mirror of
https://github.com/home-assistant/core.git
synced 2025-07-05 20:37:16 +00:00
456 lines
15 KiB
Python
456 lines
15 KiB
Python
"""Config flow for OpenAI Conversation integration."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from typing import Any
|
|
|
|
import openai
|
|
import voluptuous as vol
|
|
from voluptuous_openapi import convert
|
|
|
|
from homeassistant.components.zone import ENTITY_ID_HOME
|
|
from homeassistant.config_entries import (
|
|
ConfigEntry,
|
|
ConfigEntryState,
|
|
ConfigFlow,
|
|
ConfigFlowResult,
|
|
ConfigSubentryFlow,
|
|
SubentryFlowResult,
|
|
)
|
|
from homeassistant.const import (
|
|
ATTR_LATITUDE,
|
|
ATTR_LONGITUDE,
|
|
CONF_API_KEY,
|
|
CONF_LLM_HASS_API,
|
|
CONF_NAME,
|
|
)
|
|
from homeassistant.core import HomeAssistant, callback
|
|
from homeassistant.helpers import llm
|
|
from homeassistant.helpers.httpx_client import get_async_client
|
|
from homeassistant.helpers.selector import (
|
|
NumberSelector,
|
|
NumberSelectorConfig,
|
|
SelectOptionDict,
|
|
SelectSelector,
|
|
SelectSelectorConfig,
|
|
SelectSelectorMode,
|
|
TemplateSelector,
|
|
)
|
|
from homeassistant.helpers.typing import VolDictType
|
|
|
|
from .const import (
|
|
CONF_CHAT_MODEL,
|
|
CONF_MAX_TOKENS,
|
|
CONF_PROMPT,
|
|
CONF_REASONING_EFFORT,
|
|
CONF_RECOMMENDED,
|
|
CONF_TEMPERATURE,
|
|
CONF_TOP_P,
|
|
CONF_WEB_SEARCH,
|
|
CONF_WEB_SEARCH_CITY,
|
|
CONF_WEB_SEARCH_CONTEXT_SIZE,
|
|
CONF_WEB_SEARCH_COUNTRY,
|
|
CONF_WEB_SEARCH_REGION,
|
|
CONF_WEB_SEARCH_TIMEZONE,
|
|
CONF_WEB_SEARCH_USER_LOCATION,
|
|
DEFAULT_CONVERSATION_NAME,
|
|
DOMAIN,
|
|
RECOMMENDED_CHAT_MODEL,
|
|
RECOMMENDED_MAX_TOKENS,
|
|
RECOMMENDED_REASONING_EFFORT,
|
|
RECOMMENDED_TEMPERATURE,
|
|
RECOMMENDED_TOP_P,
|
|
RECOMMENDED_WEB_SEARCH,
|
|
RECOMMENDED_WEB_SEARCH_CONTEXT_SIZE,
|
|
RECOMMENDED_WEB_SEARCH_USER_LOCATION,
|
|
UNSUPPORTED_MODELS,
|
|
WEB_SEARCH_MODELS,
|
|
)
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
STEP_USER_DATA_SCHEMA = vol.Schema(
|
|
{
|
|
vol.Required(CONF_API_KEY): str,
|
|
}
|
|
)
|
|
|
|
RECOMMENDED_OPTIONS = {
|
|
CONF_RECOMMENDED: True,
|
|
CONF_LLM_HASS_API: [llm.LLM_API_ASSIST],
|
|
CONF_PROMPT: llm.DEFAULT_INSTRUCTIONS_PROMPT,
|
|
}
|
|
|
|
|
|
async def validate_input(hass: HomeAssistant, data: dict[str, Any]) -> None:
|
|
"""Validate the user input allows us to connect.
|
|
|
|
Data has the keys from STEP_USER_DATA_SCHEMA with values provided by the user.
|
|
"""
|
|
client = openai.AsyncOpenAI(
|
|
api_key=data[CONF_API_KEY], http_client=get_async_client(hass)
|
|
)
|
|
await hass.async_add_executor_job(client.with_options(timeout=10.0).models.list)
|
|
|
|
|
|
class OpenAIConfigFlow(ConfigFlow, domain=DOMAIN):
|
|
"""Handle a config flow for OpenAI Conversation."""
|
|
|
|
VERSION = 2
|
|
MINOR_VERSION = 2
|
|
|
|
async def async_step_user(
|
|
self, user_input: dict[str, Any] | None = None
|
|
) -> ConfigFlowResult:
|
|
"""Handle the initial step."""
|
|
if user_input is None:
|
|
return self.async_show_form(
|
|
step_id="user", data_schema=STEP_USER_DATA_SCHEMA
|
|
)
|
|
|
|
errors: dict[str, str] = {}
|
|
|
|
self._async_abort_entries_match(user_input)
|
|
try:
|
|
await validate_input(self.hass, user_input)
|
|
except openai.APIConnectionError:
|
|
errors["base"] = "cannot_connect"
|
|
except openai.AuthenticationError:
|
|
errors["base"] = "invalid_auth"
|
|
except Exception:
|
|
_LOGGER.exception("Unexpected exception")
|
|
errors["base"] = "unknown"
|
|
else:
|
|
return self.async_create_entry(
|
|
title="ChatGPT",
|
|
data=user_input,
|
|
subentries=[
|
|
{
|
|
"subentry_type": "conversation",
|
|
"data": RECOMMENDED_OPTIONS,
|
|
"title": DEFAULT_CONVERSATION_NAME,
|
|
"unique_id": None,
|
|
}
|
|
],
|
|
)
|
|
|
|
return self.async_show_form(
|
|
step_id="user", data_schema=STEP_USER_DATA_SCHEMA, errors=errors
|
|
)
|
|
|
|
@classmethod
|
|
@callback
|
|
def async_get_supported_subentry_types(
|
|
cls, config_entry: ConfigEntry
|
|
) -> dict[str, type[ConfigSubentryFlow]]:
|
|
"""Return subentries supported by this integration."""
|
|
return {"conversation": ConversationSubentryFlowHandler}
|
|
|
|
|
|
class ConversationSubentryFlowHandler(ConfigSubentryFlow):
|
|
"""Flow for managing conversation subentries."""
|
|
|
|
last_rendered_recommended = False
|
|
options: dict[str, Any]
|
|
|
|
@property
|
|
def _is_new(self) -> bool:
|
|
"""Return if this is a new subentry."""
|
|
return self.source == "user"
|
|
|
|
async def async_step_user(
|
|
self, user_input: dict[str, Any] | None = None
|
|
) -> SubentryFlowResult:
|
|
"""Add a subentry."""
|
|
self.options = RECOMMENDED_OPTIONS.copy()
|
|
return await self.async_step_init()
|
|
|
|
async def async_step_reconfigure(
|
|
self, user_input: dict[str, Any] | None = None
|
|
) -> SubentryFlowResult:
|
|
"""Handle reconfiguration of a subentry."""
|
|
self.options = self._get_reconfigure_subentry().data.copy()
|
|
return await self.async_step_init()
|
|
|
|
async def async_step_init(
|
|
self, user_input: dict[str, Any] | None = None
|
|
) -> SubentryFlowResult:
|
|
"""Manage initial options."""
|
|
# abort if entry is not loaded
|
|
if self._get_entry().state != ConfigEntryState.LOADED:
|
|
return self.async_abort(reason="entry_not_loaded")
|
|
options = self.options
|
|
|
|
hass_apis: list[SelectOptionDict] = [
|
|
SelectOptionDict(
|
|
label=api.name,
|
|
value=api.id,
|
|
)
|
|
for api in llm.async_get_apis(self.hass)
|
|
]
|
|
if (suggested_llm_apis := options.get(CONF_LLM_HASS_API)) and isinstance(
|
|
suggested_llm_apis, str
|
|
):
|
|
options[CONF_LLM_HASS_API] = [suggested_llm_apis]
|
|
|
|
step_schema: VolDictType = {}
|
|
|
|
if self._is_new:
|
|
step_schema[vol.Required(CONF_NAME, default=DEFAULT_CONVERSATION_NAME)] = (
|
|
str
|
|
)
|
|
|
|
step_schema.update(
|
|
{
|
|
vol.Optional(
|
|
CONF_PROMPT,
|
|
description={
|
|
"suggested_value": options.get(
|
|
CONF_PROMPT, llm.DEFAULT_INSTRUCTIONS_PROMPT
|
|
)
|
|
},
|
|
): TemplateSelector(),
|
|
vol.Optional(CONF_LLM_HASS_API): SelectSelector(
|
|
SelectSelectorConfig(options=hass_apis, multiple=True)
|
|
),
|
|
vol.Required(
|
|
CONF_RECOMMENDED, default=options.get(CONF_RECOMMENDED, False)
|
|
): bool,
|
|
}
|
|
)
|
|
|
|
if user_input is not None:
|
|
if not user_input.get(CONF_LLM_HASS_API):
|
|
user_input.pop(CONF_LLM_HASS_API, None)
|
|
|
|
if user_input[CONF_RECOMMENDED]:
|
|
if self._is_new:
|
|
return self.async_create_entry(
|
|
title=user_input.pop(CONF_NAME),
|
|
data=user_input,
|
|
)
|
|
return self.async_update_and_abort(
|
|
self._get_entry(),
|
|
self._get_reconfigure_subentry(),
|
|
data=user_input,
|
|
)
|
|
|
|
options.update(user_input)
|
|
if CONF_LLM_HASS_API in options and CONF_LLM_HASS_API not in user_input:
|
|
options.pop(CONF_LLM_HASS_API)
|
|
return await self.async_step_advanced()
|
|
|
|
return self.async_show_form(
|
|
step_id="init",
|
|
data_schema=self.add_suggested_values_to_schema(
|
|
vol.Schema(step_schema), options
|
|
),
|
|
)
|
|
|
|
async def async_step_advanced(
|
|
self, user_input: dict[str, Any] | None = None
|
|
) -> SubentryFlowResult:
|
|
"""Manage advanced options."""
|
|
options = self.options
|
|
errors: dict[str, str] = {}
|
|
|
|
step_schema: VolDictType = {
|
|
vol.Optional(
|
|
CONF_CHAT_MODEL,
|
|
default=RECOMMENDED_CHAT_MODEL,
|
|
): str,
|
|
vol.Optional(
|
|
CONF_MAX_TOKENS,
|
|
default=RECOMMENDED_MAX_TOKENS,
|
|
): int,
|
|
vol.Optional(
|
|
CONF_TOP_P,
|
|
default=RECOMMENDED_TOP_P,
|
|
): NumberSelector(NumberSelectorConfig(min=0, max=1, step=0.05)),
|
|
vol.Optional(
|
|
CONF_TEMPERATURE,
|
|
default=RECOMMENDED_TEMPERATURE,
|
|
): NumberSelector(NumberSelectorConfig(min=0, max=2, step=0.05)),
|
|
}
|
|
|
|
if user_input is not None:
|
|
options.update(user_input)
|
|
if user_input.get(CONF_CHAT_MODEL) in UNSUPPORTED_MODELS:
|
|
errors[CONF_CHAT_MODEL] = "model_not_supported"
|
|
|
|
if not errors:
|
|
return await self.async_step_model()
|
|
|
|
return self.async_show_form(
|
|
step_id="advanced",
|
|
data_schema=self.add_suggested_values_to_schema(
|
|
vol.Schema(step_schema), options
|
|
),
|
|
errors=errors,
|
|
)
|
|
|
|
async def async_step_model(
|
|
self, user_input: dict[str, Any] | None = None
|
|
) -> SubentryFlowResult:
|
|
"""Manage model-specific options."""
|
|
options = self.options
|
|
errors: dict[str, str] = {}
|
|
|
|
step_schema: VolDictType = {}
|
|
|
|
model = options[CONF_CHAT_MODEL]
|
|
|
|
if model.startswith("o"):
|
|
step_schema.update(
|
|
{
|
|
vol.Optional(
|
|
CONF_REASONING_EFFORT,
|
|
default=RECOMMENDED_REASONING_EFFORT,
|
|
): SelectSelector(
|
|
SelectSelectorConfig(
|
|
options=["low", "medium", "high"],
|
|
translation_key=CONF_REASONING_EFFORT,
|
|
mode=SelectSelectorMode.DROPDOWN,
|
|
)
|
|
),
|
|
}
|
|
)
|
|
elif CONF_REASONING_EFFORT in options:
|
|
options.pop(CONF_REASONING_EFFORT)
|
|
|
|
if model.startswith(tuple(WEB_SEARCH_MODELS)):
|
|
step_schema.update(
|
|
{
|
|
vol.Optional(
|
|
CONF_WEB_SEARCH,
|
|
default=RECOMMENDED_WEB_SEARCH,
|
|
): bool,
|
|
vol.Optional(
|
|
CONF_WEB_SEARCH_CONTEXT_SIZE,
|
|
default=RECOMMENDED_WEB_SEARCH_CONTEXT_SIZE,
|
|
): SelectSelector(
|
|
SelectSelectorConfig(
|
|
options=["low", "medium", "high"],
|
|
translation_key=CONF_WEB_SEARCH_CONTEXT_SIZE,
|
|
mode=SelectSelectorMode.DROPDOWN,
|
|
)
|
|
),
|
|
vol.Optional(
|
|
CONF_WEB_SEARCH_USER_LOCATION,
|
|
default=RECOMMENDED_WEB_SEARCH_USER_LOCATION,
|
|
): bool,
|
|
}
|
|
)
|
|
elif CONF_WEB_SEARCH in options:
|
|
options = {
|
|
k: v
|
|
for k, v in options.items()
|
|
if k
|
|
not in (
|
|
CONF_WEB_SEARCH,
|
|
CONF_WEB_SEARCH_CONTEXT_SIZE,
|
|
CONF_WEB_SEARCH_USER_LOCATION,
|
|
CONF_WEB_SEARCH_CITY,
|
|
CONF_WEB_SEARCH_REGION,
|
|
CONF_WEB_SEARCH_COUNTRY,
|
|
CONF_WEB_SEARCH_TIMEZONE,
|
|
)
|
|
}
|
|
|
|
if not step_schema:
|
|
if self._is_new:
|
|
return self.async_create_entry(
|
|
title=options.pop(CONF_NAME, DEFAULT_CONVERSATION_NAME),
|
|
data=options,
|
|
)
|
|
return self.async_update_and_abort(
|
|
self._get_entry(),
|
|
self._get_reconfigure_subentry(),
|
|
data=options,
|
|
)
|
|
|
|
if user_input is not None:
|
|
if user_input.get(CONF_WEB_SEARCH):
|
|
if user_input.get(CONF_WEB_SEARCH_USER_LOCATION):
|
|
user_input.update(await self._get_location_data())
|
|
else:
|
|
options.pop(CONF_WEB_SEARCH_CITY, None)
|
|
options.pop(CONF_WEB_SEARCH_REGION, None)
|
|
options.pop(CONF_WEB_SEARCH_COUNTRY, None)
|
|
options.pop(CONF_WEB_SEARCH_TIMEZONE, None)
|
|
|
|
options.update(user_input)
|
|
if self._is_new:
|
|
return self.async_create_entry(
|
|
title=options.pop(CONF_NAME, DEFAULT_CONVERSATION_NAME),
|
|
data=options,
|
|
)
|
|
return self.async_update_and_abort(
|
|
self._get_entry(),
|
|
self._get_reconfigure_subentry(),
|
|
data=options,
|
|
)
|
|
|
|
return self.async_show_form(
|
|
step_id="model",
|
|
data_schema=self.add_suggested_values_to_schema(
|
|
vol.Schema(step_schema), options
|
|
),
|
|
errors=errors,
|
|
)
|
|
|
|
async def _get_location_data(self) -> dict[str, str]:
|
|
"""Get approximate location data of the user."""
|
|
location_data: dict[str, str] = {}
|
|
zone_home = self.hass.states.get(ENTITY_ID_HOME)
|
|
if zone_home is not None:
|
|
client = openai.AsyncOpenAI(
|
|
api_key=self._get_entry().data[CONF_API_KEY],
|
|
http_client=get_async_client(self.hass),
|
|
)
|
|
location_schema = vol.Schema(
|
|
{
|
|
vol.Optional(
|
|
CONF_WEB_SEARCH_CITY,
|
|
description="Free text input for the city, e.g. `San Francisco`",
|
|
): str,
|
|
vol.Optional(
|
|
CONF_WEB_SEARCH_REGION,
|
|
description="Free text input for the region, e.g. `California`",
|
|
): str,
|
|
}
|
|
)
|
|
response = await client.responses.create(
|
|
model=RECOMMENDED_CHAT_MODEL,
|
|
input=[
|
|
{
|
|
"role": "system",
|
|
"content": "Where are the following coordinates located: "
|
|
f"({zone_home.attributes[ATTR_LATITUDE]},"
|
|
f" {zone_home.attributes[ATTR_LONGITUDE]})?",
|
|
}
|
|
],
|
|
text={
|
|
"format": {
|
|
"type": "json_schema",
|
|
"name": "approximate_location",
|
|
"description": "Approximate location data of the user "
|
|
"for refined web search results",
|
|
"schema": convert(location_schema),
|
|
"strict": False,
|
|
}
|
|
},
|
|
store=False,
|
|
)
|
|
location_data = location_schema(json.loads(response.output_text) or {})
|
|
|
|
if self.hass.config.country:
|
|
location_data[CONF_WEB_SEARCH_COUNTRY] = self.hass.config.country
|
|
location_data[CONF_WEB_SEARCH_TIMEZONE] = self.hass.config.time_zone
|
|
|
|
_LOGGER.debug("Location data: %s", location_data)
|
|
|
|
return location_data
|