mirror of
https://github.com/wled/WLED.git
synced 2025-04-21 21:37:19 +00:00
779 lines
27 KiB
C++
779 lines
27 KiB
C++
/*
|
|
* Class implementation for addressing various light types
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include <IPAddress.h>
|
|
#include "const.h"
|
|
#include "pin_manager.h"
|
|
#include "bus_wrapper.h"
|
|
#include "bus_manager.h"
|
|
|
|
extern bool cctICused;
|
|
|
|
//colors.cpp
|
|
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
|
|
|
|
//udp.cpp
|
|
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
|
|
|
|
// enable additional debug output
|
|
#if defined(WLED_DEBUG_HOST)
|
|
#include "net_debug.h"
|
|
#define DEBUGOUT NetDebug
|
|
#else
|
|
#define DEBUGOUT Serial
|
|
#endif
|
|
|
|
#ifdef WLED_DEBUG
|
|
#ifndef ESP8266
|
|
#include <rom/rtc.h>
|
|
#endif
|
|
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
|
|
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
|
|
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
|
|
#define DEBUG_PRINTF_P(x...) DEBUGOUT.printf_P(x)
|
|
#else
|
|
#define DEBUG_PRINT(x)
|
|
#define DEBUG_PRINTLN(x)
|
|
#define DEBUG_PRINTF(x...)
|
|
#define DEBUG_PRINTF_P(x...)
|
|
#endif
|
|
|
|
//color mangling macros
|
|
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
|
|
#define R(c) (byte((c) >> 16))
|
|
#define G(c) (byte((c) >> 8))
|
|
#define B(c) (byte(c))
|
|
#define W(c) (byte((c) >> 24))
|
|
|
|
|
|
void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
|
|
if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
|
|
return;
|
|
}
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
// upper nibble contains W swap information
|
|
if ((colorOrder & 0x0F) > COL_ORDER_MAX) {
|
|
return;
|
|
}
|
|
_mappings[_count].start = start;
|
|
_mappings[_count].len = len;
|
|
_mappings[_count].colorOrder = colorOrder;
|
|
_count++;
|
|
}
|
|
|
|
uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
|
|
if (_count > 0) {
|
|
// upper nibble contains W swap information
|
|
// when ColorOrderMap's upper nibble contains value >0 then swap information is used from it, otherwise global swap is used
|
|
for (unsigned i = 0; i < _count; i++) {
|
|
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
|
|
return _mappings[i].colorOrder | ((_mappings[i].colorOrder >> 4) ? 0 : (defaultColorOrder & 0xF0));
|
|
}
|
|
}
|
|
}
|
|
return defaultColorOrder;
|
|
}
|
|
|
|
|
|
uint32_t Bus::autoWhiteCalc(uint32_t c) {
|
|
uint8_t aWM = _autoWhiteMode;
|
|
if (_gAWM < AW_GLOBAL_DISABLED) aWM = _gAWM;
|
|
if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
|
|
uint8_t w = W(c);
|
|
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
|
|
if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
|
|
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
|
|
if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
|
|
return RGBW32(r, g, b, w);
|
|
}
|
|
|
|
uint8_t *Bus::allocData(size_t size) {
|
|
if (_data) free(_data); // should not happen, but for safety
|
|
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
|
|
}
|
|
|
|
|
|
BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
|
|
, _skip(bc.skipAmount) //sacrificial pixels
|
|
, _colorOrder(bc.colorOrder)
|
|
, _milliAmpsPerLed(bc.milliAmpsPerLed)
|
|
, _milliAmpsMax(bc.milliAmpsMax)
|
|
, _colorOrderMap(com)
|
|
{
|
|
if (!IS_DIGITAL(bc.type) || !bc.count) return;
|
|
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
|
|
_frequencykHz = 0U;
|
|
_pins[0] = bc.pins[0];
|
|
if (IS_2PIN(bc.type)) {
|
|
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
|
|
cleanup();
|
|
return;
|
|
}
|
|
_pins[1] = bc.pins[1];
|
|
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
|
|
}
|
|
_iType = PolyBus::getI(bc.type, _pins, nr);
|
|
if (_iType == I_NONE) return;
|
|
if (bc.doubleBuffer && !allocData(bc.count * Bus::getNumberOfChannels(bc.type))) return;
|
|
//_buffering = bc.doubleBuffer;
|
|
uint16_t lenToCreate = bc.count;
|
|
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
|
|
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr, _frequencykHz);
|
|
_valid = (_busPtr != nullptr);
|
|
DEBUG_PRINTF_P(PSTR("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u). mA=%d/%d\n"), _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], IS_2PIN(bc.type)?_pins[1]:255, _iType, _milliAmpsPerLed, _milliAmpsMax);
|
|
}
|
|
|
|
//fine tune power estimation constants for your setup
|
|
//you can set it to 0 if the ESP is powered by USB and the LEDs by external
|
|
#ifndef MA_FOR_ESP
|
|
#ifdef ESP8266
|
|
#define MA_FOR_ESP 80 //how much mA does the ESP use (Wemos D1 about 80mA)
|
|
#else
|
|
#define MA_FOR_ESP 120 //how much mA does the ESP use (ESP32 about 120mA)
|
|
#endif
|
|
#endif
|
|
|
|
//DISCLAIMER
|
|
//The following function attemps to calculate the current LED power usage,
|
|
//and will limit the brightness to stay below a set amperage threshold.
|
|
//It is NOT a measurement and NOT guaranteed to stay within the ablMilliampsMax margin.
|
|
//Stay safe with high amperage and have a reasonable safety margin!
|
|
//I am NOT to be held liable for burned down garages or houses!
|
|
|
|
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
|
|
uint8_t BusDigital::estimateCurrentAndLimitBri() {
|
|
bool useWackyWS2815PowerModel = false;
|
|
byte actualMilliampsPerLed = _milliAmpsPerLed;
|
|
|
|
if (_milliAmpsMax < MA_FOR_ESP/BusManager::getNumBusses() || actualMilliampsPerLed == 0) { //0 mA per LED and too low numbers turn off calculation
|
|
return _bri;
|
|
}
|
|
|
|
if (_milliAmpsPerLed == 255) {
|
|
useWackyWS2815PowerModel = true;
|
|
actualMilliampsPerLed = 12; // from testing an actual strip
|
|
}
|
|
|
|
size_t powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
|
|
if (powerBudget > getLength()) { //each LED uses about 1mA in standby, exclude that from power budget
|
|
powerBudget -= getLength();
|
|
} else {
|
|
powerBudget = 0;
|
|
}
|
|
|
|
uint32_t busPowerSum = 0;
|
|
for (unsigned i = 0; i < getLength(); i++) { //sum up the usage of each LED
|
|
uint32_t c = getPixelColor(i); // always returns original or restored color without brightness scaling
|
|
byte r = R(c), g = G(c), b = B(c), w = W(c);
|
|
|
|
if (useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
|
|
busPowerSum += (max(max(r,g),b)) * 3;
|
|
} else {
|
|
busPowerSum += (r + g + b + w);
|
|
}
|
|
}
|
|
|
|
if (hasWhite()) { //RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
|
|
busPowerSum *= 3;
|
|
busPowerSum >>= 2; //same as /= 4
|
|
}
|
|
|
|
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
|
|
busPowerSum = (busPowerSum * actualMilliampsPerLed) / 765;
|
|
_milliAmpsTotal = busPowerSum * _bri / 255;
|
|
|
|
uint8_t newBri = _bri;
|
|
if (busPowerSum * _bri / 255 > powerBudget) { //scale brightness down to stay in current limit
|
|
float scale = (float)(powerBudget * 255) / (float)(busPowerSum * _bri);
|
|
if (scale >= 1.0f) return _bri;
|
|
_milliAmpsTotal = ceilf((float)_milliAmpsTotal * scale);
|
|
uint8_t scaleB = min((int)(scale * 255), 255);
|
|
newBri = unsigned(_bri * scaleB) / 256 + 1;
|
|
}
|
|
return newBri;
|
|
}
|
|
|
|
void BusDigital::show() {
|
|
_milliAmpsTotal = 0;
|
|
if (!_valid) return;
|
|
|
|
uint8_t cctWW = 0, cctCW = 0;
|
|
uint8_t newBri = estimateCurrentAndLimitBri(); // will fill _milliAmpsTotal
|
|
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, newBri); // limit brightness to stay within current limits
|
|
|
|
if (_data) {
|
|
size_t channels = getNumberOfChannels();
|
|
int16_t oldCCT = Bus::_cct; // temporarily save bus CCT
|
|
for (size_t i=0; i<_len; i++) {
|
|
size_t offset = i * channels;
|
|
uint8_t co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder);
|
|
uint32_t c;
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs (_len is always a multiple of 3)
|
|
switch (i%3) {
|
|
case 0: c = RGBW32(_data[offset] , _data[offset+1], _data[offset+2], 0); break;
|
|
case 1: c = RGBW32(_data[offset-1], _data[offset] , _data[offset+1], 0); break;
|
|
case 2: c = RGBW32(_data[offset-2], _data[offset-1], _data[offset] , 0); break;
|
|
}
|
|
} else {
|
|
if (hasRGB()) c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], hasWhite() ? _data[offset+3] : 0);
|
|
else c = RGBW32(0, 0, 0, _data[offset]);
|
|
}
|
|
if (hasCCT()) {
|
|
// unfortunately as a segment may span multiple buses or a bus may contain multiple segments and each segment may have different CCT
|
|
// we need to extract and appy CCT value for each pixel individually even though all buses share the same _cct variable
|
|
// TODO: there is an issue if CCT is calculated from RGB value (_cct==-1), we cannot do that with double buffer
|
|
Bus::_cct = _data[offset+channels-1];
|
|
Bus::calculateCCT(c, cctWW, cctCW);
|
|
}
|
|
uint16_t pix = i;
|
|
if (_reversed) pix = _len - pix -1;
|
|
pix += _skip;
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, (cctCW<<8) | cctWW);
|
|
}
|
|
#if !defined(STATUSLED) || STATUSLED>=0
|
|
if (_skip) PolyBus::setPixelColor(_busPtr, _iType, 0, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
|
|
#endif
|
|
for (int i=1; i<_skip; i++) PolyBus::setPixelColor(_busPtr, _iType, i, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
|
|
Bus::_cct = oldCCT;
|
|
} else {
|
|
if (newBri < _bri) {
|
|
uint16_t hwLen = _len;
|
|
if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
|
|
for (unsigned i = 0; i < hwLen; i++) {
|
|
// use 0 as color order, actual order does not matter here as we just update the channel values as-is
|
|
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, i, 0), _bri);
|
|
if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW); // this will unfortunately corrupt (segment) CCT data on every bus
|
|
PolyBus::setPixelColor(_busPtr, _iType, i, c, 0, (cctCW<<8) | cctWW); // repaint all pixels with new brightness
|
|
}
|
|
}
|
|
}
|
|
PolyBus::show(_busPtr, _iType, !_data); // faster if buffer consistency is not important (use !_buffering this causes 20% FPS drop)
|
|
// restore bus brightness to its original value
|
|
// this is done right after show, so this is only OK if LED updates are completed before show() returns
|
|
// or async show has a separate buffer (ESP32 RMT and I2S are ok)
|
|
if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, _bri);
|
|
}
|
|
|
|
bool BusDigital::canShow() {
|
|
if (!_valid) return true;
|
|
return PolyBus::canShow(_busPtr, _iType);
|
|
}
|
|
|
|
void BusDigital::setBrightness(uint8_t b) {
|
|
if (_bri == b) return;
|
|
//Fix for turning off onboard LED breaking bus
|
|
#ifdef LED_BUILTIN
|
|
if (_bri == 0) { // && b > 0, covered by guard if above
|
|
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) reinit();
|
|
}
|
|
#endif
|
|
Bus::setBrightness(b);
|
|
PolyBus::setBrightness(_busPtr, _iType, b);
|
|
}
|
|
|
|
//If LEDs are skipped, it is possible to use the first as a status LED.
|
|
//TODO only show if no new show due in the next 50ms
|
|
void BusDigital::setStatusPixel(uint32_t c) {
|
|
if (_valid && _skip) {
|
|
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
|
|
if (canShow()) PolyBus::show(_busPtr, _iType);
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid) return;
|
|
uint8_t cctWW = 0, cctCW = 0;
|
|
if (hasWhite()) c = autoWhiteCalc(c);
|
|
if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
|
|
if (_data) {
|
|
size_t offset = pix * getNumberOfChannels();
|
|
if (hasRGB()) {
|
|
_data[offset++] = R(c);
|
|
_data[offset++] = G(c);
|
|
_data[offset++] = B(c);
|
|
}
|
|
if (hasWhite()) _data[offset++] = W(c);
|
|
// unfortunately as a segment may span multiple buses or a bus may contain multiple segments and each segment may have different CCT
|
|
// we need to store CCT value for each pixel (if there is a color correction in play, convert K in CCT ratio)
|
|
if (hasCCT()) _data[offset] = Bus::_cct >= 1900 ? (Bus::_cct - 1900) >> 5 : (Bus::_cct < 0 ? 127 : Bus::_cct); // TODO: if _cct == -1 we simply ignore it
|
|
} else {
|
|
if (_reversed) pix = _len - pix -1;
|
|
pix += _skip;
|
|
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
|
|
uint16_t pOld = pix;
|
|
pix = IC_INDEX_WS2812_1CH_3X(pix);
|
|
uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co),_bri);
|
|
switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
|
|
case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break;
|
|
case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break;
|
|
case 2: c = RGBW32(R(cOld), G(cOld), W(c) , 0); break;
|
|
}
|
|
}
|
|
if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW);
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, (cctCW<<8) | cctWW);
|
|
}
|
|
}
|
|
|
|
// returns original color if global buffering is enabled, else returns lossly restored color from bus
|
|
uint32_t IRAM_ATTR BusDigital::getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
if (_data) {
|
|
size_t offset = pix * getNumberOfChannels();
|
|
uint32_t c;
|
|
if (!hasRGB()) {
|
|
c = RGBW32(_data[offset], _data[offset], _data[offset], _data[offset]);
|
|
} else {
|
|
c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], hasWhite() ? _data[offset+3] : 0);
|
|
}
|
|
return c;
|
|
} else {
|
|
if (_reversed) pix = _len - pix -1;
|
|
pix += _skip;
|
|
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
|
|
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
|
|
uint8_t r = R(c);
|
|
uint8_t g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
|
|
uint8_t b = _reversed ? G(c) : B(c);
|
|
switch (pix % 3) { // get only the single channel
|
|
case 0: c = RGBW32(g, g, g, g); break;
|
|
case 1: c = RGBW32(r, r, r, r); break;
|
|
case 2: c = RGBW32(b, b, b, b); break;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
}
|
|
|
|
uint8_t BusDigital::getPins(uint8_t* pinArray) {
|
|
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
|
|
for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
|
|
return numPins;
|
|
}
|
|
|
|
void BusDigital::setColorOrder(uint8_t colorOrder) {
|
|
// upper nibble contains W swap information
|
|
if ((colorOrder & 0x0F) > 5) return;
|
|
_colorOrder = colorOrder;
|
|
}
|
|
|
|
void BusDigital::reinit() {
|
|
if (!_valid) return;
|
|
PolyBus::begin(_busPtr, _iType, _pins);
|
|
}
|
|
|
|
void BusDigital::cleanup() {
|
|
DEBUG_PRINTLN(F("Digital Cleanup."));
|
|
PolyBus::cleanup(_busPtr, _iType);
|
|
_iType = I_NONE;
|
|
_valid = false;
|
|
_busPtr = nullptr;
|
|
if (_data != nullptr) freeData();
|
|
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
|
|
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
|
|
}
|
|
|
|
|
|
BusPwm::BusPwm(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
|
|
{
|
|
if (!IS_PWM(bc.type)) return;
|
|
uint8_t numPins = NUM_PWM_PINS(bc.type);
|
|
_frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ;
|
|
|
|
#ifdef ESP8266
|
|
// duty cycle resolution (_depth) can be extracted from this formula: 1MHz > _frequency * 2^_depth
|
|
if (_frequency > 1760) _depth = 8;
|
|
else if (_frequency > 880) _depth = 9;
|
|
else _depth = 10; // WLED_PWM_FREQ <= 880Hz
|
|
analogWriteRange((1<<_depth)-1);
|
|
analogWriteFreq(_frequency);
|
|
#else
|
|
_ledcStart = pinManager.allocateLedc(numPins);
|
|
if (_ledcStart == 255) { //no more free LEDC channels
|
|
deallocatePins(); return;
|
|
}
|
|
// duty cycle resolution (_depth) can be extracted from this formula: 80MHz > _frequency * 2^_depth
|
|
if (_frequency > 78124) _depth = 9;
|
|
else if (_frequency > 39062) _depth = 10;
|
|
else if (_frequency > 19531) _depth = 11;
|
|
else _depth = 12; // WLED_PWM_FREQ <= 19531Hz
|
|
#endif
|
|
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
uint8_t currentPin = bc.pins[i];
|
|
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
|
|
deallocatePins(); return;
|
|
}
|
|
_pins[i] = currentPin; //store only after allocatePin() succeeds
|
|
#ifdef ESP8266
|
|
pinMode(_pins[i], OUTPUT);
|
|
#else
|
|
ledcSetup(_ledcStart + i, _frequency, _depth);
|
|
ledcAttachPin(_pins[i], _ledcStart + i);
|
|
#endif
|
|
}
|
|
_data = _pwmdata; // avoid malloc() and use stack
|
|
_valid = true;
|
|
}
|
|
|
|
void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
|
|
if (Bus::_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
|
|
c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
|
|
}
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
|
|
switch (_type) {
|
|
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
|
|
_data[0] = w;
|
|
break;
|
|
case TYPE_ANALOG_2CH: //warm white + cold white
|
|
if (cctICused) {
|
|
_data[0] = w;
|
|
_data[1] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
|
|
} else {
|
|
Bus::calculateCCT(c, _data[0], _data[1]);
|
|
}
|
|
break;
|
|
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
|
|
if (cctICused)
|
|
_data[4] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
|
|
else
|
|
Bus::calculateCCT(c, w, _data[4]);
|
|
case TYPE_ANALOG_4CH: //RGBW
|
|
_data[3] = w;
|
|
case TYPE_ANALOG_3CH: //standard dumb RGB
|
|
_data[0] = r; _data[1] = g; _data[2] = b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//does no index check
|
|
uint32_t BusPwm::getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
|
|
}
|
|
|
|
#ifndef ESP8266
|
|
static const uint16_t cieLUT[256] = {
|
|
0, 2, 4, 5, 7, 9, 11, 13, 15, 16,
|
|
18, 20, 22, 24, 26, 27, 29, 31, 33, 35,
|
|
34, 36, 37, 39, 41, 43, 45, 47, 49, 52,
|
|
54, 56, 59, 61, 64, 67, 69, 72, 75, 78,
|
|
81, 84, 87, 90, 94, 97, 100, 104, 108, 111,
|
|
115, 119, 123, 127, 131, 136, 140, 144, 149, 154,
|
|
158, 163, 168, 173, 178, 183, 189, 194, 200, 205,
|
|
211, 217, 223, 229, 235, 241, 247, 254, 261, 267,
|
|
274, 281, 288, 295, 302, 310, 317, 325, 333, 341,
|
|
349, 357, 365, 373, 382, 391, 399, 408, 417, 426,
|
|
436, 445, 455, 464, 474, 484, 494, 505, 515, 526,
|
|
536, 547, 558, 569, 580, 592, 603, 615, 627, 639,
|
|
651, 663, 676, 689, 701, 714, 727, 741, 754, 768,
|
|
781, 795, 809, 824, 838, 853, 867, 882, 897, 913,
|
|
928, 943, 959, 975, 991, 1008, 1024, 1041, 1058, 1075,
|
|
1092, 1109, 1127, 1144, 1162, 1180, 1199, 1217, 1236, 1255,
|
|
1274, 1293, 1312, 1332, 1352, 1372, 1392, 1412, 1433, 1454,
|
|
1475, 1496, 1517, 1539, 1561, 1583, 1605, 1628, 1650, 1673,
|
|
1696, 1719, 1743, 1767, 1791, 1815, 1839, 1864, 1888, 1913,
|
|
1939, 1964, 1990, 2016, 2042, 2068, 2095, 2121, 2148, 2176,
|
|
2203, 2231, 2259, 2287, 2315, 2344, 2373, 2402, 2431, 2461,
|
|
2491, 2521, 2551, 2581, 2612, 2643, 2675, 2706, 2738, 2770,
|
|
2802, 2835, 2867, 2900, 2934, 2967, 3001, 3035, 3069, 3104,
|
|
3138, 3174, 3209, 3244, 3280, 3316, 3353, 3389, 3426, 3463,
|
|
3501, 3539, 3576, 3615, 3653, 3692, 3731, 3770, 3810, 3850,
|
|
3890, 3930, 3971, 4012, 4053, 4095
|
|
};
|
|
#endif
|
|
|
|
void BusPwm::show() {
|
|
if (!_valid) return;
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
unsigned maxBri = (1<<_depth) - 1;
|
|
#ifdef ESP8266
|
|
unsigned pwmBri = (unsigned)(roundf(powf((float)_bri / 255.0f, 1.7f) * (float)maxBri)); // using gamma 1.7 to extrapolate PWM duty cycle
|
|
#else
|
|
unsigned pwmBri = cieLUT[_bri] >> (12 - _depth); // use CIE LUT
|
|
#endif
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
unsigned scaled = (_data[i] * pwmBri) / 255;
|
|
if (_reversed) scaled = maxBri - scaled;
|
|
#ifdef ESP8266
|
|
analogWrite(_pins[i], scaled);
|
|
#else
|
|
ledcWrite(_ledcStart + i, scaled);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint8_t BusPwm::getPins(uint8_t* pinArray) {
|
|
if (!_valid) return 0;
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
pinArray[i] = _pins[i];
|
|
}
|
|
return numPins;
|
|
}
|
|
|
|
void BusPwm::deallocatePins() {
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (unsigned i = 0; i < numPins; i++) {
|
|
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
|
|
if (!pinManager.isPinOk(_pins[i])) continue;
|
|
#ifdef ESP8266
|
|
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
|
|
#else
|
|
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
|
|
#endif
|
|
}
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
pinManager.deallocateLedc(_ledcStart, numPins);
|
|
#endif
|
|
}
|
|
|
|
|
|
BusOnOff::BusOnOff(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
|
|
, _onoffdata(0)
|
|
{
|
|
if (bc.type != TYPE_ONOFF) return;
|
|
|
|
uint8_t currentPin = bc.pins[0];
|
|
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
|
|
return;
|
|
}
|
|
_pin = currentPin; //store only after allocatePin() succeeds
|
|
pinMode(_pin, OUTPUT);
|
|
_data = &_onoffdata; // avoid malloc() and use stack
|
|
_valid = true;
|
|
}
|
|
|
|
void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
c = autoWhiteCalc(c);
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
_data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
|
|
}
|
|
|
|
uint32_t BusOnOff::getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
return RGBW32(_data[0], _data[0], _data[0], _data[0]);
|
|
}
|
|
|
|
void BusOnOff::show() {
|
|
if (!_valid) return;
|
|
digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
|
|
}
|
|
|
|
uint8_t BusOnOff::getPins(uint8_t* pinArray) {
|
|
if (!_valid) return 0;
|
|
pinArray[0] = _pin;
|
|
return 1;
|
|
}
|
|
|
|
|
|
BusNetwork::BusNetwork(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, bc.count)
|
|
, _broadcastLock(false)
|
|
{
|
|
switch (bc.type) {
|
|
case TYPE_NET_ARTNET_RGB:
|
|
_rgbw = false;
|
|
_UDPtype = 2;
|
|
break;
|
|
case TYPE_NET_ARTNET_RGBW:
|
|
_rgbw = true;
|
|
_UDPtype = 2;
|
|
break;
|
|
case TYPE_NET_E131_RGB:
|
|
_rgbw = false;
|
|
_UDPtype = 1;
|
|
break;
|
|
default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
|
|
_rgbw = bc.type == TYPE_NET_DDP_RGBW;
|
|
_UDPtype = 0;
|
|
break;
|
|
}
|
|
_UDPchannels = _rgbw ? 4 : 3;
|
|
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
|
|
_valid = (allocData(_len * _UDPchannels) != nullptr);
|
|
}
|
|
|
|
void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid || pix >= _len) return;
|
|
if (_rgbw) c = autoWhiteCalc(c);
|
|
if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
|
|
uint16_t offset = pix * _UDPchannels;
|
|
_data[offset] = R(c);
|
|
_data[offset+1] = G(c);
|
|
_data[offset+2] = B(c);
|
|
if (_rgbw) _data[offset+3] = W(c);
|
|
}
|
|
|
|
uint32_t BusNetwork::getPixelColor(uint16_t pix) {
|
|
if (!_valid || pix >= _len) return 0;
|
|
uint16_t offset = pix * _UDPchannels;
|
|
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (_rgbw ? _data[offset+3] : 0));
|
|
}
|
|
|
|
void BusNetwork::show() {
|
|
if (!_valid || !canShow()) return;
|
|
_broadcastLock = true;
|
|
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
|
|
_broadcastLock = false;
|
|
}
|
|
|
|
uint8_t BusNetwork::getPins(uint8_t* pinArray) {
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
pinArray[i] = _client[i];
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
void BusNetwork::cleanup() {
|
|
_type = I_NONE;
|
|
_valid = false;
|
|
freeData();
|
|
}
|
|
|
|
|
|
//utility to get the approx. memory usage of a given BusConfig
|
|
uint32_t BusManager::memUsage(BusConfig &bc) {
|
|
if (bc.type == TYPE_ONOFF || IS_PWM(bc.type)) return 5;
|
|
|
|
uint16_t len = bc.count + bc.skipAmount;
|
|
uint16_t channels = Bus::getNumberOfChannels(bc.type);
|
|
uint16_t multiplier = 1;
|
|
if (IS_DIGITAL(bc.type)) { // digital types
|
|
if (IS_16BIT(bc.type)) len *= 2; // 16-bit LEDs
|
|
#ifdef ESP8266
|
|
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
|
|
multiplier = 5;
|
|
}
|
|
#else //ESP32 RMT uses double buffer, I2S uses 5x buffer
|
|
multiplier = 2;
|
|
#endif
|
|
}
|
|
return len * channels * multiplier; //RGB
|
|
}
|
|
|
|
int BusManager::add(BusConfig &bc) {
|
|
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
|
|
if (IS_VIRTUAL(bc.type)) {
|
|
busses[numBusses] = new BusNetwork(bc);
|
|
} else if (IS_DIGITAL(bc.type)) {
|
|
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
|
|
} else if (bc.type == TYPE_ONOFF) {
|
|
busses[numBusses] = new BusOnOff(bc);
|
|
} else {
|
|
busses[numBusses] = new BusPwm(bc);
|
|
}
|
|
return numBusses++;
|
|
}
|
|
|
|
//do not call this method from system context (network callback)
|
|
void BusManager::removeAll() {
|
|
DEBUG_PRINTLN(F("Removing all."));
|
|
//prevents crashes due to deleting busses while in use.
|
|
while (!canAllShow()) yield();
|
|
for (unsigned i = 0; i < numBusses; i++) delete busses[i];
|
|
numBusses = 0;
|
|
}
|
|
|
|
void BusManager::show() {
|
|
_milliAmpsUsed = 0;
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
busses[i]->show();
|
|
_milliAmpsUsed += busses[i]->getUsedCurrent();
|
|
}
|
|
if (_milliAmpsUsed) _milliAmpsUsed += MA_FOR_ESP;
|
|
}
|
|
|
|
void BusManager::setStatusPixel(uint32_t c) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
busses[i]->setStatusPixel(c);
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
Bus* b = busses[i];
|
|
uint16_t bstart = b->getStart();
|
|
if (pix < bstart || pix >= bstart + b->getLength()) continue;
|
|
busses[i]->setPixelColor(pix - bstart, c);
|
|
}
|
|
}
|
|
|
|
void BusManager::setBrightness(uint8_t b) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
busses[i]->setBrightness(b);
|
|
}
|
|
}
|
|
|
|
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
|
|
if (cct > 255) cct = 255;
|
|
if (cct >= 0) {
|
|
//if white balance correction allowed, save as kelvin value instead of 0-255
|
|
if (allowWBCorrection) cct = 1900 + (cct << 5);
|
|
} else cct = -1; // will use kelvin approximation from RGB
|
|
Bus::setCCT(cct);
|
|
}
|
|
|
|
uint32_t BusManager::getPixelColor(uint16_t pix) {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
Bus* b = busses[i];
|
|
uint16_t bstart = b->getStart();
|
|
if (pix < bstart || pix >= bstart + b->getLength()) continue;
|
|
return b->getPixelColor(pix - bstart);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool BusManager::canAllShow() {
|
|
for (unsigned i = 0; i < numBusses; i++) {
|
|
if (!busses[i]->canShow()) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Bus* BusManager::getBus(uint8_t busNr) {
|
|
if (busNr >= numBusses) return nullptr;
|
|
return busses[busNr];
|
|
}
|
|
|
|
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
|
|
uint16_t BusManager::getTotalLength() {
|
|
uint16_t len = 0;
|
|
for (unsigned i=0; i<numBusses; i++) len += busses[i]->getLength();
|
|
return len;
|
|
}
|
|
|
|
// Bus static member definition
|
|
int16_t Bus::_cct = -1;
|
|
uint8_t Bus::_cctBlend = 0;
|
|
uint8_t Bus::_gAWM = 255;
|
|
|
|
uint16_t BusDigital::_milliAmpsTotal = 0;
|
|
|
|
uint8_t BusManager::numBusses = 0;
|
|
Bus* BusManager::busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
|
|
ColorOrderMap BusManager::colorOrderMap = {};
|
|
uint16_t BusManager::_milliAmpsUsed = 0;
|
|
uint16_t BusManager::_milliAmpsMax = ABL_MILLIAMPS_DEFAULT; |