Extract lock-free queue and event pool to core helpers (#9238)

This commit is contained in:
J. Nick Koston 2025-06-28 15:08:33 -05:00 committed by GitHub
parent 13d4823db6
commit 3f1f99cf37
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 223 additions and 168 deletions

View File

@ -1,7 +1,6 @@
#ifdef USE_ESP32
#include "ble.h"
#include "ble_event_pool.h"
#include "esphome/core/application.h"
#include "esphome/core/helpers.h"

View File

@ -12,8 +12,8 @@
#include "esphome/core/helpers.h"
#include "ble_event.h"
#include "ble_event_pool.h"
#include "queue.h"
#include "esphome/core/lock_free_queue.h"
#include "esphome/core/event_pool.h"
#ifdef USE_ESP32
@ -148,8 +148,8 @@ class ESP32BLE : public Component {
std::vector<BLEStatusEventHandler *> ble_status_event_handlers_;
BLEComponentState state_{BLE_COMPONENT_STATE_OFF};
LockFreeQueue<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_events_;
BLEEventPool<MAX_BLE_QUEUE_SIZE> ble_event_pool_;
esphome::LockFreeQueue<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_events_;
esphome::EventPool<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_event_pool_;
BLEAdvertising *advertising_{};
esp_ble_io_cap_t io_cap_{ESP_IO_CAP_NONE};
uint32_t advertising_cycle_time_{};

View File

@ -134,13 +134,13 @@ class BLEEvent {
}
// Destructor to clean up heap allocations
~BLEEvent() { this->cleanup_heap_data(); }
~BLEEvent() { this->release(); }
// Default constructor for pre-allocation in pool
BLEEvent() : type_(GAP) {}
// Clean up any heap-allocated data
void cleanup_heap_data() {
// Invoked on return to EventPool - clean up any heap-allocated data
void release() {
if (this->type_ == GAP) {
return;
}
@ -161,19 +161,19 @@ class BLEEvent {
// Load new event data for reuse (replaces previous event data)
void load_gap_event(esp_gap_ble_cb_event_t e, esp_ble_gap_cb_param_t *p) {
this->cleanup_heap_data();
this->release();
this->type_ = GAP;
this->init_gap_data_(e, p);
}
void load_gattc_event(esp_gattc_cb_event_t e, esp_gatt_if_t i, esp_ble_gattc_cb_param_t *p) {
this->cleanup_heap_data();
this->release();
this->type_ = GATTC;
this->init_gattc_data_(e, i, p);
}
void load_gatts_event(esp_gatts_cb_event_t e, esp_gatt_if_t i, esp_ble_gatts_cb_param_t *p) {
this->cleanup_heap_data();
this->release();
this->type_ = GATTS;
this->init_gatts_data_(e, i, p);
}

View File

@ -1,72 +0,0 @@
#pragma once
#ifdef USE_ESP32
#include <atomic>
#include <cstddef>
#include "ble_event.h"
#include "queue.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace esp32_ble {
// BLE Event Pool - On-demand pool of BLEEvent objects to avoid heap fragmentation
// Events are allocated on first use and reused thereafter, growing to peak usage
template<uint8_t SIZE> class BLEEventPool {
public:
BLEEventPool() : total_created_(0) {}
~BLEEventPool() {
// Clean up any remaining events in the free list
BLEEvent *event;
while ((event = this->free_list_.pop()) != nullptr) {
delete event;
}
}
// Allocate an event from the pool
// Returns nullptr if pool is full
BLEEvent *allocate() {
// Try to get from free list first
BLEEvent *event = this->free_list_.pop();
if (event != nullptr)
return event;
// Need to create a new event
if (this->total_created_ >= SIZE) {
// Pool is at capacity
return nullptr;
}
// Use internal RAM for better performance
RAMAllocator<BLEEvent> allocator(RAMAllocator<BLEEvent>::ALLOC_INTERNAL);
event = allocator.allocate(1);
if (event == nullptr) {
// Memory allocation failed
return nullptr;
}
// Placement new to construct the object
new (event) BLEEvent();
this->total_created_++;
return event;
}
// Return an event to the pool for reuse
void release(BLEEvent *event) {
if (event != nullptr) {
this->free_list_.push(event);
}
}
private:
LockFreeQueue<BLEEvent, SIZE> free_list_; // Free events ready for reuse
uint8_t total_created_; // Total events created (high water mark)
};
} // namespace esp32_ble
} // namespace esphome
#endif

View File

@ -1,85 +0,0 @@
#pragma once
#ifdef USE_ESP32
#include <atomic>
#include <cstddef>
/*
* BLE events come in from a separate Task (thread) in the ESP32 stack. Rather
* than using mutex-based locking, this lock-free queue allows the BLE
* task to enqueue events without blocking. The main loop() then processes
* these events at a safer time.
*
* This is a Single-Producer Single-Consumer (SPSC) lock-free ring buffer.
* The BLE task is the only producer, and the main loop() is the only consumer.
*/
namespace esphome {
namespace esp32_ble {
template<class T, uint8_t SIZE> class LockFreeQueue {
public:
LockFreeQueue() : head_(0), tail_(0), dropped_count_(0) {}
bool push(T *element) {
if (element == nullptr)
return false;
uint8_t current_tail = tail_.load(std::memory_order_relaxed);
uint8_t next_tail = (current_tail + 1) % SIZE;
if (next_tail == head_.load(std::memory_order_acquire)) {
// Buffer full
dropped_count_.fetch_add(1, std::memory_order_relaxed);
return false;
}
buffer_[current_tail] = element;
tail_.store(next_tail, std::memory_order_release);
return true;
}
T *pop() {
uint8_t current_head = head_.load(std::memory_order_relaxed);
if (current_head == tail_.load(std::memory_order_acquire)) {
return nullptr; // Empty
}
T *element = buffer_[current_head];
head_.store((current_head + 1) % SIZE, std::memory_order_release);
return element;
}
size_t size() const {
uint8_t tail = tail_.load(std::memory_order_acquire);
uint8_t head = head_.load(std::memory_order_acquire);
return (tail - head + SIZE) % SIZE;
}
uint16_t get_and_reset_dropped_count() { return dropped_count_.exchange(0, std::memory_order_relaxed); }
void increment_dropped_count() { dropped_count_.fetch_add(1, std::memory_order_relaxed); }
bool empty() const { return head_.load(std::memory_order_acquire) == tail_.load(std::memory_order_acquire); }
bool full() const {
uint8_t next_tail = (tail_.load(std::memory_order_relaxed) + 1) % SIZE;
return next_tail == head_.load(std::memory_order_acquire);
}
protected:
T *buffer_[SIZE];
// Atomic: written by producer (push/increment), read+reset by consumer (get_and_reset)
std::atomic<uint16_t> dropped_count_; // 65535 max - more than enough for drop tracking
// Atomic: written by consumer (pop), read by producer (push) to check if full
std::atomic<uint8_t> head_;
// Atomic: written by producer (push), read by consumer (pop) to check if empty
std::atomic<uint8_t> tail_;
};
} // namespace esp32_ble
} // namespace esphome
#endif

81
esphome/core/event_pool.h Normal file
View File

@ -0,0 +1,81 @@
#pragma once
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
#include <atomic>
#include <cstddef>
#include "esphome/core/helpers.h"
#include "esphome/core/lock_free_queue.h"
namespace esphome {
// Event Pool - On-demand pool of objects to avoid heap fragmentation
// Events are allocated on first use and reused thereafter, growing to peak usage
// @tparam T The type of objects managed by the pool (must have a release() method)
// @tparam SIZE The maximum number of objects in the pool (1-255, limited by uint8_t)
template<class T, uint8_t SIZE> class EventPool {
public:
EventPool() : total_created_(0) {}
~EventPool() {
// Clean up any remaining events in the free list
// IMPORTANT: This destructor assumes no concurrent access. The EventPool must not
// be destroyed while any thread might still call allocate() or release().
// In practice, this is typically ensured by destroying the pool only during
// component shutdown when all producer/consumer threads have been stopped.
T *event;
RAMAllocator<T> allocator(RAMAllocator<T>::ALLOC_INTERNAL);
while ((event = this->free_list_.pop()) != nullptr) {
// Call destructor
event->~T();
// Deallocate using RAMAllocator
allocator.deallocate(event, 1);
}
}
// Allocate an event from the pool
// Returns nullptr if pool is full
T *allocate() {
// Try to get from free list first
T *event = this->free_list_.pop();
if (event != nullptr)
return event;
// Need to create a new event
if (this->total_created_ >= SIZE) {
// Pool is at capacity
return nullptr;
}
// Use internal RAM for better performance
RAMAllocator<T> allocator(RAMAllocator<T>::ALLOC_INTERNAL);
event = allocator.allocate(1);
if (event == nullptr) {
// Memory allocation failed
return nullptr;
}
// Placement new to construct the object
new (event) T();
this->total_created_++;
return event;
}
// Return an event to the pool for reuse
void release(T *event) {
if (event != nullptr) {
// Clean up the event's allocated memory
event->release();
this->free_list_.push(event);
}
}
private:
LockFreeQueue<T, SIZE> free_list_; // Free events ready for reuse
uint8_t total_created_; // Total events created (high water mark, max 255)
};
} // namespace esphome
#endif // defined(USE_ESP32) || defined(USE_LIBRETINY)

View File

@ -0,0 +1,132 @@
#pragma once
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
#include <atomic>
#include <cstddef>
#if defined(USE_ESP32)
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#elif defined(USE_LIBRETINY)
#include <FreeRTOS.h>
#include <task.h>
#endif
/*
* Lock-free queue for single-producer single-consumer scenarios.
* This allows one thread to push items and another to pop them without
* blocking each other.
*
* This is a Single-Producer Single-Consumer (SPSC) lock-free ring buffer.
* Available on platforms with FreeRTOS support (ESP32, LibreTiny).
*
* Common use cases:
* - BLE events: BLE task produces, main loop consumes
* - MQTT messages: main task produces, MQTT thread consumes
*
* @tparam T The type of elements stored in the queue (must be a pointer type)
* @tparam SIZE The maximum number of elements (1-255, limited by uint8_t indices)
*/
namespace esphome {
template<class T, uint8_t SIZE> class LockFreeQueue {
public:
LockFreeQueue() : head_(0), tail_(0), dropped_count_(0), task_to_notify_(nullptr) {}
bool push(T *element) {
if (element == nullptr)
return false;
uint8_t current_tail = tail_.load(std::memory_order_relaxed);
uint8_t next_tail = (current_tail + 1) % SIZE;
// Read head before incrementing tail
uint8_t head_before = head_.load(std::memory_order_acquire);
if (next_tail == head_before) {
// Buffer full
dropped_count_.fetch_add(1, std::memory_order_relaxed);
return false;
}
// Check if queue was empty before push
bool was_empty = (current_tail == head_before);
buffer_[current_tail] = element;
tail_.store(next_tail, std::memory_order_release);
// Notify optimization: only notify if we need to
if (task_to_notify_ != nullptr) {
if (was_empty) {
// Queue was empty - consumer might be going to sleep, must notify
xTaskNotifyGive(task_to_notify_);
} else {
// Queue wasn't empty - check if consumer has caught up to previous tail
uint8_t head_after = head_.load(std::memory_order_acquire);
if (head_after == current_tail) {
// Consumer just caught up to where tail was - might go to sleep, must notify
// Note: There's a benign race here - between reading head_after and calling
// xTaskNotifyGive(), the consumer could advance further. This would result
// in an unnecessary wake-up, but is harmless and extremely rare in practice.
xTaskNotifyGive(task_to_notify_);
}
// Otherwise: consumer is still behind, no need to notify
}
}
return true;
}
T *pop() {
uint8_t current_head = head_.load(std::memory_order_relaxed);
if (current_head == tail_.load(std::memory_order_acquire)) {
return nullptr; // Empty
}
T *element = buffer_[current_head];
head_.store((current_head + 1) % SIZE, std::memory_order_release);
return element;
}
size_t size() const {
uint8_t tail = tail_.load(std::memory_order_acquire);
uint8_t head = head_.load(std::memory_order_acquire);
return (tail - head + SIZE) % SIZE;
}
uint16_t get_and_reset_dropped_count() { return dropped_count_.exchange(0, std::memory_order_relaxed); }
void increment_dropped_count() { dropped_count_.fetch_add(1, std::memory_order_relaxed); }
bool empty() const { return head_.load(std::memory_order_acquire) == tail_.load(std::memory_order_acquire); }
bool full() const {
uint8_t next_tail = (tail_.load(std::memory_order_relaxed) + 1) % SIZE;
return next_tail == head_.load(std::memory_order_acquire);
}
// Set the FreeRTOS task handle to notify when items are pushed to the queue
// This enables efficient wake-up of a consumer task that's waiting for data
// @param task The FreeRTOS task handle to notify, or nullptr to disable notifications
void set_task_to_notify(TaskHandle_t task) { task_to_notify_ = task; }
protected:
T *buffer_[SIZE];
// Atomic: written by producer (push/increment), read+reset by consumer (get_and_reset)
std::atomic<uint16_t> dropped_count_; // 65535 max - more than enough for drop tracking
// Atomic: written by consumer (pop), read by producer (push) to check if full
// Using uint8_t limits queue size to 255 elements but saves memory and ensures
// atomic operations are efficient on all platforms
std::atomic<uint8_t> head_;
// Atomic: written by producer (push), read by consumer (pop) to check if empty
std::atomic<uint8_t> tail_;
// Task handle for notification (optional)
TaskHandle_t task_to_notify_;
};
} // namespace esphome
#endif // defined(USE_ESP32) || defined(USE_LIBRETINY)