WLED/wled00/util.cpp
2025-03-12 19:58:32 +01:00

795 lines
28 KiB
C++

#include "wled.h"
#include "fcn_declare.h"
#include "const.h"
//helper to get int value at a position in string
int getNumVal(const String* req, uint16_t pos)
{
return req->substring(pos+3).toInt();
}
//helper to get int value with in/decrementing support via ~ syntax
void parseNumber(const char* str, byte* val, byte minv, byte maxv)
{
if (str == nullptr || str[0] == '\0') return;
if (str[0] == 'r') {*val = hw_random8(minv,maxv?maxv:255); return;} // maxv for random cannot be 0
bool wrap = false;
if (str[0] == 'w' && strlen(str) > 1) {str++; wrap = true;}
if (str[0] == '~') {
int out = atoi(str +1);
if (out == 0) {
if (str[1] == '0') return;
if (str[1] == '-') {
*val = (int)(*val -1) < (int)minv ? maxv : min((int)maxv,(*val -1)); //-1, wrap around
} else {
*val = (int)(*val +1) > (int)maxv ? minv : max((int)minv,(*val +1)); //+1, wrap around
}
} else {
if (wrap && *val == maxv && out > 0) out = minv;
else if (wrap && *val == minv && out < 0) out = maxv;
else {
out += *val;
if (out > maxv) out = maxv;
if (out < minv) out = minv;
}
*val = out;
}
return;
} else if (minv == maxv && minv == 0) { // limits "unset" i.e. both 0
byte p1 = atoi(str);
const char* str2 = strchr(str,'~'); // min/max range (for preset cycle, e.g. "1~5~")
if (str2) {
byte p2 = atoi(++str2); // skip ~
if (p2 > 0) {
while (isdigit(*(++str2))); // skip digits
parseNumber(str2, val, p1, p2);
return;
}
}
}
*val = atoi(str);
}
//getVal supports inc/decrementing and random ("X~Y(r|~[w][-][Z])" form)
bool getVal(JsonVariant elem, byte* val, byte vmin, byte vmax) {
if (elem.is<int>()) {
if (elem < 0) return false; //ignore e.g. {"ps":-1}
*val = elem;
return true;
} else if (elem.is<const char*>()) {
const char* str = elem;
size_t len = strnlen(str, 14);
if (len == 0 || len > 12) return false;
// fix for #3605 & #4346
// ignore vmin and vmax and use as specified in API
if (len > 3 && (strchr(str,'r') || strchr(str,'~') != strrchr(str,'~'))) vmax = vmin = 0; // we have "X~Y(r|~[w][-][Z])" form
// end fix
parseNumber(str, val, vmin, vmax);
return true;
}
return false; //key does not exist
}
bool getBoolVal(const JsonVariant &elem, bool dflt) {
if (elem.is<const char*>() && elem.as<const char*>()[0] == 't') {
return !dflt;
} else {
return elem | dflt;
}
}
bool updateVal(const char* req, const char* key, byte* val, byte minv, byte maxv)
{
const char *v = strstr(req, key);
if (v) v += strlen(key);
else return false;
parseNumber(v, val, minv, maxv);
return true;
}
static size_t printSetFormInput(Print& settingsScript, const char* key, const char* selector, int value) {
return settingsScript.printf_P(PSTR("d.Sf.%s.%s=%d;"), key, selector, value);
}
size_t printSetFormCheckbox(Print& settingsScript, const char* key, int val) {
return printSetFormInput(settingsScript, key, PSTR("checked"), val);
}
size_t printSetFormValue(Print& settingsScript, const char* key, int val) {
return printSetFormInput(settingsScript, key, PSTR("value"), val);
}
size_t printSetFormIndex(Print& settingsScript, const char* key, int index) {
return printSetFormInput(settingsScript, key, PSTR("selectedIndex"), index);
}
size_t printSetFormValue(Print& settingsScript, const char* key, const char* val) {
return settingsScript.printf_P(PSTR("d.Sf.%s.value=\"%s\";"),key,val);
}
size_t printSetClassElementHTML(Print& settingsScript, const char* key, const int index, const char* val) {
return settingsScript.printf_P(PSTR("d.getElementsByClassName(\"%s\")[%d].innerHTML=\"%s\";"), key, index, val);
}
void prepareHostname(char* hostname)
{
sprintf_P(hostname, PSTR("wled-%*s"), 6, escapedMac.c_str() + 6);
const char *pC = serverDescription;
unsigned pos = 5; // keep "wled-"
while (*pC && pos < 24) { // while !null and not over length
if (isalnum(*pC)) { // if the current char is alpha-numeric append it to the hostname
hostname[pos] = *pC;
pos++;
} else if (*pC == ' ' || *pC == '_' || *pC == '-' || *pC == '+' || *pC == '!' || *pC == '?' || *pC == '*') {
hostname[pos] = '-';
pos++;
}
// else do nothing - no leading hyphens and do not include hyphens for all other characters.
pC++;
}
//last character must not be hyphen
if (pos > 5) {
while (pos > 4 && hostname[pos -1] == '-') pos--;
hostname[pos] = '\0'; // terminate string (leave at least "wled")
}
}
bool isAsterisksOnly(const char* str, byte maxLen)
{
for (unsigned i = 0; i < maxLen; i++) {
if (str[i] == 0) break;
if (str[i] != '*') return false;
}
//at this point the password contains asterisks only
return (str[0] != 0); //false on empty string
}
//threading/network callback details: https://github.com/wled-dev/WLED/pull/2336#discussion_r762276994
bool requestJSONBufferLock(uint8_t moduleID)
{
if (pDoc == nullptr) {
DEBUG_PRINTLN(F("ERROR: JSON buffer not allocated!"));
return false;
}
#if defined(ARDUINO_ARCH_ESP32)
// Use a recursive mutex type in case our task is the one holding the JSON buffer.
// This can happen during large JSON web transactions. In this case, we continue immediately
// and then will return out below if the lock is still held.
if (xSemaphoreTakeRecursive(jsonBufferLockMutex, 250) == pdFALSE) return false; // timed out waiting
#elif defined(ARDUINO_ARCH_ESP8266)
// If we're in system context, delay() won't return control to the user context, so there's
// no point in waiting.
if (can_yield()) {
unsigned long now = millis();
while (jsonBufferLock && (millis()-now < 250)) delay(1); // wait for fraction for buffer lock
}
#else
#error Unsupported task framework - fix requestJSONBufferLock
#endif
// If the lock is still held - by us, or by another task
if (jsonBufferLock) {
DEBUG_PRINTF_P(PSTR("ERROR: Locking JSON buffer (%d) failed! (still locked by %d)\n"), moduleID, jsonBufferLock);
#ifdef ARDUINO_ARCH_ESP32
xSemaphoreGiveRecursive(jsonBufferLockMutex);
#endif
return false;
}
jsonBufferLock = moduleID ? moduleID : 255;
DEBUG_PRINTF_P(PSTR("JSON buffer locked. (%d)\n"), jsonBufferLock);
pDoc->clear();
return true;
}
void releaseJSONBufferLock()
{
DEBUG_PRINTF_P(PSTR("JSON buffer released. (%d)\n"), jsonBufferLock);
jsonBufferLock = 0;
#ifdef ARDUINO_ARCH_ESP32
xSemaphoreGiveRecursive(jsonBufferLockMutex);
#endif
}
// extracts effect mode (or palette) name from names serialized string
// caller must provide large enough buffer for name (including SR extensions)!
uint8_t extractModeName(uint8_t mode, const char *src, char *dest, uint8_t maxLen)
{
if (src == JSON_mode_names || src == nullptr) {
if (mode < strip.getModeCount()) {
char lineBuffer[256];
//strcpy_P(lineBuffer, (const char*)pgm_read_dword(&(WS2812FX::_modeData[mode])));
strncpy_P(lineBuffer, strip.getModeData(mode), sizeof(lineBuffer)/sizeof(char)-1);
lineBuffer[sizeof(lineBuffer)/sizeof(char)-1] = '\0'; // terminate string
size_t len = strlen(lineBuffer);
size_t j = 0;
for (; j < maxLen && j < len; j++) {
if (lineBuffer[j] == '\0' || lineBuffer[j] == '@') break;
dest[j] = lineBuffer[j];
}
dest[j] = 0; // terminate string
return strlen(dest);
} else return 0;
}
if (src == JSON_palette_names && mode > (GRADIENT_PALETTE_COUNT + 13)) {
snprintf_P(dest, maxLen, PSTR("~ Custom %d ~"), 255-mode);
dest[maxLen-1] = '\0';
return strlen(dest);
}
unsigned qComma = 0;
bool insideQuotes = false;
unsigned printedChars = 0;
char singleJsonSymbol;
size_t len = strlen_P(src);
// Find the mode name in JSON
for (size_t i = 0; i < len; i++) {
singleJsonSymbol = pgm_read_byte_near(src + i);
if (singleJsonSymbol == '\0') break;
if (singleJsonSymbol == '@' && insideQuotes && qComma == mode) break; //stop when SR extension encountered
switch (singleJsonSymbol) {
case '"':
insideQuotes = !insideQuotes;
break;
case '[':
case ']':
break;
case ',':
if (!insideQuotes) qComma++;
default:
if (!insideQuotes || (qComma != mode)) break;
dest[printedChars++] = singleJsonSymbol;
}
if ((qComma > mode) || (printedChars >= maxLen)) break;
}
dest[printedChars] = '\0';
return strlen(dest);
}
// extracts effect slider data (1st group after @)
uint8_t extractModeSlider(uint8_t mode, uint8_t slider, char *dest, uint8_t maxLen, uint8_t *var)
{
dest[0] = '\0'; // start by clearing buffer
if (mode < strip.getModeCount()) {
String lineBuffer = FPSTR(strip.getModeData(mode));
if (lineBuffer.length() > 0) {
int start = lineBuffer.indexOf('@'); // String::indexOf() returns an int, not an unsigned; -1 means "not found"
int stop = lineBuffer.indexOf(';', start);
if (start>0 && stop>0) {
String names = lineBuffer.substring(start, stop); // include @
int nameBegin = 1, nameEnd, nameDefault;
if (slider < 10) {
for (size_t i=0; i<=slider; i++) {
const char *tmpstr;
dest[0] = '\0'; //clear dest buffer
if (nameBegin <= 0) break; // there are no more names
nameEnd = names.indexOf(',', nameBegin);
if (i == slider) {
nameDefault = names.indexOf('=', nameBegin); // find default value
if (nameDefault > 0 && var && ((nameEnd>0 && nameDefault<nameEnd) || nameEnd<0)) {
*var = (uint8_t)atoi(names.substring(nameDefault+1).c_str());
}
if (names.charAt(nameBegin) == '!') {
switch (slider) {
case 0: tmpstr = PSTR("FX Speed"); break;
case 1: tmpstr = PSTR("FX Intensity"); break;
case 2: tmpstr = PSTR("FX Custom 1"); break;
case 3: tmpstr = PSTR("FX Custom 2"); break;
case 4: tmpstr = PSTR("FX Custom 3"); break;
default: tmpstr = PSTR("FX Custom"); break;
}
strncpy_P(dest, tmpstr, maxLen); // copy the name into buffer (replacing previous)
dest[maxLen-1] = '\0';
} else {
if (nameEnd<0) tmpstr = names.substring(nameBegin).c_str(); // did not find ",", last name?
else tmpstr = names.substring(nameBegin, nameEnd).c_str();
strlcpy(dest, tmpstr, maxLen); // copy the name into buffer (replacing previous)
}
}
nameBegin = nameEnd+1; // next name (if "," is not found it will be 0)
} // next slider
} else if (slider == 255) {
// palette
strlcpy(dest, "pal", maxLen);
names = lineBuffer.substring(stop+1); // stop has index of color slot names
nameBegin = names.indexOf(';'); // look for palette
if (nameBegin >= 0) {
nameEnd = names.indexOf(';', nameBegin+1);
if (!isdigit(names[nameBegin+1])) nameBegin = names.indexOf('=', nameBegin+1); // look for default value
if (nameEnd >= 0 && nameBegin > nameEnd) nameBegin = -1;
if (nameBegin >= 0 && var) {
*var = (uint8_t)atoi(names.substring(nameBegin+1).c_str());
}
}
}
// we have slider name (including default value) in the dest buffer
for (size_t i=0; i<strlen(dest); i++) if (dest[i]=='=') { dest[i]='\0'; break; } // truncate default value
} else {
// defaults to just speed and intensity since there is no slider data
switch (slider) {
case 0: strncpy_P(dest, PSTR("FX Speed"), maxLen); break;
case 1: strncpy_P(dest, PSTR("FX Intensity"), maxLen); break;
}
dest[maxLen] = '\0'; // strncpy does not necessarily null terminate string
}
}
return strlen(dest);
}
return 0;
}
// extracts mode parameter defaults from last section of mode data (e.g. "Juggle@!,Trail;!,!,;!;012;sx=16,ix=240")
int16_t extractModeDefaults(uint8_t mode, const char *segVar)
{
if (mode < strip.getModeCount()) {
char lineBuffer[256];
strncpy_P(lineBuffer, strip.getModeData(mode), sizeof(lineBuffer)/sizeof(char)-1);
lineBuffer[sizeof(lineBuffer)/sizeof(char)-1] = '\0'; // terminate string
if (lineBuffer[0] != 0) {
char* startPtr = strrchr(lineBuffer, ';'); // last ";" in FX data
if (!startPtr) return -1;
char* stopPtr = strstr(startPtr, segVar);
if (!stopPtr) return -1;
stopPtr += strlen(segVar) +1; // skip "="
return atoi(stopPtr);
}
}
return -1;
}
void checkSettingsPIN(const char* pin) {
if (!pin) return;
if (!correctPIN && millis() - lastEditTime < PIN_RETRY_COOLDOWN) return; // guard against PIN brute force
bool correctBefore = correctPIN;
correctPIN = (strlen(settingsPIN) == 0 || strncmp(settingsPIN, pin, 4) == 0);
if (correctBefore != correctPIN) createEditHandler(correctPIN);
lastEditTime = millis();
}
uint16_t crc16(const unsigned char* data_p, size_t length) {
uint8_t x;
uint16_t crc = 0xFFFF;
if (!length) return 0x1D0F;
while (length--) {
x = crc >> 8 ^ *data_p++;
x ^= x>>4;
crc = (crc << 8) ^ ((uint16_t)(x << 12)) ^ ((uint16_t)(x <<5)) ^ ((uint16_t)x);
}
return crc;
}
// fastled beatsin: 1:1 replacements to remove the use of fastled sin16()
// Generates a 16-bit sine wave at a given BPM that oscillates within a given range. see fastled for details.
uint16_t beatsin88_t(accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
{
uint16_t beat = beat88( beats_per_minute_88, timebase);
uint16_t beatsin (sin16_t( beat + phase_offset) + 32768);
uint16_t rangewidth = highest - lowest;
uint16_t scaledbeat = scale16( beatsin, rangewidth);
uint16_t result = lowest + scaledbeat;
return result;
}
// Generates a 16-bit sine wave at a given BPM that oscillates within a given range. see fastled for details.
uint16_t beatsin16_t(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
{
uint16_t beat = beat16( beats_per_minute, timebase);
uint16_t beatsin = (sin16_t( beat + phase_offset) + 32768);
uint16_t rangewidth = highest - lowest;
uint16_t scaledbeat = scale16( beatsin, rangewidth);
uint16_t result = lowest + scaledbeat;
return result;
}
// Generates an 8-bit sine wave at a given BPM that oscillates within a given range. see fastled for details.
uint8_t beatsin8_t(accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
{
uint8_t beat = beat8( beats_per_minute, timebase);
uint8_t beatsin = sin8_t( beat + phase_offset);
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8( beatsin, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Begin simulateSound (to enable audio enhanced effects to display something)
///////////////////////////////////////////////////////////////////////////////
// Currently 4 types defined, to be fine tuned and new types added
// (only 2 used as stored in 1 bit in segment options, consider switching to a single global simulation type)
typedef enum UM_SoundSimulations {
UMS_BeatSin = 0,
UMS_WeWillRockYou,
UMS_10_13,
UMS_14_3
} um_soundSimulations_t;
um_data_t* simulateSound(uint8_t simulationId)
{
static uint8_t samplePeak;
static float FFT_MajorPeak;
static uint8_t maxVol;
static uint8_t binNum;
static float volumeSmth;
static uint16_t volumeRaw;
static float my_magnitude;
//arrays
uint8_t *fftResult;
static um_data_t* um_data = nullptr;
if (!um_data) {
//claim storage for arrays
fftResult = (uint8_t *)malloc(sizeof(uint8_t) * 16);
// initialize um_data pointer structure
// NOTE!!!
// This may change as AudioReactive usermod may change
um_data = new um_data_t;
um_data->u_size = 8;
um_data->u_type = new um_types_t[um_data->u_size];
um_data->u_data = new void*[um_data->u_size];
um_data->u_data[0] = &volumeSmth;
um_data->u_data[1] = &volumeRaw;
um_data->u_data[2] = fftResult;
um_data->u_data[3] = &samplePeak;
um_data->u_data[4] = &FFT_MajorPeak;
um_data->u_data[5] = &my_magnitude;
um_data->u_data[6] = &maxVol;
um_data->u_data[7] = &binNum;
} else {
// get arrays from um_data
fftResult = (uint8_t*)um_data->u_data[2];
}
uint32_t ms = millis();
switch (simulationId) {
default:
case UMS_BeatSin:
for (int i = 0; i<16; i++)
fftResult[i] = beatsin8_t(120 / (i+1), 0, 255);
// fftResult[i] = (beatsin8_t(120, 0, 255) + (256/16 * i)) % 256;
volumeSmth = fftResult[8];
break;
case UMS_WeWillRockYou:
if (ms%2000 < 200) {
volumeSmth = hw_random8();
for (int i = 0; i<5; i++)
fftResult[i] = hw_random8();
}
else if (ms%2000 < 400) {
volumeSmth = 0;
for (int i = 0; i<16; i++)
fftResult[i] = 0;
}
else if (ms%2000 < 600) {
volumeSmth = hw_random8();
for (int i = 5; i<11; i++)
fftResult[i] = hw_random8();
}
else if (ms%2000 < 800) {
volumeSmth = 0;
for (int i = 0; i<16; i++)
fftResult[i] = 0;
}
else if (ms%2000 < 1000) {
volumeSmth = hw_random8();
for (int i = 11; i<16; i++)
fftResult[i] = hw_random8();
}
else {
volumeSmth = 0;
for (int i = 0; i<16; i++)
fftResult[i] = 0;
}
break;
case UMS_10_13:
for (int i = 0; i<16; i++)
fftResult[i] = perlin8(beatsin8_t(90 / (i+1), 0, 200)*15 + (ms>>10), ms>>3);
volumeSmth = fftResult[8];
break;
case UMS_14_3:
for (int i = 0; i<16; i++)
fftResult[i] = perlin8(beatsin8_t(120 / (i+1), 10, 30)*10 + (ms>>14), ms>>3);
volumeSmth = fftResult[8];
break;
}
samplePeak = hw_random8() > 250;
FFT_MajorPeak = 21 + (volumeSmth*volumeSmth) / 8.0f; // walk thru full range of 21hz...8200hz
maxVol = 31; // this gets feedback fro UI
binNum = 8; // this gets feedback fro UI
volumeRaw = volumeSmth;
my_magnitude = 10000.0f / 8.0f; //no idea if 10000 is a good value for FFT_Magnitude ???
if (volumeSmth < 1 ) my_magnitude = 0.001f; // noise gate closed - mute
return um_data;
}
static const char s_ledmap_tmpl[] PROGMEM = "ledmap%d.json";
// enumerate all ledmapX.json files on FS and extract ledmap names if existing
void enumerateLedmaps() {
StaticJsonDocument<64> filter;
filter["n"] = true;
ledMaps = 1;
for (size_t i=1; i<WLED_MAX_LEDMAPS; i++) {
char fileName[33] = "/";
sprintf_P(fileName+1, s_ledmap_tmpl, i);
bool isFile = WLED_FS.exists(fileName);
#ifndef ESP8266
if (ledmapNames[i-1]) { //clear old name
free(ledmapNames[i-1]);
ledmapNames[i-1] = nullptr;
}
#endif
if (isFile) {
ledMaps |= 1 << i;
#ifndef ESP8266
if (requestJSONBufferLock(21)) {
if (readObjectFromFile(fileName, nullptr, pDoc, &filter)) {
size_t len = 0;
JsonObject root = pDoc->as<JsonObject>();
if (!root["n"].isNull()) {
// name field exists
const char *name = root["n"].as<const char*>();
if (name != nullptr) len = strlen(name);
if (len > 0 && len < 33) {
ledmapNames[i-1] = static_cast<char*>(malloc(len+1));
if (ledmapNames[i-1]) strlcpy(ledmapNames[i-1], name, 33);
}
}
if (!ledmapNames[i-1]) {
char tmp[33];
snprintf_P(tmp, 32, s_ledmap_tmpl, i);
len = strlen(tmp);
ledmapNames[i-1] = static_cast<char*>(malloc(len+1));
if (ledmapNames[i-1]) strlcpy(ledmapNames[i-1], tmp, 33);
}
}
releaseJSONBufferLock();
}
#endif
}
}
}
/*
* Returns a new, random color wheel index with a minimum distance of 42 from pos.
*/
uint8_t get_random_wheel_index(uint8_t pos) {
uint8_t r = 0, x = 0, y = 0, d = 0;
while (d < 42) {
r = hw_random8();
x = abs(pos - r);
y = 255 - x;
d = MIN(x, y);
}
return r;
}
// float version of map()
float mapf(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
uint32_t hashInt(uint32_t s) {
// borrowed from https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key
s = ((s >> 16) ^ s) * 0x45d9f3b;
s = ((s >> 16) ^ s) * 0x45d9f3b;
return (s >> 16) ^ s;
}
// 32 bit random number generator, inlining uses more code, use hw_random16() if speed is critical (see fcn_declare.h)
uint32_t hw_random(uint32_t upperlimit) {
uint32_t rnd = hw_random();
uint64_t scaled = uint64_t(rnd) * uint64_t(upperlimit);
return scaled >> 32;
}
int32_t hw_random(int32_t lowerlimit, int32_t upperlimit) {
if(lowerlimit >= upperlimit) {
return lowerlimit;
}
uint32_t diff = upperlimit - lowerlimit;
return hw_random(diff) + lowerlimit;
}
/*
* Fixed point integer based Perlin noise functions by @dedehai
* Note: optimized for speed and to mimic fastled inoise functions, not for accuracy or best randomness
*/
#define PERLIN_SHIFT 1
// calculate gradient for corner from hash value
static inline __attribute__((always_inline)) int32_t hashToGradient(uint32_t h) {
// using more steps yields more "detailed" perlin noise but looks less like the original fastled version (adjust PERLIN_SHIFT to compensate, also changes range and needs proper adustment)
// return (h & 0xFF) - 128; // use PERLIN_SHIFT 7
// return (h & 0x0F) - 8; // use PERLIN_SHIFT 3
// return (h & 0x07) - 4; // use PERLIN_SHIFT 2
return (h & 0x03) - 2; // use PERLIN_SHIFT 1 -> closest to original fastled version
}
// Gradient functions for 1D, 2D and 3D Perlin noise note: forcing inline produces smaller code and makes it 3x faster!
static inline __attribute__((always_inline)) int32_t gradient1D(uint32_t x0, int32_t dx) {
uint32_t h = x0 * 0x27D4EB2D;
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
h ^= h >> 7;
return (hashToGradient(h) * dx) >> PERLIN_SHIFT;
}
static inline __attribute__((always_inline)) int32_t gradient2D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy) {
uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D);
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
return (hashToGradient(h) * dx + hashToGradient(h>>PERLIN_SHIFT) * dy) >> (1 + PERLIN_SHIFT);
}
static inline __attribute__((always_inline)) int32_t gradient3D(uint32_t x0, int32_t dx, uint32_t y0, int32_t dy, uint32_t z0, int32_t dz) {
// fast and good entropy hash from corner coordinates
uint32_t h = (x0 * 0x27D4EB2D) ^ (y0 * 0xB5297A4D) ^ (z0 * 0x1B56C4E9);
h ^= h >> 15;
h *= 0x92C3412B;
h ^= h >> 13;
return ((hashToGradient(h) * dx + hashToGradient(h>>(1+PERLIN_SHIFT)) * dy + hashToGradient(h>>(1 + 2*PERLIN_SHIFT)) * dz) * 85) >> (8 + PERLIN_SHIFT); // scale to 16bit, x*85 >> 8 = x/3
}
// fast cubic smoothstep: t*(3 - 2t²), optimized for fixed point, scaled to avoid overflows
static uint32_t smoothstep(const uint32_t t) {
uint32_t t_squared = (t * t) >> 16;
uint32_t factor = (3 << 16) - ((t << 1));
return (t_squared * factor) >> 18; // scale to avoid overflows and give best resolution
}
// simple linear interpolation for fixed-point values, scaled for perlin noise use
static inline int32_t lerpPerlin(int32_t a, int32_t b, int32_t t) {
return a + (((b - a) * t) >> 14); // match scaling with smoothstep to yield 16.16bit values
}
// 1D Perlin noise function that returns a value in range of -24691 to 24689
int32_t perlin1D_raw(uint32_t x, bool is16bit) {
// integer and fractional part coordinates
int32_t x0 = x >> 16;
int32_t x1 = x0 + 1;
if(is16bit) x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
int32_t dx0 = x & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
// gradient values for the two corners
int32_t g0 = gradient1D(x0, dx0);
int32_t g1 = gradient1D(x1, dx1);
// interpolate and smooth function
int32_t tx = smoothstep(dx0);
int32_t noise = lerpPerlin(g0, g1, tx);
return noise;
}
// 2D Perlin noise function that returns a value in range of -20633 to 20629
int32_t perlin2D_raw(uint32_t x, uint32_t y, bool is16bit) {
int32_t x0 = x >> 16;
int32_t y0 = y >> 16;
int32_t x1 = x0 + 1;
int32_t y1 = y0 + 1;
if(is16bit) {
x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
y1 = y1 & 0xFF;
}
int32_t dx0 = x & 0xFFFF;
int32_t dy0 = y & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
int32_t dy1 = dy0 - 0x10000;
int32_t g00 = gradient2D(x0, dx0, y0, dy0);
int32_t g10 = gradient2D(x1, dx1, y0, dy0);
int32_t g01 = gradient2D(x0, dx0, y1, dy1);
int32_t g11 = gradient2D(x1, dx1, y1, dy1);
uint32_t tx = smoothstep(dx0);
uint32_t ty = smoothstep(dy0);
int32_t nx0 = lerpPerlin(g00, g10, tx);
int32_t nx1 = lerpPerlin(g01, g11, tx);
int32_t noise = lerpPerlin(nx0, nx1, ty);
return noise;
}
// 3D Perlin noise function that returns a value in range of -16788 to 16381
int32_t perlin3D_raw(uint32_t x, uint32_t y, uint32_t z, bool is16bit) {
int32_t x0 = x >> 16;
int32_t y0 = y >> 16;
int32_t z0 = z >> 16;
int32_t x1 = x0 + 1;
int32_t y1 = y0 + 1;
int32_t z1 = z0 + 1;
if(is16bit) {
x1 = x1 & 0xFF; // wrap back to zero at 0xFF instead of 0xFFFF
y1 = y1 & 0xFF;
z1 = z1 & 0xFF;
}
int32_t dx0 = x & 0xFFFF;
int32_t dy0 = y & 0xFFFF;
int32_t dz0 = z & 0xFFFF;
int32_t dx1 = dx0 - 0x10000;
int32_t dy1 = dy0 - 0x10000;
int32_t dz1 = dz0 - 0x10000;
int32_t g000 = gradient3D(x0, dx0, y0, dy0, z0, dz0);
int32_t g001 = gradient3D(x0, dx0, y0, dy0, z1, dz1);
int32_t g010 = gradient3D(x0, dx0, y1, dy1, z0, dz0);
int32_t g011 = gradient3D(x0, dx0, y1, dy1, z1, dz1);
int32_t g100 = gradient3D(x1, dx1, y0, dy0, z0, dz0);
int32_t g101 = gradient3D(x1, dx1, y0, dy0, z1, dz1);
int32_t g110 = gradient3D(x1, dx1, y1, dy1, z0, dz0);
int32_t g111 = gradient3D(x1, dx1, y1, dy1, z1, dz1);
uint32_t tx = smoothstep(dx0);
uint32_t ty = smoothstep(dy0);
uint32_t tz = smoothstep(dz0);
int32_t nx0 = lerpPerlin(g000, g100, tx);
int32_t nx1 = lerpPerlin(g010, g110, tx);
int32_t nx2 = lerpPerlin(g001, g101, tx);
int32_t nx3 = lerpPerlin(g011, g111, tx);
int32_t ny0 = lerpPerlin(nx0, nx1, ty);
int32_t ny1 = lerpPerlin(nx2, nx3, ty);
int32_t noise = lerpPerlin(ny0, ny1, tz);
return noise;
}
// scaling functions for fastled replacement
uint16_t perlin16(uint32_t x) {
return ((perlin1D_raw(x) * 1159) >> 10) + 32803; //scale to 16bit and offset (fastled range: about 4838 to 60766)
}
uint16_t perlin16(uint32_t x, uint32_t y) {
return ((perlin2D_raw(x, y) * 1537) >> 10) + 32725; //scale to 16bit and offset (fastled range: about 1748 to 63697)
}
uint16_t perlin16(uint32_t x, uint32_t y, uint32_t z) {
return ((perlin3D_raw(x, y, z) * 1731) >> 10) + 33147; //scale to 16bit and offset (fastled range: about 4766 to 60840)
}
uint8_t perlin8(uint16_t x) {
return (((perlin1D_raw((uint32_t)x << 8, true) * 1353) >> 10) + 32769) >> 8; //scale to 16 bit, offset, then scale to 8bit
}
uint8_t perlin8(uint16_t x, uint16_t y) {
return (((perlin2D_raw((uint32_t)x << 8, (uint32_t)y << 8, true) * 1620) >> 10) + 32771) >> 8; //scale to 16 bit, offset, then scale to 8bit
}
uint8_t perlin8(uint16_t x, uint16_t y, uint16_t z) {
return (((perlin3D_raw((uint32_t)x << 8, (uint32_t)y << 8, (uint32_t)z << 8, true) * 2015) >> 10) + 33168) >> 8; //scale to 16 bit, offset, then scale to 8bit
}