"""Conversation support for OpenAI.""" from collections.abc import AsyncGenerator, Callable import json from typing import Any, Literal, cast import openai from openai._streaming import AsyncStream from openai._types import NOT_GIVEN from openai.types.chat import ( ChatCompletionAssistantMessageParam, ChatCompletionChunk, ChatCompletionMessageParam, ChatCompletionMessageToolCallParam, ChatCompletionToolMessageParam, ChatCompletionToolParam, ) from openai.types.chat.chat_completion_message_tool_call_param import Function from openai.types.shared_params import FunctionDefinition from voluptuous_openapi import convert from homeassistant.components import assist_pipeline, conversation from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_LLM_HASS_API, MATCH_ALL from homeassistant.core import HomeAssistant from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import chat_session, device_registry as dr, intent, llm from homeassistant.helpers.entity_platform import AddConfigEntryEntitiesCallback from . import OpenAIConfigEntry from .const import ( CONF_CHAT_MODEL, CONF_MAX_TOKENS, CONF_PROMPT, CONF_REASONING_EFFORT, CONF_TEMPERATURE, CONF_TOP_P, DOMAIN, LOGGER, RECOMMENDED_CHAT_MODEL, RECOMMENDED_MAX_TOKENS, RECOMMENDED_REASONING_EFFORT, RECOMMENDED_TEMPERATURE, RECOMMENDED_TOP_P, ) # Max number of back and forth with the LLM to generate a response MAX_TOOL_ITERATIONS = 10 async def async_setup_entry( hass: HomeAssistant, config_entry: OpenAIConfigEntry, async_add_entities: AddConfigEntryEntitiesCallback, ) -> None: """Set up conversation entities.""" agent = OpenAIConversationEntity(config_entry) async_add_entities([agent]) def _format_tool( tool: llm.Tool, custom_serializer: Callable[[Any], Any] | None ) -> ChatCompletionToolParam: """Format tool specification.""" tool_spec = FunctionDefinition( name=tool.name, parameters=convert(tool.parameters, custom_serializer=custom_serializer), ) if tool.description: tool_spec["description"] = tool.description return ChatCompletionToolParam(type="function", function=tool_spec) def _convert_content_to_param( content: conversation.Content, ) -> ChatCompletionMessageParam: """Convert any native chat message for this agent to the native format.""" if content.role == "tool_result": assert type(content) is conversation.ToolResultContent return ChatCompletionToolMessageParam( role="tool", tool_call_id=content.tool_call_id, content=json.dumps(content.tool_result), ) if content.role != "assistant" or not content.tool_calls: # type: ignore[union-attr] role = content.role if role == "system": role = "developer" return cast( ChatCompletionMessageParam, {"role": content.role, "content": content.content}, # type: ignore[union-attr] ) # Handle the Assistant content including tool calls. assert type(content) is conversation.AssistantContent return ChatCompletionAssistantMessageParam( role="assistant", content=content.content, tool_calls=[ ChatCompletionMessageToolCallParam( id=tool_call.id, function=Function( arguments=json.dumps(tool_call.tool_args), name=tool_call.tool_name, ), type="function", ) for tool_call in content.tool_calls ], ) async def _transform_stream( result: AsyncStream[ChatCompletionChunk], ) -> AsyncGenerator[conversation.AssistantContentDeltaDict]: """Transform an OpenAI delta stream into HA format.""" current_tool_call: dict | None = None async for chunk in result: LOGGER.debug("Received chunk: %s", chunk) choice = chunk.choices[0] if choice.finish_reason: if current_tool_call: yield { "tool_calls": [ llm.ToolInput( id=current_tool_call["id"], tool_name=current_tool_call["tool_name"], tool_args=json.loads(current_tool_call["tool_args"]), ) ] } break delta = chunk.choices[0].delta # We can yield delta messages not continuing or starting tool calls if current_tool_call is None and not delta.tool_calls: yield { # type: ignore[misc] key: value for key in ("role", "content") if (value := getattr(delta, key)) is not None } continue # When doing tool calls, we should always have a tool call # object or we have gotten stopped above with a finish_reason set. if ( not delta.tool_calls or not (delta_tool_call := delta.tool_calls[0]) or not delta_tool_call.function ): raise ValueError("Expected delta with tool call") if current_tool_call and delta_tool_call.index == current_tool_call["index"]: current_tool_call["tool_args"] += delta_tool_call.function.arguments or "" continue # We got tool call with new index, so we need to yield the previous if current_tool_call: yield { "tool_calls": [ llm.ToolInput( id=current_tool_call["id"], tool_name=current_tool_call["tool_name"], tool_args=json.loads(current_tool_call["tool_args"]), ) ] } current_tool_call = { "index": delta_tool_call.index, "id": delta_tool_call.id, "tool_name": delta_tool_call.function.name, "tool_args": delta_tool_call.function.arguments or "", } class OpenAIConversationEntity( conversation.ConversationEntity, conversation.AbstractConversationAgent ): """OpenAI conversation agent.""" _attr_has_entity_name = True _attr_name = None def __init__(self, entry: OpenAIConfigEntry) -> None: """Initialize the agent.""" self.entry = entry self._attr_unique_id = entry.entry_id self._attr_device_info = dr.DeviceInfo( identifiers={(DOMAIN, entry.entry_id)}, name=entry.title, manufacturer="OpenAI", model="ChatGPT", entry_type=dr.DeviceEntryType.SERVICE, ) if self.entry.options.get(CONF_LLM_HASS_API): self._attr_supported_features = ( conversation.ConversationEntityFeature.CONTROL ) @property def supported_languages(self) -> list[str] | Literal["*"]: """Return a list of supported languages.""" return MATCH_ALL async def async_added_to_hass(self) -> None: """When entity is added to Home Assistant.""" await super().async_added_to_hass() assist_pipeline.async_migrate_engine( self.hass, "conversation", self.entry.entry_id, self.entity_id ) conversation.async_set_agent(self.hass, self.entry, self) self.entry.async_on_unload( self.entry.add_update_listener(self._async_entry_update_listener) ) async def async_will_remove_from_hass(self) -> None: """When entity will be removed from Home Assistant.""" conversation.async_unset_agent(self.hass, self.entry) await super().async_will_remove_from_hass() async def async_process( self, user_input: conversation.ConversationInput ) -> conversation.ConversationResult: """Process a sentence.""" with ( chat_session.async_get_chat_session( self.hass, user_input.conversation_id ) as session, conversation.async_get_chat_log(self.hass, session, user_input) as chat_log, ): return await self._async_handle_message(user_input, chat_log) async def _async_handle_message( self, user_input: conversation.ConversationInput, chat_log: conversation.ChatLog, ) -> conversation.ConversationResult: """Call the API.""" options = self.entry.options try: await chat_log.async_update_llm_data( DOMAIN, user_input, options.get(CONF_LLM_HASS_API), options.get(CONF_PROMPT), ) except conversation.ConverseError as err: return err.as_conversation_result() tools: list[ChatCompletionToolParam] | None = None if chat_log.llm_api: tools = [ _format_tool(tool, chat_log.llm_api.custom_serializer) for tool in chat_log.llm_api.tools ] model = options.get(CONF_CHAT_MODEL, RECOMMENDED_CHAT_MODEL) messages = [_convert_content_to_param(content) for content in chat_log.content] client = self.entry.runtime_data # To prevent infinite loops, we limit the number of iterations for _iteration in range(MAX_TOOL_ITERATIONS): model_args = { "model": model, "messages": messages, "tools": tools or NOT_GIVEN, "max_completion_tokens": options.get( CONF_MAX_TOKENS, RECOMMENDED_MAX_TOKENS ), "top_p": options.get(CONF_TOP_P, RECOMMENDED_TOP_P), "temperature": options.get(CONF_TEMPERATURE, RECOMMENDED_TEMPERATURE), "user": chat_log.conversation_id, "stream": True, } if model.startswith("o"): model_args["reasoning_effort"] = options.get( CONF_REASONING_EFFORT, RECOMMENDED_REASONING_EFFORT ) try: result = await client.chat.completions.create(**model_args) except openai.OpenAIError as err: LOGGER.error("Error talking to OpenAI: %s", err) raise HomeAssistantError("Error talking to OpenAI") from err messages.extend( [ _convert_content_to_param(content) async for content in chat_log.async_add_delta_content_stream( user_input.agent_id, _transform_stream(result) ) ] ) if not chat_log.unresponded_tool_results: break intent_response = intent.IntentResponse(language=user_input.language) assert type(chat_log.content[-1]) is conversation.AssistantContent intent_response.async_set_speech(chat_log.content[-1].content or "") return conversation.ConversationResult( response=intent_response, conversation_id=chat_log.conversation_id ) async def _async_entry_update_listener( self, hass: HomeAssistant, entry: ConfigEntry ) -> None: """Handle options update.""" # Reload as we update device info + entity name + supported features await hass.config_entries.async_reload(entry.entry_id)