WLED/wled00/FX_2Dfcn.cpp
Blaž Kristan 4cc2cc4ad4 Multiple fixes
- increase WLED_MAX_BUSSES for C3 (fixes #4215)
- fix for #4228
- fix for very long running effect (strip.now, strip.timebase)
- C++ API change to allow `seg.setColor().setOpacity()`
2024-10-26 15:16:11 +02:00

705 lines
28 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
FX_2Dfcn.cpp contains all 2D utility functions
Copyright (c) 2022 Blaz Kristan (https://blaz.at/home)
Licensed under the EUPL v. 1.2 or later
Adapted from code originally licensed under the MIT license
Parts of the code adapted from WLED Sound Reactive
*/
#include "wled.h"
#include "FX.h"
#include "palettes.h"
// setUpMatrix() - constructs ledmap array from matrix of panels with WxH pixels
// this converts physical (possibly irregular) LED arrangement into well defined
// array of logical pixels: fist entry corresponds to left-topmost logical pixel
// followed by horizontal pixels, when Segment::maxWidth logical pixels are added they
// are followed by next row (down) of Segment::maxWidth pixels (and so forth)
// note: matrix may be comprised of multiple panels each with different orientation
// but ledmap takes care of that. ledmap is constructed upon initialization
// so matrix should disable regular ledmap processing
void WS2812FX::setUpMatrix() {
#ifndef WLED_DISABLE_2D
// isMatrix is set in cfg.cpp or set.cpp
if (isMatrix) {
// calculate width dynamically because it may have gaps
Segment::maxWidth = 1;
Segment::maxHeight = 1;
for (size_t i = 0; i < panel.size(); i++) {
Panel &p = panel[i];
if (p.xOffset + p.width > Segment::maxWidth) {
Segment::maxWidth = p.xOffset + p.width;
}
if (p.yOffset + p.height > Segment::maxHeight) {
Segment::maxHeight = p.yOffset + p.height;
}
}
// safety check
if (Segment::maxWidth * Segment::maxHeight > MAX_LEDS || Segment::maxWidth <= 1 || Segment::maxHeight <= 1) {
DEBUG_PRINTLN(F("2D Bounds error."));
isMatrix = false;
Segment::maxWidth = _length;
Segment::maxHeight = 1;
panels = 0;
panel.clear(); // release memory allocated by panels
resetSegments();
return;
}
customMappingSize = 0; // prevent use of mapping if anything goes wrong
if (customMappingTable) delete[] customMappingTable;
customMappingTable = new uint16_t[getLengthTotal()];
if (customMappingTable) {
customMappingSize = getLengthTotal();
// fill with empty in case we don't fill the entire matrix
unsigned matrixSize = Segment::maxWidth * Segment::maxHeight;
for (unsigned i = 0; i<matrixSize; i++) customMappingTable[i] = 0xFFFFU;
for (unsigned i = matrixSize; i<getLengthTotal(); i++) customMappingTable[i] = i; // trailing LEDs for ledmap (after matrix) if it exist
// we will try to load a "gap" array (a JSON file)
// the array has to have the same amount of values as mapping array (or larger)
// "gap" array is used while building ledmap (mapping array)
// and discarded afterwards as it has no meaning after the process
// content of the file is just raw JSON array in the form of [val1,val2,val3,...]
// there are no other "key":"value" pairs in it
// allowed values are: -1 (missing pixel/no LED attached), 0 (inactive/unused pixel), 1 (active/used pixel)
char fileName[32]; strcpy_P(fileName, PSTR("/2d-gaps.json")); // reduce flash footprint
bool isFile = WLED_FS.exists(fileName);
size_t gapSize = 0;
int8_t *gapTable = nullptr;
if (isFile && requestJSONBufferLock(20)) {
DEBUG_PRINT(F("Reading LED gap from "));
DEBUG_PRINTLN(fileName);
// read the array into global JSON buffer
if (readObjectFromFile(fileName, nullptr, pDoc)) {
// the array is similar to ledmap, except it has only 3 values:
// -1 ... missing pixel (do not increase pixel count)
// 0 ... inactive pixel (it does count, but should be mapped out (-1))
// 1 ... active pixel (it will count and will be mapped)
JsonArray map = pDoc->as<JsonArray>();
gapSize = map.size();
if (!map.isNull() && gapSize >= matrixSize) { // not an empty map
gapTable = new int8_t[gapSize];
if (gapTable) for (size_t i = 0; i < gapSize; i++) {
gapTable[i] = constrain(map[i], -1, 1);
}
}
}
DEBUG_PRINTLN(F("Gaps loaded."));
releaseJSONBufferLock();
}
unsigned x, y, pix=0; //pixel
for (size_t pan = 0; pan < panel.size(); pan++) {
Panel &p = panel[pan];
unsigned h = p.vertical ? p.height : p.width;
unsigned v = p.vertical ? p.width : p.height;
for (size_t j = 0; j < v; j++){
for(size_t i = 0; i < h; i++) {
y = (p.vertical?p.rightStart:p.bottomStart) ? v-j-1 : j;
x = (p.vertical?p.bottomStart:p.rightStart) ? h-i-1 : i;
x = p.serpentine && j%2 ? h-x-1 : x;
size_t index = (p.yOffset + (p.vertical?x:y)) * Segment::maxWidth + p.xOffset + (p.vertical?y:x);
if (!gapTable || (gapTable && gapTable[index] > 0)) customMappingTable[index] = pix; // a useful pixel (otherwise -1 is retained)
if (!gapTable || (gapTable && gapTable[index] >= 0)) pix++; // not a missing pixel
}
}
}
// delete gap array as we no longer need it
if (gapTable) delete[] gapTable;
#ifdef WLED_DEBUG
DEBUG_PRINT(F("Matrix ledmap:"));
for (unsigned i=0; i<customMappingSize; i++) {
if (!(i%Segment::maxWidth)) DEBUG_PRINTLN();
DEBUG_PRINTF_P(PSTR("%4d,"), customMappingTable[i]);
}
DEBUG_PRINTLN();
#endif
} else { // memory allocation error
DEBUG_PRINTLN(F("ERROR 2D LED map allocation error."));
isMatrix = false;
panels = 0;
panel.clear();
Segment::maxWidth = _length;
Segment::maxHeight = 1;
resetSegments();
}
}
#else
isMatrix = false; // no matter what config says
#endif
}
///////////////////////////////////////////////////////////
// Segment:: routines
///////////////////////////////////////////////////////////
#ifndef WLED_DISABLE_2D
// XY(x,y) - gets pixel index within current segment (often used to reference leds[] array element)
uint16_t IRAM_ATTR_YN Segment::XY(int x, int y)
{
unsigned width = virtualWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
unsigned height = virtualHeight(); // segment height in logical pixels (is always >= 1)
return isActive() ? (x%width) + (y%height) * width : 0;
}
void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col)
{
if (!isActive()) return; // not active
if ((unsigned)x >= virtualWidth() || (unsigned)y >= virtualHeight() || x<0 || y<0) return; // if pixel would fall out of virtual segment just exit
uint8_t _bri_t = currentBri();
if (_bri_t < 255) {
col = color_fade(col, _bri_t);
}
if (reverse ) x = virtualWidth() - x - 1;
if (reverse_y) y = virtualHeight() - y - 1;
if (transpose) { std::swap(x,y); } // swap X & Y if segment transposed
x *= groupLength(); // expand to physical pixels
y *= groupLength(); // expand to physical pixels
int W = width();
int H = height();
if (x >= W || y >= H) return; // if pixel would fall out of segment just exit
uint32_t tmpCol = col;
for (int j = 0; j < grouping; j++) { // groupping vertically
for (int g = 0; g < grouping; g++) { // groupping horizontally
int xX = (x+g), yY = (y+j);
if (xX >= W || yY >= H) continue; // we have reached one dimension's end
#ifndef WLED_DISABLE_MODE_BLEND
// if blending modes, blend with underlying pixel
if (_modeBlend) tmpCol = color_blend(strip.getPixelColorXY(start + xX, startY + yY), col, 0xFFFFU - progress(), true);
#endif
strip.setPixelColorXY(start + xX, startY + yY, tmpCol);
if (mirror) { //set the corresponding horizontally mirrored pixel
if (transpose) strip.setPixelColorXY(start + xX, startY + height() - yY - 1, tmpCol);
else strip.setPixelColorXY(start + width() - xX - 1, startY + yY, tmpCol);
}
if (mirror_y) { //set the corresponding vertically mirrored pixel
if (transpose) strip.setPixelColorXY(start + width() - xX - 1, startY + yY, tmpCol);
else strip.setPixelColorXY(start + xX, startY + height() - yY - 1, tmpCol);
}
if (mirror_y && mirror) { //set the corresponding vertically AND horizontally mirrored pixel
strip.setPixelColorXY(start + width() - xX - 1, startY + height() - yY - 1, tmpCol);
}
}
}
}
#ifdef WLED_USE_AA_PIXELS
// anti-aliased version of setPixelColorXY()
void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa)
{
if (!isActive()) return; // not active
if (x<0.0f || x>1.0f || y<0.0f || y>1.0f) return; // not normalized
const unsigned cols = virtualWidth();
const unsigned rows = virtualHeight();
float fX = x * (cols-1);
float fY = y * (rows-1);
if (aa) {
unsigned xL = roundf(fX-0.49f);
unsigned xR = roundf(fX+0.49f);
unsigned yT = roundf(fY-0.49f);
unsigned yB = roundf(fY+0.49f);
float dL = (fX - xL)*(fX - xL);
float dR = (xR - fX)*(xR - fX);
float dT = (fY - yT)*(fY - yT);
float dB = (yB - fY)*(yB - fY);
uint32_t cXLYT = getPixelColorXY(xL, yT);
uint32_t cXRYT = getPixelColorXY(xR, yT);
uint32_t cXLYB = getPixelColorXY(xL, yB);
uint32_t cXRYB = getPixelColorXY(xR, yB);
if (xL!=xR && yT!=yB) {
setPixelColorXY(xL, yT, color_blend(col, cXLYT, uint8_t(sqrtf(dL*dT)*255.0f))); // blend TL pixel
setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(sqrtf(dR*dT)*255.0f))); // blend TR pixel
setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(sqrtf(dL*dB)*255.0f))); // blend BL pixel
setPixelColorXY(xR, yB, color_blend(col, cXRYB, uint8_t(sqrtf(dR*dB)*255.0f))); // blend BR pixel
} else if (xR!=xL && yT==yB) {
setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dL*255.0f))); // blend L pixel
setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(dR*255.0f))); // blend R pixel
} else if (xR==xL && yT!=yB) {
setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dT*255.0f))); // blend T pixel
setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(dB*255.0f))); // blend B pixel
} else {
setPixelColorXY(xL, yT, col); // exact match (x & y land on a pixel)
}
} else {
setPixelColorXY(uint16_t(roundf(fX)), uint16_t(roundf(fY)), col);
}
}
#endif
// returns RGBW values of pixel
uint32_t IRAM_ATTR_YN Segment::getPixelColorXY(int x, int y) const {
if (!isActive()) return 0; // not active
if ((unsigned)x >= virtualWidth() || (unsigned)y >= virtualHeight() || x<0 || y<0) return 0; // if pixel would fall out of virtual segment just exit
if (reverse ) x = virtualWidth() - x - 1;
if (reverse_y) y = virtualHeight() - y - 1;
if (transpose) { std::swap(x,y); } // swap X & Y if segment transposed
x *= groupLength(); // expand to physical pixels
y *= groupLength(); // expand to physical pixels
if (x >= width() || y >= height()) return 0;
return strip.getPixelColorXY(start + x, startY + y);
}
// blurRow: perform a blur on a row of a rectangular matrix
void Segment::blurRow(uint32_t row, fract8 blur_amount, bool smear){
if (!isActive() || blur_amount == 0) return; // not active
const unsigned cols = virtualWidth();
const unsigned rows = virtualHeight();
if (row >= rows) return;
// blur one row
uint8_t keep = smear ? 255 : 255 - blur_amount;
uint8_t seep = blur_amount >> 1;
uint32_t carryover = BLACK;
uint32_t lastnew;
uint32_t last;
uint32_t curnew = BLACK;
for (unsigned x = 0; x < cols; x++) {
uint32_t cur = getPixelColorXY(x, row);
uint32_t part = color_fade(cur, seep);
curnew = color_fade(cur, keep);
if (x > 0) {
if (carryover)
curnew = color_add(curnew, carryover, true);
uint32_t prev = color_add(lastnew, part, true);
if (last != prev) // optimization: only set pixel if color has changed
setPixelColorXY(x - 1, row, prev);
} else // first pixel
setPixelColorXY(x, row, curnew);
lastnew = curnew;
last = cur; // save original value for comparison on next iteration
carryover = part;
}
setPixelColorXY(cols-1, row, curnew); // set last pixel
}
// blurCol: perform a blur on a column of a rectangular matrix
void Segment::blurCol(uint32_t col, fract8 blur_amount, bool smear) {
if (!isActive() || blur_amount == 0) return; // not active
const unsigned cols = virtualWidth();
const unsigned rows = virtualHeight();
if (col >= cols) return;
// blur one column
uint8_t keep = smear ? 255 : 255 - blur_amount;
uint8_t seep = blur_amount >> 1;
uint32_t carryover = BLACK;
uint32_t lastnew;
uint32_t last;
uint32_t curnew = BLACK;
for (unsigned y = 0; y < rows; y++) {
uint32_t cur = getPixelColorXY(col, y);
uint32_t part = color_fade(cur, seep);
curnew = color_fade(cur, keep);
if (y > 0) {
if (carryover)
curnew = color_add(curnew, carryover, true);
uint32_t prev = color_add(lastnew, part, true);
if (last != prev) // optimization: only set pixel if color has changed
setPixelColorXY(col, y - 1, prev);
} else // first pixel
setPixelColorXY(col, y, curnew);
lastnew = curnew;
last = cur; //save original value for comparison on next iteration
carryover = part;
}
setPixelColorXY(col, rows - 1, curnew);
}
void Segment::blur2D(uint8_t blur_amount, bool smear) {
if (!isActive() || blur_amount == 0) return; // not active
const unsigned cols = virtualWidth();
const unsigned rows = virtualHeight();
const uint8_t keep = smear ? 255 : 255 - blur_amount;
const uint8_t seep = blur_amount >> (1 + smear);
uint32_t lastnew;
uint32_t last;
for (unsigned row = 0; row < rows; row++) {
uint32_t carryover = BLACK;
uint32_t curnew = BLACK;
for (unsigned x = 0; x < cols; x++) {
uint32_t cur = getPixelColorXY(x, row);
uint32_t part = color_fade(cur, seep);
curnew = color_fade(cur, keep);
if (x > 0) {
if (carryover) curnew = color_add(curnew, carryover, true);
uint32_t prev = color_add(lastnew, part, true);
// optimization: only set pixel if color has changed
if (last != prev) setPixelColorXY(x - 1, row, prev);
} else setPixelColorXY(x, row, curnew); // first pixel
lastnew = curnew;
last = cur; // save original value for comparison on next iteration
carryover = part;
}
setPixelColorXY(cols-1, row, curnew); // set last pixel
}
for (unsigned col = 0; col < cols; col++) {
uint32_t carryover = BLACK;
uint32_t curnew = BLACK;
for (unsigned y = 0; y < rows; y++) {
uint32_t cur = getPixelColorXY(col, y);
uint32_t part = color_fade(cur, seep);
curnew = color_fade(cur, keep);
if (y > 0) {
if (carryover) curnew = color_add(curnew, carryover, true);
uint32_t prev = color_add(lastnew, part, true);
// optimization: only set pixel if color has changed
if (last != prev) setPixelColorXY(col, y - 1, prev);
} else setPixelColorXY(col, y, curnew); // first pixel
lastnew = curnew;
last = cur; //save original value for comparison on next iteration
carryover = part;
}
setPixelColorXY(col, rows - 1, curnew);
}
}
// 2D Box blur
void Segment::box_blur(unsigned radius, bool smear) {
if (!isActive() || radius == 0) return; // not active
if (radius > 3) radius = 3;
const unsigned d = (1 + 2*radius) * (1 + 2*radius); // averaging divisor
const unsigned cols = virtualWidth();
const unsigned rows = virtualHeight();
uint16_t *tmpRSum = new uint16_t[cols*rows];
uint16_t *tmpGSum = new uint16_t[cols*rows];
uint16_t *tmpBSum = new uint16_t[cols*rows];
uint16_t *tmpWSum = new uint16_t[cols*rows];
// fill summed-area table (https://en.wikipedia.org/wiki/Summed-area_table)
for (unsigned x = 0; x < cols; x++) {
unsigned rS, gS, bS, wS;
unsigned index;
rS = gS = bS = wS = 0;
for (unsigned y = 0; y < rows; y++) {
index = x * cols + y;
if (x > 0) {
unsigned index2 = (x - 1) * cols + y;
tmpRSum[index] = tmpRSum[index2];
tmpGSum[index] = tmpGSum[index2];
tmpBSum[index] = tmpBSum[index2];
tmpWSum[index] = tmpWSum[index2];
} else {
tmpRSum[index] = 0;
tmpGSum[index] = 0;
tmpBSum[index] = 0;
tmpWSum[index] = 0;
}
uint32_t c = getPixelColorXY(x, y);
rS += R(c);
gS += G(c);
bS += B(c);
wS += W(c);
tmpRSum[index] += rS;
tmpGSum[index] += gS;
tmpBSum[index] += bS;
tmpWSum[index] += wS;
}
}
// do a box blur using pre-calculated sums
for (unsigned x = 0; x < cols; x++) {
for (unsigned y = 0; y < rows; y++) {
// sum = D + A - B - C where k = (x,y)
// +----+-+---- (x)
// | | |
// +----A-B
// | |k|
// +----C-D
// |
//(y)
unsigned x0 = x < radius ? 0 : x - radius;
unsigned y0 = y < radius ? 0 : y - radius;
unsigned x1 = x >= cols - radius ? cols - 1 : x + radius;
unsigned y1 = y >= rows - radius ? rows - 1 : y + radius;
unsigned A = x0 * cols + y0;
unsigned B = x1 * cols + y0;
unsigned C = x0 * cols + y1;
unsigned D = x1 * cols + y1;
unsigned r = tmpRSum[D] + tmpRSum[A] - tmpRSum[C] - tmpRSum[B];
unsigned g = tmpGSum[D] + tmpGSum[A] - tmpGSum[C] - tmpGSum[B];
unsigned b = tmpBSum[D] + tmpBSum[A] - tmpBSum[C] - tmpBSum[B];
unsigned w = tmpWSum[D] + tmpWSum[A] - tmpWSum[C] - tmpWSum[B];
setPixelColorXY(x, y, RGBW32(r/d, g/d, b/d, w/d));
}
}
delete[] tmpRSum;
delete[] tmpGSum;
delete[] tmpBSum;
delete[] tmpWSum;
}
void Segment::moveX(int8_t delta, bool wrap) {
if (!isActive()) return; // not active
const int cols = virtualWidth();
const int rows = virtualHeight();
if (!delta || abs(delta) >= cols) return;
uint32_t newPxCol[cols];
for (int y = 0; y < rows; y++) {
if (delta > 0) {
for (int x = 0; x < cols-delta; x++) newPxCol[x] = getPixelColorXY((x + delta), y);
for (int x = cols-delta; x < cols; x++) newPxCol[x] = getPixelColorXY(wrap ? (x + delta) - cols : x, y);
} else {
for (int x = cols-1; x >= -delta; x--) newPxCol[x] = getPixelColorXY((x + delta), y);
for (int x = -delta-1; x >= 0; x--) newPxCol[x] = getPixelColorXY(wrap ? (x + delta) + cols : x, y);
}
for (int x = 0; x < cols; x++) setPixelColorXY(x, y, newPxCol[x]);
}
}
void Segment::moveY(int8_t delta, bool wrap) {
if (!isActive()) return; // not active
const int cols = virtualWidth();
const int rows = virtualHeight();
if (!delta || abs(delta) >= rows) return;
uint32_t newPxCol[rows];
for (int x = 0; x < cols; x++) {
if (delta > 0) {
for (int y = 0; y < rows-delta; y++) newPxCol[y] = getPixelColorXY(x, (y + delta));
for (int y = rows-delta; y < rows; y++) newPxCol[y] = getPixelColorXY(x, wrap ? (y + delta) - rows : y);
} else {
for (int y = rows-1; y >= -delta; y--) newPxCol[y] = getPixelColorXY(x, (y + delta));
for (int y = -delta-1; y >= 0; y--) newPxCol[y] = getPixelColorXY(x, wrap ? (y + delta) + rows : y);
}
for (int y = 0; y < rows; y++) setPixelColorXY(x, y, newPxCol[y]);
}
}
// move() - move all pixels in desired direction delta number of pixels
// @param dir direction: 0=left, 1=left-up, 2=up, 3=right-up, 4=right, 5=right-down, 6=down, 7=left-down
// @param delta number of pixels to move
// @param wrap around
void Segment::move(uint8_t dir, uint8_t delta, bool wrap) {
if (delta==0) return;
switch (dir) {
case 0: moveX( delta, wrap); break;
case 1: moveX( delta, wrap); moveY( delta, wrap); break;
case 2: moveY( delta, wrap); break;
case 3: moveX(-delta, wrap); moveY( delta, wrap); break;
case 4: moveX(-delta, wrap); break;
case 5: moveX(-delta, wrap); moveY(-delta, wrap); break;
case 6: moveY(-delta, wrap); break;
case 7: moveX( delta, wrap); moveY(-delta, wrap); break;
}
}
void Segment::drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) {
if (!isActive() || radius == 0) return; // not active
if (soft) {
// Xiaolin Wus algorithm
int rsq = radius*radius;
int x = 0;
int y = radius;
unsigned oldFade = 0;
while (x < y) {
float yf = sqrtf(float(rsq - x*x)); // needs to be floating point
unsigned fade = float(0xFFFF) * (ceilf(yf) - yf); // how much color to keep
if (oldFade > fade) y--;
oldFade = fade;
setPixelColorXY(cx+x, cy+y, color_blend(col, getPixelColorXY(cx+x, cy+y), fade, true));
setPixelColorXY(cx-x, cy+y, color_blend(col, getPixelColorXY(cx-x, cy+y), fade, true));
setPixelColorXY(cx+x, cy-y, color_blend(col, getPixelColorXY(cx+x, cy-y), fade, true));
setPixelColorXY(cx-x, cy-y, color_blend(col, getPixelColorXY(cx-x, cy-y), fade, true));
setPixelColorXY(cx+y, cy+x, color_blend(col, getPixelColorXY(cx+y, cy+x), fade, true));
setPixelColorXY(cx-y, cy+x, color_blend(col, getPixelColorXY(cx-y, cy+x), fade, true));
setPixelColorXY(cx+y, cy-x, color_blend(col, getPixelColorXY(cx+y, cy-x), fade, true));
setPixelColorXY(cx-y, cy-x, color_blend(col, getPixelColorXY(cx-y, cy-x), fade, true));
setPixelColorXY(cx+x, cy+y-1, color_blend(getPixelColorXY(cx+x, cy+y-1), col, fade, true));
setPixelColorXY(cx-x, cy+y-1, color_blend(getPixelColorXY(cx-x, cy+y-1), col, fade, true));
setPixelColorXY(cx+x, cy-y+1, color_blend(getPixelColorXY(cx+x, cy-y+1), col, fade, true));
setPixelColorXY(cx-x, cy-y+1, color_blend(getPixelColorXY(cx-x, cy-y+1), col, fade, true));
setPixelColorXY(cx+y-1, cy+x, color_blend(getPixelColorXY(cx+y-1, cy+x), col, fade, true));
setPixelColorXY(cx-y+1, cy+x, color_blend(getPixelColorXY(cx-y+1, cy+x), col, fade, true));
setPixelColorXY(cx+y-1, cy-x, color_blend(getPixelColorXY(cx+y-1, cy-x), col, fade, true));
setPixelColorXY(cx-y+1, cy-x, color_blend(getPixelColorXY(cx-y+1, cy-x), col, fade, true));
x++;
}
} else {
// Bresenhams Algorithm
int d = 3 - (2*radius);
int y = radius, x = 0;
while (y >= x) {
setPixelColorXY(cx+x, cy+y, col);
setPixelColorXY(cx-x, cy+y, col);
setPixelColorXY(cx+x, cy-y, col);
setPixelColorXY(cx-x, cy-y, col);
setPixelColorXY(cx+y, cy+x, col);
setPixelColorXY(cx-y, cy+x, col);
setPixelColorXY(cx+y, cy-x, col);
setPixelColorXY(cx-y, cy-x, col);
x++;
if (d > 0) {
y--;
d += 4 * (x - y) + 10;
} else {
d += 4 * x + 6;
}
}
}
}
// by stepko, taken from https://editor.soulmatelights.com/gallery/573-blobs
void Segment::fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) {
if (!isActive() || radius == 0) return; // not active
// draw soft bounding circle
if (soft) drawCircle(cx, cy, radius, col, soft);
// fill it
const int cols = virtualWidth();
const int rows = virtualHeight();
for (int y = -radius; y <= radius; y++) {
for (int x = -radius; x <= radius; x++) {
if (x * x + y * y <= radius * radius &&
int(cx)+x>=0 && int(cy)+y>=0 &&
int(cx)+x<cols && int(cy)+y<rows)
setPixelColorXY(cx + x, cy + y, col);
}
}
}
//line function
void Segment::drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft) {
if (!isActive()) return; // not active
const int cols = virtualWidth();
const int rows = virtualHeight();
if (x0 >= cols || x1 >= cols || y0 >= rows || y1 >= rows) return;
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; // x distance & step
const int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; // y distance & step
// single pixel (line length == 0)
if (dx+dy == 0) {
setPixelColorXY(x0, y0, c);
return;
}
if (soft) {
// Xiaolin Wus algorithm
const bool steep = dy > dx;
if (steep) {
// we need to go along longest dimension
std::swap(x0,y0);
std::swap(x1,y1);
}
if (x0 > x1) {
// we need to go in increasing fashion
std::swap(x0,x1);
std::swap(y0,y1);
}
float gradient = x1-x0 == 0 ? 1.0f : float(y1-y0) / float(x1-x0);
float intersectY = y0;
for (int x = x0; x <= x1; x++) {
unsigned keep = float(0xFFFF) * (intersectY-int(intersectY)); // how much color to keep
unsigned seep = 0xFFFF - keep; // how much background to keep
int y = int(intersectY);
if (steep) std::swap(x,y); // temporaryly swap if steep
// pixel coverage is determined by fractional part of y co-ordinate
setPixelColorXY(x, y, color_blend(c, getPixelColorXY(x, y), keep, true));
setPixelColorXY(x+int(steep), y+int(!steep), color_blend(c, getPixelColorXY(x+int(steep), y+int(!steep)), seep, true));
intersectY += gradient;
if (steep) std::swap(x,y); // restore if steep
}
} else {
// Bresenham's algorithm
int err = (dx>dy ? dx : -dy)/2; // error direction
for (;;) {
setPixelColorXY(x0, y0, c);
if (x0==x1 && y0==y1) break;
int e2 = err;
if (e2 >-dx) { err -= dy; x0 += sx; }
if (e2 < dy) { err += dx; y0 += sy; }
}
}
}
#include "src/font/console_font_4x6.h"
#include "src/font/console_font_5x8.h"
#include "src/font/console_font_5x12.h"
#include "src/font/console_font_6x8.h"
#include "src/font/console_font_7x9.h"
// draws a raster font character on canvas
// only supports: 4x6=24, 5x8=40, 5x12=60, 6x8=48 and 7x9=63 fonts ATM
void Segment::drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t col2, int8_t rotate) {
if (!isActive()) return; // not active
if (chr < 32 || chr > 126) return; // only ASCII 32-126 supported
chr -= 32; // align with font table entries
const int cols = virtualWidth();
const int rows = virtualHeight();
const int font = w*h;
CRGB col = CRGB(color);
CRGBPalette16 grad = CRGBPalette16(col, col2 ? CRGB(col2) : col);
//if (w<5 || w>6 || h!=8) return;
for (int i = 0; i<h; i++) { // character height
uint8_t bits = 0;
switch (font) {
case 24: bits = pgm_read_byte_near(&console_font_4x6[(chr * h) + i]); break; // 5x8 font
case 40: bits = pgm_read_byte_near(&console_font_5x8[(chr * h) + i]); break; // 5x8 font
case 48: bits = pgm_read_byte_near(&console_font_6x8[(chr * h) + i]); break; // 6x8 font
case 63: bits = pgm_read_byte_near(&console_font_7x9[(chr * h) + i]); break; // 7x9 font
case 60: bits = pgm_read_byte_near(&console_font_5x12[(chr * h) + i]); break; // 5x12 font
default: return;
}
col = ColorFromPalette(grad, (i+1)*255/h, 255, NOBLEND);
for (int j = 0; j<w; j++) { // character width
int x0, y0;
switch (rotate) {
case -1: x0 = x + (h-1) - i; y0 = y + (w-1) - j; break; // -90 deg
case -2:
case 2: x0 = x + j; y0 = y + (h-1) - i; break; // 180 deg
case 1: x0 = x + i; y0 = y + j; break; // +90 deg
default: x0 = x + (w-1) - j; y0 = y + i; break; // no rotation
}
if (x0 < 0 || x0 >= cols || y0 < 0 || y0 >= rows) continue; // drawing off-screen
if (((bits>>(j+(8-w))) & 0x01)) { // bit set
setPixelColorXY(x0, y0, col);
}
}
}
}
#define WU_WEIGHT(a,b) ((uint8_t) (((a)*(b)+(a)+(b))>>8))
void Segment::wu_pixel(uint32_t x, uint32_t y, CRGB c) { //awesome wu_pixel procedure by reddit u/sutaburosu
if (!isActive()) return; // not active
// extract the fractional parts and derive their inverses
unsigned xx = x & 0xff, yy = y & 0xff, ix = 255 - xx, iy = 255 - yy;
// calculate the intensities for each affected pixel
uint8_t wu[4] = {WU_WEIGHT(ix, iy), WU_WEIGHT(xx, iy),
WU_WEIGHT(ix, yy), WU_WEIGHT(xx, yy)};
// multiply the intensities by the colour, and saturating-add them to the pixels
for (int i = 0; i < 4; i++) {
int wu_x = (x >> 8) + (i & 1); // precalculate x
int wu_y = (y >> 8) + ((i >> 1) & 1); // precalculate y
CRGB led = getPixelColorXY(wu_x, wu_y);
CRGB oldLed = led;
led.r = qadd8(led.r, c.r * wu[i] >> 8);
led.g = qadd8(led.g, c.g * wu[i] >> 8);
led.b = qadd8(led.b, c.b * wu[i] >> 8);
if (led != oldLed) setPixelColorXY(wu_x, wu_y, led); // don't repaint if same color
}
}
#undef WU_WEIGHT
#endif // WLED_DISABLE_2D