OpenAI Responses API (#140713)

This commit is contained in:
Denis Shulyaka 2025-03-16 20:18:18 +03:00 committed by GitHub
parent 214d14b06b
commit bb7b5b9ccb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 463 additions and 433 deletions

View File

@ -7,21 +7,15 @@ from mimetypes import guess_file_type
from pathlib import Path
import openai
from openai.types.chat.chat_completion import ChatCompletion
from openai.types.chat.chat_completion_content_part_image_param import (
ChatCompletionContentPartImageParam,
ImageURL,
)
from openai.types.chat.chat_completion_content_part_param import (
ChatCompletionContentPartParam,
)
from openai.types.chat.chat_completion_content_part_text_param import (
ChatCompletionContentPartTextParam,
)
from openai.types.chat.chat_completion_user_message_param import (
ChatCompletionUserMessageParam,
)
from openai.types.images_response import ImagesResponse
from openai.types.responses import (
EasyInputMessageParam,
Response,
ResponseInputImageParam,
ResponseInputMessageContentListParam,
ResponseInputParam,
ResponseInputTextParam,
)
import voluptuous as vol
from homeassistant.config_entries import ConfigEntry
@ -44,10 +38,18 @@ from homeassistant.helpers.typing import ConfigType
from .const import (
CONF_CHAT_MODEL,
CONF_FILENAMES,
CONF_MAX_TOKENS,
CONF_PROMPT,
CONF_REASONING_EFFORT,
CONF_TEMPERATURE,
CONF_TOP_P,
DOMAIN,
LOGGER,
RECOMMENDED_CHAT_MODEL,
RECOMMENDED_MAX_TOKENS,
RECOMMENDED_REASONING_EFFORT,
RECOMMENDED_TEMPERATURE,
RECOMMENDED_TOP_P,
)
SERVICE_GENERATE_IMAGE = "generate_image"
@ -112,17 +114,14 @@ async def async_setup(hass: HomeAssistant, config: ConfigType) -> bool:
translation_placeholders={"config_entry": entry_id},
)
model: str = entry.data.get(CONF_CHAT_MODEL, RECOMMENDED_CHAT_MODEL)
model: str = entry.options.get(CONF_CHAT_MODEL, RECOMMENDED_CHAT_MODEL)
client: openai.AsyncClient = entry.runtime_data
prompt_parts: list[ChatCompletionContentPartParam] = [
ChatCompletionContentPartTextParam(
type="text",
text=call.data[CONF_PROMPT],
)
content: ResponseInputMessageContentListParam = [
ResponseInputTextParam(type="input_text", text=call.data[CONF_PROMPT])
]
def append_files_to_prompt() -> None:
def append_files_to_content() -> None:
for filename in call.data[CONF_FILENAMES]:
if not hass.config.is_allowed_path(filename):
raise HomeAssistantError(
@ -138,46 +137,52 @@ async def async_setup(hass: HomeAssistant, config: ConfigType) -> bool:
"Only images are supported by the OpenAI API,"
f"`{filename}` is not an image file"
)
prompt_parts.append(
ChatCompletionContentPartImageParam(
type="image_url",
image_url=ImageURL(
url=f"data:{mime_type};base64,{base64_file}"
),
content.append(
ResponseInputImageParam(
type="input_image",
file_id=filename,
image_url=f"data:{mime_type};base64,{base64_file}",
detail="auto",
)
)
if CONF_FILENAMES in call.data:
await hass.async_add_executor_job(append_files_to_prompt)
await hass.async_add_executor_job(append_files_to_content)
messages: list[ChatCompletionUserMessageParam] = [
ChatCompletionUserMessageParam(
role="user",
content=prompt_parts,
)
messages: ResponseInputParam = [
EasyInputMessageParam(type="message", role="user", content=content)
]
try:
response: ChatCompletion = await client.chat.completions.create(
model=model,
messages=messages,
n=1,
response_format={
"type": "json_object",
},
)
model_args = {
"model": model,
"input": messages,
"max_output_tokens": entry.options.get(
CONF_MAX_TOKENS, RECOMMENDED_MAX_TOKENS
),
"top_p": entry.options.get(CONF_TOP_P, RECOMMENDED_TOP_P),
"temperature": entry.options.get(
CONF_TEMPERATURE, RECOMMENDED_TEMPERATURE
),
"user": call.context.user_id,
"store": False,
}
if model.startswith("o"):
model_args["reasoning"] = {
"effort": entry.options.get(
CONF_REASONING_EFFORT, RECOMMENDED_REASONING_EFFORT
)
}
response: Response = await client.responses.create(**model_args)
except openai.OpenAIError as err:
raise HomeAssistantError(f"Error generating content: {err}") from err
except FileNotFoundError as err:
raise HomeAssistantError(f"Error generating content: {err}") from err
response_text: str = ""
for response_choice in response.choices:
if response_choice.message.content is not None:
response_text += response_choice.message.content.strip()
return {"text": response_text}
return {"text": response.output_text}
hass.services.async_register(
DOMAIN,

View File

@ -2,21 +2,25 @@
from collections.abc import AsyncGenerator, Callable
import json
from typing import Any, Literal, cast
from typing import Any, Literal
import openai
from openai._streaming import AsyncStream
from openai._types import NOT_GIVEN
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionChunk,
ChatCompletionMessageParam,
ChatCompletionMessageToolCallParam,
ChatCompletionToolMessageParam,
ChatCompletionToolParam,
from openai.types.responses import (
EasyInputMessageParam,
FunctionToolParam,
ResponseFunctionCallArgumentsDeltaEvent,
ResponseFunctionCallArgumentsDoneEvent,
ResponseFunctionToolCall,
ResponseFunctionToolCallParam,
ResponseInputParam,
ResponseOutputItemAddedEvent,
ResponseOutputMessage,
ResponseStreamEvent,
ResponseTextDeltaEvent,
ToolParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import Function
from openai.types.shared_params import FunctionDefinition
from openai.types.responses.response_input_param import FunctionCallOutput
from voluptuous_openapi import convert
from homeassistant.components import assist_pipeline, conversation
@ -60,123 +64,81 @@ async def async_setup_entry(
def _format_tool(
tool: llm.Tool, custom_serializer: Callable[[Any], Any] | None
) -> ChatCompletionToolParam:
) -> FunctionToolParam:
"""Format tool specification."""
tool_spec = FunctionDefinition(
return FunctionToolParam(
type="function",
name=tool.name,
parameters=convert(tool.parameters, custom_serializer=custom_serializer),
description=tool.description,
strict=False,
)
if tool.description:
tool_spec["description"] = tool.description
return ChatCompletionToolParam(type="function", function=tool_spec)
def _convert_content_to_param(
content: conversation.Content,
) -> ChatCompletionMessageParam:
) -> ResponseInputParam:
"""Convert any native chat message for this agent to the native format."""
if content.role == "tool_result":
assert type(content) is conversation.ToolResultContent
return ChatCompletionToolMessageParam(
role="tool",
tool_call_id=content.tool_call_id,
content=json.dumps(content.tool_result),
)
if content.role != "assistant" or not content.tool_calls:
role: Literal["system", "user", "assistant", "developer"] = content.role
messages: ResponseInputParam = []
if isinstance(content, conversation.ToolResultContent):
return [
FunctionCallOutput(
type="function_call_output",
call_id=content.tool_call_id,
output=json.dumps(content.tool_result),
)
]
if content.content:
role: Literal["user", "assistant", "system", "developer"] = content.role
if role == "system":
role = "developer"
return cast(
ChatCompletionMessageParam,
{"role": content.role, "content": content.content},
messages.append(
EasyInputMessageParam(type="message", role=role, content=content.content)
)
# Handle the Assistant content including tool calls.
assert type(content) is conversation.AssistantContent
return ChatCompletionAssistantMessageParam(
role="assistant",
content=content.content,
tool_calls=[
ChatCompletionMessageToolCallParam(
id=tool_call.id,
function=Function(
arguments=json.dumps(tool_call.tool_args),
name=tool_call.tool_name,
),
type="function",
if isinstance(content, conversation.AssistantContent) and content.tool_calls:
messages.extend(
# https://github.com/openai/openai-python/issues/2205
ResponseFunctionToolCallParam( # type: ignore[typeddict-item]
type="function_call",
name=tool_call.tool_name,
arguments=json.dumps(tool_call.tool_args),
call_id=tool_call.id,
)
for tool_call in content.tool_calls
],
)
)
return messages
async def _transform_stream(
result: AsyncStream[ChatCompletionChunk],
result: AsyncStream[ResponseStreamEvent],
) -> AsyncGenerator[conversation.AssistantContentDeltaDict]:
"""Transform an OpenAI delta stream into HA format."""
current_tool_call: dict | None = None
async for event in result:
LOGGER.debug("Received event: %s", event)
async for chunk in result:
LOGGER.debug("Received chunk: %s", chunk)
choice = chunk.choices[0]
if choice.finish_reason:
if current_tool_call:
yield {
"tool_calls": [
llm.ToolInput(
id=current_tool_call["id"],
tool_name=current_tool_call["tool_name"],
tool_args=json.loads(current_tool_call["tool_args"]),
)
]
}
break
delta = chunk.choices[0].delta
# We can yield delta messages not continuing or starting tool calls
if current_tool_call is None and not delta.tool_calls:
yield { # type: ignore[misc]
key: value
for key in ("role", "content")
if (value := getattr(delta, key)) is not None
}
continue
# When doing tool calls, we should always have a tool call
# object or we have gotten stopped above with a finish_reason set.
if (
not delta.tool_calls
or not (delta_tool_call := delta.tool_calls[0])
or not delta_tool_call.function
):
raise ValueError("Expected delta with tool call")
if current_tool_call and delta_tool_call.index == current_tool_call["index"]:
current_tool_call["tool_args"] += delta_tool_call.function.arguments or ""
continue
# We got tool call with new index, so we need to yield the previous
if current_tool_call:
if isinstance(event, ResponseOutputItemAddedEvent):
if isinstance(event.item, ResponseOutputMessage):
yield {"role": event.item.role}
elif isinstance(event.item, ResponseFunctionToolCall):
current_tool_call = event.item
elif isinstance(event, ResponseTextDeltaEvent):
yield {"content": event.delta}
elif isinstance(event, ResponseFunctionCallArgumentsDeltaEvent):
current_tool_call.arguments += event.delta
elif isinstance(event, ResponseFunctionCallArgumentsDoneEvent):
current_tool_call.status = "completed"
yield {
"tool_calls": [
llm.ToolInput(
id=current_tool_call["id"],
tool_name=current_tool_call["tool_name"],
tool_args=json.loads(current_tool_call["tool_args"]),
id=current_tool_call.call_id,
tool_name=current_tool_call.name,
tool_args=json.loads(current_tool_call.arguments),
)
]
}
current_tool_call = {
"index": delta_tool_call.index,
"id": delta_tool_call.id,
"tool_name": delta_tool_call.function.name,
"tool_args": delta_tool_call.function.arguments or "",
}
class OpenAIConversationEntity(
conversation.ConversationEntity, conversation.AbstractConversationAgent
@ -241,7 +203,7 @@ class OpenAIConversationEntity(
except conversation.ConverseError as err:
return err.as_conversation_result()
tools: list[ChatCompletionToolParam] | None = None
tools: list[ToolParam] | None = None
if chat_log.llm_api:
tools = [
_format_tool(tool, chat_log.llm_api.custom_serializer)
@ -249,7 +211,11 @@ class OpenAIConversationEntity(
]
model = options.get(CONF_CHAT_MODEL, RECOMMENDED_CHAT_MODEL)
messages = [_convert_content_to_param(content) for content in chat_log.content]
messages = [
m
for content in chat_log.content
for m in _convert_content_to_param(content)
]
client = self.entry.runtime_data
@ -257,24 +223,28 @@ class OpenAIConversationEntity(
for _iteration in range(MAX_TOOL_ITERATIONS):
model_args = {
"model": model,
"messages": messages,
"tools": tools or NOT_GIVEN,
"max_completion_tokens": options.get(
"input": messages,
"max_output_tokens": options.get(
CONF_MAX_TOKENS, RECOMMENDED_MAX_TOKENS
),
"top_p": options.get(CONF_TOP_P, RECOMMENDED_TOP_P),
"temperature": options.get(CONF_TEMPERATURE, RECOMMENDED_TEMPERATURE),
"user": chat_log.conversation_id,
"store": False,
"stream": True,
}
if tools:
model_args["tools"] = tools
if model.startswith("o"):
model_args["reasoning_effort"] = options.get(
CONF_REASONING_EFFORT, RECOMMENDED_REASONING_EFFORT
)
model_args["reasoning"] = {
"effort": options.get(
CONF_REASONING_EFFORT, RECOMMENDED_REASONING_EFFORT
)
}
try:
result = await client.chat.completions.create(**model_args)
result = await client.responses.create(**model_args)
except openai.RateLimitError as err:
LOGGER.error("Rate limited by OpenAI: %s", err)
raise HomeAssistantError("Rate limited or insufficient funds") from err
@ -282,14 +252,10 @@ class OpenAIConversationEntity(
LOGGER.error("Error talking to OpenAI: %s", err)
raise HomeAssistantError("Error talking to OpenAI") from err
messages.extend(
[
_convert_content_to_param(content)
async for content in chat_log.async_add_delta_content_stream(
user_input.agent_id, _transform_stream(result)
)
]
)
async for content in chat_log.async_add_delta_content_stream(
user_input.agent_id, _transform_stream(result)
):
messages.extend(_convert_content_to_param(content))
if not chat_log.unresponded_tool_results:
break

View File

@ -3,14 +3,28 @@
from collections.abc import Generator
from unittest.mock import AsyncMock, patch
from httpx import Response
import httpx
from openai import AuthenticationError, RateLimitError
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk,
Choice,
ChoiceDelta,
ChoiceDeltaToolCall,
ChoiceDeltaToolCallFunction,
from openai.types import ResponseFormatText
from openai.types.responses import (
Response,
ResponseCompletedEvent,
ResponseContentPartAddedEvent,
ResponseContentPartDoneEvent,
ResponseCreatedEvent,
ResponseFunctionCallArgumentsDeltaEvent,
ResponseFunctionCallArgumentsDoneEvent,
ResponseFunctionToolCall,
ResponseInProgressEvent,
ResponseOutputItemAddedEvent,
ResponseOutputItemDoneEvent,
ResponseOutputMessage,
ResponseOutputText,
ResponseReasoningItem,
ResponseStreamEvent,
ResponseTextConfig,
ResponseTextDeltaEvent,
ResponseTextDoneEvent,
)
import pytest
from syrupy.assertion import SnapshotAssertion
@ -28,40 +42,65 @@ from tests.components.conversation import (
mock_chat_log, # noqa: F401
)
ASSIST_RESPONSE_FINISH = (
# Assistant message
ChatCompletionChunk(
id="chatcmpl-B",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[Choice(index=0, delta=ChoiceDelta(content="Cool"))],
),
# Finish stream
ChatCompletionChunk(
id="chatcmpl-B",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[Choice(index=0, finish_reason="stop", delta=ChoiceDelta())],
),
)
@pytest.fixture
def mock_create_stream() -> Generator[AsyncMock]:
"""Mock stream response."""
async def mock_generator(stream):
for value in stream:
async def mock_generator(events, **kwargs):
response = Response(
id="resp_A",
created_at=1700000000,
error=None,
incomplete_details=None,
instructions=kwargs.get("instructions"),
metadata=kwargs.get("metadata", {}),
model=kwargs.get("model", "gpt-4o-mini"),
object="response",
output=[],
parallel_tool_calls=kwargs.get("parallel_tool_calls", True),
temperature=kwargs.get("temperature", 1.0),
tool_choice=kwargs.get("tool_choice", "auto"),
tools=kwargs.get("tools"),
top_p=kwargs.get("top_p", 1.0),
max_output_tokens=kwargs.get("max_output_tokens", 100000),
previous_response_id=kwargs.get("previous_response_id"),
reasoning=kwargs.get("reasoning"),
status="in_progress",
text=kwargs.get(
"text", ResponseTextConfig(format=ResponseFormatText(type="text"))
),
truncation=kwargs.get("truncation", "disabled"),
usage=None,
user=kwargs.get("user"),
store=kwargs.get("store", True),
)
yield ResponseCreatedEvent(
response=response,
type="response.created",
)
yield ResponseInProgressEvent(
response=response,
type="response.in_progress",
)
for value in events:
if isinstance(value, ResponseOutputItemDoneEvent):
response.output.append(value.item)
yield value
response.status = "completed"
yield ResponseCompletedEvent(
response=response,
type="response.completed",
)
with patch(
"openai.resources.chat.completions.AsyncCompletions.create",
"openai.resources.responses.AsyncResponses.create",
AsyncMock(),
) as mock_create:
mock_create.side_effect = lambda **kwargs: mock_generator(
mock_create.return_value.pop(0)
mock_create.return_value.pop(0), **kwargs
)
yield mock_create
@ -99,13 +138,17 @@ async def test_entity(
[
(
RateLimitError(
response=Response(status_code=429, request=""), body=None, message=None
response=httpx.Response(status_code=429, request=""),
body=None,
message=None,
),
"Rate limited or insufficient funds",
),
(
AuthenticationError(
response=Response(status_code=401, request=""), body=None, message=None
response=httpx.Response(status_code=401, request=""),
body=None,
message=None,
),
"Error talking to OpenAI",
),
@ -120,7 +163,7 @@ async def test_error_handling(
) -> None:
"""Test that we handle errors when calling completion API."""
with patch(
"openai.resources.chat.completions.AsyncCompletions.create",
"openai.resources.responses.AsyncResponses.create",
new_callable=AsyncMock,
side_effect=exception,
):
@ -144,6 +187,165 @@ async def test_conversation_agent(
assert agent.supported_languages == "*"
def create_message_item(
id: str, text: str | list[str], output_index: int
) -> list[ResponseStreamEvent]:
"""Create a message item."""
if isinstance(text, str):
text = [text]
content = ResponseOutputText(annotations=[], text="", type="output_text")
events = [
ResponseOutputItemAddedEvent(
item=ResponseOutputMessage(
id=id,
content=[],
type="message",
role="assistant",
status="in_progress",
),
output_index=output_index,
type="response.output_item.added",
),
ResponseContentPartAddedEvent(
content_index=0,
item_id=id,
output_index=output_index,
part=content,
type="response.content_part.added",
),
]
content.text = "".join(text)
events.extend(
ResponseTextDeltaEvent(
content_index=0,
delta=delta,
item_id=id,
output_index=output_index,
type="response.output_text.delta",
)
for delta in text
)
events.extend(
[
ResponseTextDoneEvent(
content_index=0,
item_id=id,
output_index=output_index,
text="".join(text),
type="response.output_text.done",
),
ResponseContentPartDoneEvent(
content_index=0,
item_id=id,
output_index=output_index,
part=content,
type="response.content_part.done",
),
ResponseOutputItemDoneEvent(
item=ResponseOutputMessage(
id=id,
content=[content],
role="assistant",
status="completed",
type="message",
),
output_index=output_index,
type="response.output_item.done",
),
]
)
return events
def create_function_tool_call_item(
id: str, arguments: str | list[str], call_id: str, name: str, output_index: int
) -> list[ResponseStreamEvent]:
"""Create a function tool call item."""
if isinstance(arguments, str):
arguments = [arguments]
events = [
ResponseOutputItemAddedEvent(
item=ResponseFunctionToolCall(
id=id,
arguments="",
call_id=call_id,
name=name,
type="function_call",
status="in_progress",
),
output_index=output_index,
type="response.output_item.added",
)
]
events.extend(
ResponseFunctionCallArgumentsDeltaEvent(
delta=delta,
item_id=id,
output_index=output_index,
type="response.function_call_arguments.delta",
)
for delta in arguments
)
events.append(
ResponseFunctionCallArgumentsDoneEvent(
arguments="".join(arguments),
item_id=id,
output_index=output_index,
type="response.function_call_arguments.done",
)
)
events.append(
ResponseOutputItemDoneEvent(
item=ResponseFunctionToolCall(
id=id,
arguments="".join(arguments),
call_id=call_id,
name=name,
type="function_call",
status="completed",
),
output_index=output_index,
type="response.output_item.done",
)
)
return events
def create_reasoning_item(id: str, output_index: int) -> list[ResponseStreamEvent]:
"""Create a reasoning item."""
return [
ResponseOutputItemAddedEvent(
item=ResponseReasoningItem(
id=id,
summary=[],
type="reasoning",
status=None,
),
output_index=output_index,
type="response.output_item.added",
),
ResponseOutputItemDoneEvent(
item=ResponseReasoningItem(
id=id,
summary=[],
type="reasoning",
status=None,
),
output_index=output_index,
type="response.output_item.done",
),
]
async def test_function_call(
hass: HomeAssistant,
mock_config_entry_with_assist: MockConfigEntry,
@ -156,111 +358,27 @@ async def test_function_call(
mock_create_stream.return_value = [
# Initial conversation
(
# Wait for the model to think
*create_reasoning_item(id="rs_A", output_index=0),
# First tool call
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
id="call_call_1",
index=0,
function=ChoiceDeltaToolCallFunction(
name="test_tool",
arguments=None,
),
)
]
),
)
],
),
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=0,
function=ChoiceDeltaToolCallFunction(
name=None,
arguments='{"para',
),
)
]
),
)
],
),
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=0,
function=ChoiceDeltaToolCallFunction(
name=None,
arguments='m1":"call1"}',
),
)
]
),
)
],
*create_function_tool_call_item(
id="fc_1",
arguments=['{"para', 'm1":"call1"}'],
call_id="call_call_1",
name="test_tool",
output_index=1,
),
# Second tool call
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
id="call_call_2",
index=1,
function=ChoiceDeltaToolCallFunction(
name="test_tool",
arguments='{"param1":"call2"}',
),
)
]
),
)
],
),
# Finish stream
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(index=0, finish_reason="tool_calls", delta=ChoiceDelta())
],
*create_function_tool_call_item(
id="fc_2",
arguments='{"param1":"call2"}',
call_id="call_call_2",
name="test_tool",
output_index=2,
),
),
# Response after tool responses
ASSIST_RESPONSE_FINISH,
create_message_item(id="msg_A", text="Cool", output_index=0),
]
mock_chat_log.mock_tool_results(
{
@ -288,99 +406,27 @@ async def test_function_call(
(
"Test function call started with missing arguments",
(
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
id="call_call_1",
index=0,
function=ChoiceDeltaToolCallFunction(
name="test_tool",
arguments=None,
),
)
]
),
)
],
),
ChatCompletionChunk(
id="chatcmpl-B",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[Choice(index=0, delta=ChoiceDelta(content="Cool"))],
*create_function_tool_call_item(
id="fc_1",
arguments=[],
call_id="call_call_1",
name="test_tool",
output_index=0,
),
*create_message_item(id="msg_A", text="Cool", output_index=1),
),
),
(
"Test invalid JSON",
(
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
id="call_call_1",
index=0,
function=ChoiceDeltaToolCallFunction(
name="test_tool",
arguments=None,
),
)
]
),
)
],
),
ChatCompletionChunk(
id="chatcmpl-A",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=0,
function=ChoiceDeltaToolCallFunction(
name=None,
arguments='{"para',
),
)
]
),
)
],
),
ChatCompletionChunk(
id="chatcmpl-B",
created=1700000000,
model="gpt-4-1106-preview",
object="chat.completion.chunk",
choices=[
Choice(
index=0,
delta=ChoiceDelta(content="Cool"),
finish_reason="tool_calls",
)
],
*create_function_tool_call_item(
id="fc_1",
arguments=['{"para'],
call_id="call_call_1",
name="test_tool",
output_index=0,
),
*create_message_item(id="msg_A", text="Cool", output_index=1),
),
),
],
@ -392,7 +438,7 @@ async def test_function_call_invalid(
mock_create_stream: AsyncMock,
mock_chat_log: MockChatLog, # noqa: F811
description: str,
messages: tuple[ChatCompletionChunk],
messages: tuple[ResponseStreamEvent],
) -> None:
"""Test function call containing invalid data."""
mock_create_stream.return_value = [messages]
@ -432,7 +478,9 @@ async def test_assist_api_tools_conversion(
hass.states.async_set(f"{component}.test", "on")
async_expose_entity(hass, "conversation", f"{component}.test", True)
mock_create_stream.return_value = [ASSIST_RESPONSE_FINISH]
mock_create_stream.return_value = [
create_message_item(id="msg_A", text="Cool", output_index=0)
]
await conversation.async_converse(
hass, "hello", None, Context(), agent_id="conversation.openai"

View File

@ -2,17 +2,16 @@
from unittest.mock import AsyncMock, mock_open, patch
from httpx import Request, Response
import httpx
from openai import (
APIConnectionError,
AuthenticationError,
BadRequestError,
RateLimitError,
)
from openai.types.chat.chat_completion import ChatCompletion, Choice
from openai.types.chat.chat_completion_message import ChatCompletionMessage
from openai.types.image import Image
from openai.types.images_response import ImagesResponse
from openai.types.responses import Response, ResponseOutputMessage, ResponseOutputText
import pytest
from homeassistant.components.openai_conversation import CONF_FILENAMES
@ -117,8 +116,8 @@ async def test_generate_image_service_error(
patch(
"openai.resources.images.AsyncImages.generate",
side_effect=RateLimitError(
response=Response(
status_code=500, request=Request(method="GET", url="")
response=httpx.Response(
status_code=500, request=httpx.Request(method="GET", url="")
),
body=None,
message="Reason",
@ -202,13 +201,13 @@ async def test_invalid_config_entry(
("side_effect", "error"),
[
(
APIConnectionError(request=Request(method="GET", url="test")),
APIConnectionError(request=httpx.Request(method="GET", url="test")),
"Connection error",
),
(
AuthenticationError(
response=Response(
status_code=500, request=Request(method="GET", url="test")
response=httpx.Response(
status_code=500, request=httpx.Request(method="GET", url="test")
),
body=None,
message="",
@ -217,8 +216,8 @@ async def test_invalid_config_entry(
),
(
BadRequestError(
response=Response(
status_code=500, request=Request(method="GET", url="test")
response=httpx.Response(
status_code=500, request=httpx.Request(method="GET", url="test")
),
body=None,
message="",
@ -250,11 +249,11 @@ async def test_init_error(
(
{"prompt": "Picture of a dog", "filenames": []},
{
"messages": [
"input": [
{
"content": [
{
"type": "text",
"type": "input_text",
"text": "Picture of a dog",
},
],
@ -266,18 +265,18 @@ async def test_init_error(
(
{"prompt": "Picture of a dog", "filenames": ["/a/b/c.jpg"]},
{
"messages": [
"input": [
{
"content": [
{
"type": "text",
"type": "input_text",
"text": "Picture of a dog",
},
{
"type": "image_url",
"image_url": {
"url": "",
},
"type": "input_image",
"image_url": "",
"detail": "auto",
"file_id": "/a/b/c.jpg",
},
],
},
@ -291,24 +290,24 @@ async def test_init_error(
"filenames": ["/a/b/c.jpg", "d/e/f.jpg"],
},
{
"messages": [
"input": [
{
"content": [
{
"type": "text",
"type": "input_text",
"text": "Picture of a dog",
},
{
"type": "image_url",
"image_url": {
"url": "",
},
"type": "input_image",
"image_url": "",
"detail": "auto",
"file_id": "/a/b/c.jpg",
},
{
"type": "image_url",
"image_url": {
"url": "",
},
"type": "input_image",
"image_url": "",
"detail": "auto",
"file_id": "d/e/f.jpg",
},
],
},
@ -329,13 +328,17 @@ async def test_generate_content_service(
"""Test generate content service."""
service_data["config_entry"] = mock_config_entry.entry_id
expected_args["model"] = "gpt-4o-mini"
expected_args["n"] = 1
expected_args["response_format"] = {"type": "json_object"}
expected_args["messages"][0]["role"] = "user"
expected_args["max_output_tokens"] = 150
expected_args["top_p"] = 1.0
expected_args["temperature"] = 1.0
expected_args["user"] = None
expected_args["store"] = False
expected_args["input"][0]["type"] = "message"
expected_args["input"][0]["role"] = "user"
with (
patch(
"openai.resources.chat.completions.AsyncCompletions.create",
"openai.resources.responses.AsyncResponses.create",
new_callable=AsyncMock,
) as mock_create,
patch(
@ -345,19 +348,27 @@ async def test_generate_content_service(
patch("pathlib.Path.exists", return_value=True),
patch.object(hass.config, "is_allowed_path", return_value=True),
):
mock_create.return_value = ChatCompletion(
id="",
model="",
created=1700000000,
object="chat.completion",
choices=[
Choice(
index=0,
finish_reason="stop",
message=ChatCompletionMessage(
role="assistant",
content="This is the response",
),
mock_create.return_value = Response(
object="response",
id="resp_A",
created_at=1700000000,
model="gpt-4o-mini",
parallel_tool_calls=True,
tool_choice="auto",
tools=[],
output=[
ResponseOutputMessage(
type="message",
id="msg_A",
content=[
ResponseOutputText(
type="output_text",
text="This is the response",
annotations=[],
)
],
role="assistant",
status="completed",
)
],
)
@ -427,7 +438,7 @@ async def test_generate_content_service_invalid(
with (
patch(
"openai.resources.chat.completions.AsyncCompletions.create",
"openai.resources.responses.AsyncResponses.create",
new_callable=AsyncMock,
) as mock_create,
patch(
@ -459,10 +470,10 @@ async def test_generate_content_service_error(
"""Test generate content service handles errors."""
with (
patch(
"openai.resources.chat.completions.AsyncCompletions.create",
"openai.resources.responses.AsyncResponses.create",
side_effect=RateLimitError(
response=Response(
status_code=417, request=Request(method="GET", url="")
response=httpx.Response(
status_code=417, request=httpx.Request(method="GET", url="")
),
body=None,
message="Reason",