nullptr, root);
ps = root[F("pdel")]; //deletion
if (ps > 0 && ps < 251) deletePreset(ps);
// HTTP API commands (must be handled before "ps")
const char* httpwin = root["win"];
if (httpwin) {
String apireq = "win"; apireq += '&'; // reduce flash string usage
apireq += httpwin;
handleSet(nullptr, apireq, false); // may set stateChanged
}
// Applying preset from JSON API has 2 cases: a) "pd" AKA "preset direct" and b) "ps" AKA "preset select"
// a) "preset direct" can only be an integer value representing preset ID. "preset direct" assumes JSON API contains the rest of preset content (i.e. from UI call)
// "preset direct" JSON can contain "ps" API (i.e. call from UI to cycle presets) in such case stateChanged has to be false (i.e. no "win" or "seg" API)
// b) "preset select" can be cycling ("1~5~""), random ("r" or "1~5r"), ID, etc. value allowed from JSON API. This type of call assumes no state changing content in API call
byte presetToRestore = 0;
if (!root[F("pd")].isNull() && stateChanged) {
// a) already applied preset content (requires "seg" or "win" but will ignore the rest)
currentPreset = root[F("pd")] | currentPreset;
if (root["win"].isNull()) presetCycCurr = currentPreset; // otherwise presetCycCurr was set in handleSet() [set.cpp]
presetToRestore = currentPreset; // stateUpdated() will clear the preset, so we need to restore it after
DEBUG_PRINTF_P(PSTR("Preset direct: %d\n"), currentPreset);
} else if (!root["ps"].isNull()) {
// we have "ps" call (i.e. from button or external API call) or "pd" that includes "ps" (i.e. from UI call)
if (root["win"].isNull() && getVal(root["ps"], &presetCycCurr, 1, 250) && presetCycCurr > 0 && presetCycCurr < 251 && presetCycCurr != currentPreset) {
DEBUG_PRINTF_P(PSTR("Preset select: %d\n"), presetCycCurr);
// b) preset ID only or preset that does not change state (use embedded cycling limits if they exist in getVal())
applyPreset(presetCycCurr, callMode); // async load from file system (only preset ID was specified)
return stateResponse;
} else presetCycCurr = currentPreset; // restore presetCycCurr
}
JsonObject playlist = root[F("playlist")];
if (!playlist.isNull() && loadPlaylist(playlist, presetId)) {
//do not notify here, because the first playlist entry will do
if (root["on"].isNull()) callMode = CALL_MODE_NO_NOTIFY;
else callMode = CALL_MODE_DIRECT_CHANGE; // possible bugfix for playlist only containing HTTP API preset FX=~
}
if (root.containsKey(F("rmcpal")) && root[F("rmcpal")].as<bool>()) {
if (strip.customPalettes.size()) {
char fileName[32];
sprintf_P(fileName, PSTR("/palette%d.json"), strip.customPalettes.size()-1);
if (WLED_FS.exists(fileName)) WLED_FS.remove(fileName);
strip.loadCustomPalettes();
}
}
doAdvancePlaylist = root[F("np")] | doAdvancePlaylist; //advances to next preset in playlist when true
JsonObject wifi = root[F("wifi")];
if (!wifi.isNull()) {
bool apMode = getBoolVal(wifi[F("ap")], apActive);
if (!apActive && apMode) WLED::instance().initAP(); // start AP mode immediately
else if (apActive && !apMode) { // stop AP mode immediately
dnsServer.stop();
WiFi.softAPdisconnect(true);
apActive = false;
}
//bool restart = wifi[F("restart")] | false;
//if (restart) forceReconnect = true;
}
stateUpdated(callMode);
if (presetToRestore) currentPreset = presetToRestore;
return stateResponse;
}
void serializeSegment(const JsonObject& root, const Segment& seg, byte id, bool forPreset, bool segmentBounds)
{
root["id"] = id;
if (segmentBounds) {
root["start"] = seg.start;
root["stop"] = seg.stop;
#ifndef WLED_DISABLE_2D
if (strip.isMatrix) {
root[F("startY")] = seg.startY;
root[F("stopY")] = seg.stopY;
}
#endif
}
if (!forPreset) root["len"] = seg.stop - seg.start;
root["grp"] = seg.grouping;
root[F("spc")] = seg.spacing;
root[F("of")] = seg.offset;
root["on"] = seg.on;
root["frz"] = seg.freeze;
byte segbri = seg.opacity;
root["bri"] = (segbri) ? segbri : 255;
root["cct"] = seg.cct;
root[F("set")] = seg.set;
if (seg.name != nullptr) root["n"] = reinterpret_cast<const char *>(seg.name); //not good practice, but decreases required JSON buffer
else if (forPreset) root["n"] = "";
// to conserve RAM we will serialize the col array manually
// this will reduce RAM footprint from ~300 bytes to 84 bytes per segment
char colstr[70]; colstr[0] = '['; colstr[1] = '\0'; //max len 68 (5 chan, all 255)
const char *format = strip.hasWhiteChannel() ? PSTR("[%u,%u,%u,%u]") : PSTR("[%u,%u,%u]");
for (size_t i = 0; i < 3; i++)
{
byte segcol[4]; byte* c = segcol;
segcol[0] = R(seg.colors[i]);
segcol[1] = G(seg.colors[i]);
segcol[2] = B(seg.colors[i]);
segcol[3] = W(seg.colors[i]);
char tmpcol[22];
sprintf_P(tmpcol, format, (unsigned)c[0], (unsigned)c[1], (unsigned)c[2], (unsigned)c[3]);
strcat(colstr, i<2 ? strcat(tmpcol, ",") : tmpcol);
}
strcat(colstr, "]");
root["col"] = serialized(colstr);
root["fx"] = seg.mode;
root["sx"] = seg.speed;
root["ix"] = seg.intensity;
root["pal"] = seg.palette;
root["c1"] = seg.custom1;
root["c2"] = seg.custom2;
root["c3"] = seg.custom3;
root["sel"] = seg.isSelected();
root["rev"] = seg.reverse;
root["mi"] = seg.mirror;
#ifndef WLED_DISABLE_2D
if (strip.isMatrix) {
root["rY"] = seg.reverse_y;
root["mY"] = seg.mirror_y;
root[F("tp")] = seg.transpose;
}
#endif
root["o1"] = seg.check1;
root["o2"] = seg.check2;
root["o3"] = seg.check3;
root["si"] = seg.soundSim;
root["m12"] = seg.map1D2D;
}
void serializeState(JsonObject root, bool forPreset, bool includeBri, bool segmentBounds, bool selectedSegmentsOnly)
{
if (includeBri) {
root["on"] = (bri > 0);
root["bri"] = briLast;
root[F("transition")] = transitionDelay/100; //in 100ms
#ifndef WLED_DISABLE_MODE_BLEND
root[F("bs")] = blendingStyle;
#endif
}
if (!forPreset) {
if (errorFlag) {root[F("error")] = errorFlag; errorFlag = ERR_NONE;} //prevent error message to persist on screen
root["ps"] = (currentPreset > 0) ? currentPreset : -1;
root[F("pl")] = currentPlaylist;
root[F("ledmap")] = currentLedmap;
UsermodManager::addToJsonState(root);
JsonObject nl = root.createNestedObject("nl");
nl["on"] = nightlightActive;
nl["dur"] = nightlightDelayMins;
nl["mode"] = nightlightMode;
nl[F("tbri")] = nightlightTargetBri;
nl[F("rem")] = nightlightActive ? (int)(nightlightDelayMs - (millis() - nightlightStartTime)) / 1000 : -1; // seconds remaining
JsonObject udpn = root.createNestedObject("udpn");
udpn[F("send")] = sendNotificationsRT;
udpn[F("recv")] = receiveGroups != 0;
udpn[F("sgrp")] = syncGroups;
udpn[F("rgrp")] = receiveGroups;
root[F("lor")] = realtimeOverride;
}
root[F("mainseg")] = strip.getMainSegmentId();
JsonArray seg = root.createNestedArray("seg");
for (size_t s = 0; s < strip.getMaxSegments(); s++) {
if (s >= strip.getSegmentsNum()) {
if (forPreset && segmentBounds && !selectedSegmentsOnly) { //disable segments not part of preset
JsonObject seg0 = seg.createNestedObject();
seg0["stop"] = 0;
continue;
} else
break;
}
Segment &sg = strip.getSegment(s);
if (forPreset && selectedSegmentsOnly && !sg.isSelected()) continue;
if (sg.isActive()) {
JsonObject seg0 = seg.createNestedObject();
serializeSegment(seg0, sg, s, forPreset, segmentBounds);
} else if (forPreset && segmentBounds) { //disable segments not part of preset
JsonObject seg0 = seg.createNestedObject();
seg0["stop"] = 0;
}
}
}
void serializeInfo(JsonObject root)
{
root[F("ver")] = versionString;
root[F("vid")] = VERSION;
root[F("cn")] = F(WLED_CODENAME);
root[F("release")] = releaseString;
JsonObject leds = root.createNestedObject(F("leds"));
leds[F("count")] = strip.getLengthTotal();
leds[F("pwr")] = BusManager::currentMilliamps();
leds["fps"] = strip.getFps();
leds[F("maxpwr")] = BusManager::currentMilliamps()>0 ? BusManager::ablMilliampsMax() : 0;
leds[F("maxseg")] = strip.getMaxSegments();
//leds[F("actseg")] = strip.getActiveSegmentsNum();
//leds[F("seglock")] = false; //might be used in the future to prevent modifications to segment config
leds[F("bootps")] = bootPreset;
#ifndef WLED_DISABLE_2D
if (strip.isMatrix) {
JsonObject matrix = leds.createNestedObject(F("matrix"));
matrix["w"] = Segment::maxWidth;
matrix["h"] = Segment::maxHeight;
}
#endif
unsigned totalLC = 0;
JsonArray lcarr = leds.createNestedArray(F("seglc"));
size_t nSegs = strip.getSegmentsNum();
for (size_t s = 0; s < nSegs; s++) {
if (!strip.getSegment(s).isActive()) continue;
unsigned lc = strip.getSegment(s).getLightCapabilities();
totalLC |= lc;
lcarr.add(lc);
}
leds["lc"] = totalLC;
leds[F("rgbw")] = strip.hasRGBWBus(); // deprecated, use info.leds.lc
leds[F("wv")] = totalLC & 0x02; // deprecated, true if white slider should be displayed for any segment
leds["cct"] = totalLC & 0x04; // deprecated, use info.leds.lc
#ifdef WLED_DEBUG
JsonArray i2c = root.createNestedArray(F("i2c"));
i2c.add(i2c_sda);
i2c.add(i2c_scl);
JsonArray spi = root.createNestedArray(F("spi"));
spi.add(spi_mosi);
spi.add(spi_sclk);
spi.add(spi_miso);
#endif
root[F("str")] = false; //syncToggleReceive;
root[F("name")] = serverDescription;
root[F("udpport")] = udpPort;
root[F("simplifiedui")] = simplifiedUI;
root["live"] = (bool)realtimeMode;
root[F("liveseg")] = useMainSegmentOnly ? strip.getMainSegmentId() : -1; // if using main segment only for live
switch (realtimeMode) {
case REALTIME_MODE_INACTIVE: root["lm"] = ""; break;
case REALTIME_MODE_GENERIC: root["lm"] = ""; break;
case REALTIME_MODE_UDP: root["lm"] = F("UDP"); break;
case REALTIME_MODE_HYPERION: root["lm"] = F("Hyperion"); break;
case REALTIME_MODE_E131: root["lm"] = F("E1.31"); break;
case REALTIME_MODE_ADALIGHT: root["lm"] = F("USB Adalight/TPM2"); break;
case REALTIME_MODE_ARTNET: root["lm"] = F("Art-Net"); break;
case REALTIME_MODE_TPM2NET: root["lm"] = F("tpm2.net"); break;
case REALTIME_MODE_DDP: root["lm"] = F("DDP"); break;
}
root[F("lip")] = realtimeIP[0] == 0 ? "" : realtimeIP.toString();
#ifdef WLED_ENABLE_WEBSOCKETS
root[F("ws")] = ws.count();
#else
root[F("ws")] = -1;
#endif
root[F("fxcount")] = strip.getModeCount();
root[F("palcount")] = strip.getPaletteCount();
root[F("cpalcount")] = strip.customPalettes.size(); //number of custom palettes
JsonArray ledmaps = root.createNestedArray(F("maps"));
for (size_t i=0; i<WLED_MAX_LEDMAPS; i++) {
if ((ledMaps>>i) & 0x00000001U) {
JsonObject ledmaps0 = ledmaps.createNestedObject();
ledmaps0["id"] = i;
#ifndef ESP8266
if (i && ledmapNames[i-1]) ledmaps0["n"] = ledmapNames[i-1];
#endif
}
}
JsonObject wifi_info = root.createNestedObject(F("wifi"));
wifi_info[F("bssid")] = WiFi.BSSIDstr();
int qrssi = WiFi.RSSI();
wifi_info[F("rssi")] = qrssi;
wifi_info[F("signal")] = getSignalQuality(qrssi);
wifi_info[F("channel")] = WiFi.channel();
wifi_info[F("ap")] = apActive;
JsonObject fs_info = root.createNestedObject("fs");
fs_info["u"] = fsBytesUsed / 1000;
fs_info["t"] = fsBytesTotal / 1000;
fs_info[F("pmt")] = presetsModifiedTime;
root[F("ndc")] = nodeListEnabled ? (int)Nodes.size() : -1;
#ifdef ARDUINO_ARCH_ESP32
#ifdef WLED_DEBUG
wifi_info[F("txPower")] = (int) WiFi.getTxPower();
wifi_info[F("sleep")] = (bool) WiFi.getSleep();
#endif
#if !defined(CONFIG_IDF_TARGET_ESP32C2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32S3)
root[F("arch")] = "esp32";
#else
root[F("arch")] = ESP.getChipModel();
#endif
root[F("core")] = ESP.getSdkVersion();
root[F("clock")] = ESP.getCpuFreqMHz();
root[F("flash")] = (ESP.getFlashChipSize()/1024)/1024;
#ifdef WLED_DEBUG
root[F("maxalloc")] = ESP.getMaxAllocHeap();
root[F("resetReason0")] = (int)rtc_get_reset_reason(0);
root[F("resetReason1")] = (int)rtc_get_reset_reason(1);
#endif
root[F("lwip")] = 0; //deprecated
#else
root[F("arch")] = "esp8266";
root[F("core")] = ESP.getCoreVersion();
root[F("clock")] = ESP.getCpuFreqMHz();
root[F("flash")] = (ESP.getFlashChipSize()/1024)/1024;
#ifdef WLED_DEBUG
root[F("maxalloc")] = ESP.getMaxFreeBlockSize();
root[F("resetReason")] = (int)ESP.getResetInfoPtr()->reason;
#endif
root[F("lwip")] = LWIP_VERSION_MAJOR;
#endif
root[F("freeheap")] = ESP.getFreeHeap();
#if defined(ARDUINO_ARCH_ESP32)
if (psramFound()) root[F("psram")] = ESP.getFreePsram();
#endif
root[F("uptime")] = millis()/1000 + rolloverMillis*4294967;
char time[32];
getTimeString(time);
root[F("time")] = time;
UsermodManager::addToJsonInfo(root);
uint16_t os = 0;
#ifdef WLED_DEBUG
os = 0x80;
#ifdef WLED_DEBUG_HOST
os |= 0x0100;
if (!netDebugEnabled) os &= ~0x0080;
#endif
#endif
#ifndef WLED_DISABLE_ALEXA
os += 0x40;
#endif
//os += 0x20; // indicated now removed Blynk support, may be reused to indicate another build-time option
#ifdef USERMOD_CRONIXIE
os += 0x10;
#endif
#ifndef WLED_DISABLE_FILESYSTEM
os += 0x08;
#endif
#ifndef WLED_DISABLE_HUESYNC
os += 0x04;
#endif
#ifdef WLED_ENABLE_ADALIGHT
os += 0x02;
#endif
#ifndef WLED_DISABLE_OTA
os += 0x01;
#endif
root[F("opt")] = os;
root[F("brand")] = F(WLED_BRAND);
root[F("product")] = F(WLED_PRODUCT_NAME);
root["mac"] = escapedMac;
char s[16] = "";
if (Network.isConnected())
{
IPAddress localIP = Network.localIP();
sprintf(s, "%d.%d.%d.%d", localIP[0], localIP[1], localIP[2], localIP[3]);
}
root["ip"] = s;
}
void setPaletteColors(JsonArray json, CRGBPalette16 palette)
{
for (int i = 0; i < 16; i++) {
JsonArray colors = json.createNestedArray();
CRGB color = palette[i];
colors.add(i<<4);
colors.add(color.red);
colors.add(color.green);
colors.add(color.blue);
}
}
void setPaletteColors(JsonArray json, byte* tcp)
{
TRGBGradientPaletteEntryUnion* ent = (TRGBGradientPaletteEntryUnion*)(tcp);
TRGBGradientPaletteEntryUnion u;
// Count entries
unsigned count = 0;
do {
u = *(ent + count);
count++;
} while ( u.index != 255);
u = *ent;
int indexstart = 0;
while( indexstart < 255) {
indexstart = u.index;
JsonArray colors = json.createNestedArray();
colors.add(u.index);
colors.add(u.r);
colors.add(u.g);
colors.add(u.b);
ent++;
u = *ent;
}
}
void serializePalettes(JsonObject root, int page)
{
byte tcp[72];
#ifdef ESP8266
int itemPerPage = 5;
#else
int itemPerPage = 8;
#endif
int customPalettes = strip.customPalettes.size();
int palettesCount = strip.getPaletteCount() - customPalettes;
int maxPage = (palettesCount + customPalettes -1) / itemPerPage;
if (page > maxPage) page = maxPage;
int start = itemPerPage * page;
int end = start + itemPerPage;
if (end > palettesCount + customPalettes) end = palettesCount + customPalettes;
root[F("m")] = maxPage; // inform caller how many pages there are
JsonObject palettes = root.createNestedObject("p");
for (int i = start; i < end; i++) {
JsonArray curPalette = palettes.createNestedArray(String(i>=palettesCount ? 255 - i + palettesCount : i));
switch (i) {
case 0: //default palette
setPaletteColors(curPalette, PartyColors_p);
break;
case 1: //random
for (int j = 0; j < 4; j++) curPalette.add("r");
break;
case 2: //primary color only
curPalette.add("c1");
break;
case 3: //primary + secondary
curPalette.add("c1");
curPalette.add("c1");
curPalette.add("c2");
curPalette.add("c2");
break;
case 4: //primary + secondary + tertiary
curPalette.add("c3");
curPalette.add("c2");
curPalette.add("c1");
break;
case 5: //primary + secondary (+tertiary if not off), more distinct
for (int j = 0; j < 5; j++) curPalette.add("c1");
for (int j = 0; j < 5; j++) curPalette.add("c2");
for (int j = 0; j < 5; j++) curPalette.add("c3");
curPalette.add("c1");
break;
default:
if (i >= palettesCount)
setPaletteColors(curPalette, strip.customPalettes[i - palettesCount]);
else if (i < 13) // palette 6 - 12, fastled palettes
setPaletteColors(curPalette, *fastledPalettes[i-6]);
else {
memcpy_P(tcp, (byte*)pgm_read_dword(&(gGradientPalettes[i - 13])), 72);
setPaletteColors(curPalette, tcp);
}
break;
}
}
}
void serializeNetworks(JsonObject root)
{
JsonArray networks = root.createNestedArray(F("networks"));
int16_t status = WiFi.scanComplete();
switch (status) {
case WIFI_SCAN_FAILED:
WiFi.scanNetworks(true);
return;
case WIFI_SCAN_RUNNING:
return;
}
for (int i = 0; i < status; i++) {
JsonObject node = networks.createNestedObject();
node[F("ssid")] = WiFi.SSID(i);
node[F("rssi")] = WiFi.RSSI(i);
node[F("bssid")] = WiFi.BSSIDstr(i);
node[F("channel")] = WiFi.channel(i);
node[F("enc")] = WiFi.encryptionType(i);
}
WiFi.scanDelete();
if (WiFi.scanComplete() == WIFI_SCAN_FAILED) {
WiFi.scanNetworks(true);
}
}
void serializeNodes(JsonObject root)
{
JsonArray nodes = root.createNestedArray("nodes");
for (NodesMap::iterator it = Nodes.begin(); it != Nodes.end(); ++it)
{
if (it->second.ip[0] != 0)
{
JsonObject node = nodes.createNestedObject();
node[F("name")] = it->second.nodeName;
node["type"] = it->second.nodeType;
node["ip"] = it->second.ip.toString();
node[F("age")] = it->second.age;
node[F("vid")] = it->second.build;
}
}
}
// deserializes mode data string into JsonArray
void serializeModeData(JsonArray fxdata)
{
char lineBuffer[256];
for (size_t i = 0; i < strip.getModeCount(); i++) {
strncpy_P(lineBuffer, strip.getModeData(i), sizeof(lineBuffer)/sizeof(char)-1);
lineBuffer[sizeof(lineBuffer)/sizeof(char)-1] = '\0'; // terminate string
if (lineBuffer[0] != 0) {
char* dataPtr = strchr(lineBuffer,'@');
if (dataPtr) fxdata.add(dataPtr+1);
else fxdata.add("");
}
}
}
// deserializes mode names string into JsonArray
// also removes effect data extensions (@...) from deserialised names
void serializeModeNames(JsonArray arr)
{
char lineBuffer[256];
for (size_t i = 0; i < strip.getModeCount(); i++) {
strncpy_P(lineBuffer, strip.getModeData(i), sizeof(lineBuffer)/sizeof(char)-1);
lineBuffer[sizeof(lineBuffer)/sizeof(char)-1] = '\0'; // terminate string
if (lineBuffer[0] != 0) {
char* dataPtr = strchr(lineBuffer,'@');
if (dataPtr) *dataPtr = 0; // terminate mode data after name
arr.add(lineBuffer);
}
}
}
// Global buffer locking response helper class (to make sure lock is released when AsyncJsonResponse is destroyed)
class LockedJsonResponse: public AsyncJsonResponse {
bool _holding_lock;
public:
// WARNING: constructor assumes requestJSONBufferLock() was successfully acquired externally/prior to constructing the instance
// Not a good practice with C++. Unfortunately AsyncJsonResponse only has 2 constructors - for dynamic buffer or existing buffer,
// with existing buffer it clears its content during construction
// if the lock was not acquired (using JSONBufferGuard class) previous implementation still cleared existing buffer
inline LockedJsonResponse(JsonDocument* doc, bool isArray) : AsyncJsonResponse(doc, isArray), _holding_lock(true) {};
virtual size_t _fillBuffer(uint8_t *buf, size_t maxLen) {
size_t result = AsyncJsonResponse::_fillBuffer(buf, maxLen);
// Release lock as soon as we're done filling content
if (((result + _sentLength) >= (_contentLength)) && _holding_lock) {
releaseJSONBufferLock();
_holding_lock = false;
}
return result;
}
// destructor will remove JSON buffer lock when response is destroyed in AsyncWebServer
virtual ~LockedJsonResponse() { if (_holding_lock) releaseJSONBufferLock(); };
};
void serveJson(AsyncWebServerRequest* request)
{
enum class json_target {
all, state, info, state_info, nodes, effects, palettes, fxdata, networks, config
};
json_target subJson = json_target::all;
const String& url = request->url();
if (url.indexOf("state") > 0) subJson = json_target::state;
else if (url.indexOf("info") > 0) subJson = json_target::info;
else if (url.indexOf("si") > 0) subJson = json_target::state_info;
else if (url.indexOf(F("nodes")) > 0) subJson = json_target::nodes;
else if (url.indexOf(F("eff")) > 0) subJson = json_target::effects;
else if (url.indexOf(F("palx")) > 0) subJson = json_target::palettes;
else if (url.indexOf(F("fxda")) > 0) subJson = json_target::fxdata;
else if (url.indexOf(F("net")) > 0) subJson = json_target::networks;
else if (url.indexOf(F("cfg")) > 0) subJson = json_target::config;
#ifdef WLED_ENABLE_JSONLIVE
else if (url.indexOf("live") > 0) {
serveLiveLeds(request);
return;
}
#endif
else if (url.indexOf("pal") > 0) {
request->send_P(200, FPSTR(CONTENT_TYPE_JSON), JSON_palette_names);
return;
}
else if (url.length() > 6) { //not just /json
serveJsonError(request, 501, ERR_NOT_IMPL);
return;
}
if (!requestJSONBufferLock(17)) {
request->deferResponse();
return;
}
// releaseJSONBufferLock() will be called when "response" is destroyed (from AsyncWebServer)
// make sure you delete "response" if no "request->send(response);" is made
LockedJsonResponse *response = new LockedJsonResponse(pDoc, subJson==json_target::fxdata || subJson==json_target::effects); // will clear and convert JsonDocument into JsonArray if necessary
JsonVariant lDoc = response->getRoot();
switch (subJson)
{
case json_target::state:
serializeState(lDoc); break;
case json_target::info:
serializeInfo(lDoc); break;
case json_target::nodes:
serializeNodes(lDoc); break;
case json_target::palettes:
serializePalettes(lDoc, request->hasParam(F("page")) ? request->getParam(F("page"))->value().toInt() : 0); break;
case json_target::effects:
serializeModeNames(lDoc); break;
case json_target::fxdata:
serializeModeData(lDoc); break;
case json_target::networks:
serializeNetworks(lDoc); break;
case json_target::config:
serializeConfig(lDoc); break;
case json_target::state_info:
case json_target::all:
JsonObject state = lDoc.createNestedObject("state");
serializeState(state);
JsonObject info = lDoc.createNestedObject("info");
serializeInfo(info);
if (subJson == json_target::all)
{
JsonArray effects = lDoc.createNestedArray(F("effects"));
serializeModeNames(effects); // remove WLED-SR extensions from effect names
lDoc[F("palettes")] = serialized((const __FlashStringHelper*)JSON_palette_names);
}
//lDoc["m"] = lDoc.memoryUsage(); // JSON buffer usage, for remote debugging
}
DEBUG_PRINTF_P(PSTR("JSON buffer size: %u for request: %d\n"), lDoc.memoryUsage(), subJson);
[[maybe_unused]] size_t len = response->setLength();
DEBUG_PRINTF_P(PSTR("JSON content length: %u\n"), len);
request->send(response);
}
#ifdef WLED_ENABLE_JSONLIVE
#define MAX_LIVE_LEDS 256
bool serveLiveLeds(AsyncWebServerRequest* request, uint32_t wsClient)
{
#ifdef WLED_ENABLE_WEBSOCKETS
AsyncWebSocketClient * wsc = nullptr;
if (!request) { //not HTTP, use Websockets
wsc = ws.client(wsClient);
if (!wsc || wsc->queueLength() > 0) return false; //only send if queue free
}
#endif
unsigned used = strip.getLengthTotal();
unsigned n = (used -1) /MAX_LIVE_LEDS +1; //only serve every n'th LED if count over MAX_LIVE_LEDS
#ifndef WLED_DISABLE_2D
if (strip.isMatrix) {
// ignore anything behid matrix (i.e. extra strip)
used = Segment::maxWidth*Segment::maxHeight; // always the size of matrix (more or less than strip.getLengthTotal())
n = 1;
if (used > MAX_LIVE_LEDS) n = 2;
if (used > MAX_LIVE_LEDS*4) n = 4;
}
#endif
DynamicBuffer buffer(9 + (9*(1+(used/n))) + 7 + 5 + 6 + 5 + 6 + 5 + 2);
char* buf = buffer.data(); // assign buffer for oappnd() functions
strncpy_P(buffer.data(), PSTR("{\"leds\":["), buffer.size());
buf += 9; // sizeof(PSTR()) from last line
for (size_t i = 0; i < used; i += n)
{
#ifndef WLED_DISABLE_2D
if (strip.isMatrix && n>1 && (i/Segment::maxWidth)%n) i += Segment::maxWidth * (n-1);
#endif
uint32_t c = strip.getPixelColor(i);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
r = scale8(qadd8(w, r), strip.getBrightness()); //R, add white channel to RGB channels as a simple RGBW -> RGB map
g = scale8(qadd8(w, g), strip.getBrightness()); //G
b = scale8(qadd8(w, b), strip.getBrightness()); //B
buf += sprintf_P(buf, PSTR("\"%06X\","), RGBW32(r,g,b,0));
}
buf--; // remove last comma
buf += sprintf_P(buf, PSTR("],\"n\":%d"), n);
#ifndef WLED_DISABLE_2D
if (strip.isMatrix) {
buf += sprintf_P(buf, PSTR(",\"w\":%d"), Segment::maxWidth/n);
buf += sprintf_P(buf, PSTR(",\"h\":%d"), Segment::maxHeight/n);
}
#endif
(*buf++) = '}';
(*buf++) = 0;
if (request) {
request->send(200, FPSTR(CONTENT_TYPE_JSON), toString(std::move(buffer)));
}
#ifdef WLED_ENABLE_WEBSOCKETS
else {
wsc->text(toString(std::move(buffer)));
}
#endif
return true;
}
#endif