make more readable

This commit is contained in:
J. Nick Koston 2025-07-19 10:38:28 -10:00
parent a5f5af9596
commit 58696961bd
No known key found for this signature in database

View File

@ -511,15 +511,10 @@ uint64_t Scheduler::millis_64_(uint32_t now) {
#ifdef ESPHOME_SINGLE_CORE
// This is the single core implementation.
//
// The implementation handles the 32-bit rollover (every 49.7 days) by:
// 1. Using a lock when detecting rollover to ensure atomic update
// 2. Restricting normal updates to forward movement within the same epoch
// This prevents race conditions at the rollover boundary without requiring
// 64-bit atomics or locking on every call.
// Single-core platforms have no concurrency, so this is a simple implementation
// that just tracks 32-bit rollover (every 49.7 days) without any locking or atomics.
uint16_t major = this->millis_major_;
// Single-core platforms: No atomics needed
uint32_t last = this->last_millis_;
// Check for rollover
@ -538,29 +533,28 @@ uint64_t Scheduler::millis_64_(uint32_t now) {
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
return now + (static_cast<uint64_t>(major) << 32);
}
#endif // ESPHOME_SINGLE_CORE
#ifdef ESPHOME_MULTI_CORE_NO_ATOMICS
// This is the multi core no atomics implementation.
//
// The implementation handles the 32-bit rollover (every 49.7 days) by:
// 1. Using a lock when detecting rollover to ensure atomic update
// 2. Restricting normal updates to forward movement within the same epoch
// This prevents race conditions at the rollover boundary without requiring
// 64-bit atomics or locking on every call.
// This is the multi core no atomics implementation.
//
// The implementation handles the 32-bit rollover (every 49.7 days) by:
// 1. Using a lock when detecting rollover to ensure atomic update
// 2. Restricting normal updates to forward movement within the same epoch
// This prevents race conditions at the rollover boundary without requiring
// 64-bit atomics or locking on every call.
uint16_t major = this->millis_major_;
uint32_t last = this->last_millis_;
uint16_t major = this->millis_major_;
uint32_t last = this->last_millis_;
// Define a safe window around the rollover point (10 seconds)
// This covers any reasonable scheduler delays or thread preemption
static const uint32_t ROLLOVER_WINDOW = 10000; // 10 seconds in milliseconds
// Define a safe window around the rollover point (10 seconds)
// This covers any reasonable scheduler delays or thread preemption
static const uint32_t ROLLOVER_WINDOW = 10000; // 10 seconds in milliseconds
// Check if we're near the rollover boundary (close to std::numeric_limits<uint32_t>::max() or just past 0)
bool near_rollover = (last > (std::numeric_limits<uint32_t>::max() - ROLLOVER_WINDOW)) || (now < ROLLOVER_WINDOW);
// Check if we're near the rollover boundary (close to std::numeric_limits<uint32_t>::max() or just past 0)
bool near_rollover = (last > (std::numeric_limits<uint32_t>::max() - ROLLOVER_WINDOW)) || (now < ROLLOVER_WINDOW);
if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) {
if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) {
// Near rollover or detected a rollover - need lock for safety
LockGuard guard{this->lock_};
// Re-read with lock held
@ -576,7 +570,7 @@ if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) {
}
// Update last_millis_ while holding lock
this->last_millis_ = now;
} else if (now > last) {
} else if (now > last) {
// Normal case: Not near rollover and time moved forward
// Update without lock. While this may cause minor races (microseconds of
// backwards time movement), they're acceptable because:
@ -584,24 +578,24 @@ if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) {
// 2. We've already prevented the critical rollover race condition
// 3. Any backwards movement is orders of magnitude smaller than scheduler delays
this->last_millis_ = now;
}
// If now <= last and we're not near rollover, don't update
// This minimizes backwards time movement
}
// If now <= last and we're not near rollover, don't update
// This minimizes backwards time movement
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
return now + (static_cast<uint64_t>(major) << 32);
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
return now + (static_cast<uint64_t>(major) << 32);
#endif // ESPHOME_MULTI_CORE_NO_ATOMICS
#ifdef ESPHOME_MULTI_CORE_ATOMICS
// This is the multi core with atomics implementation.
//
// The implementation handles the 32-bit rollover (every 49.7 days) by:
// 1. Using a lock when detecting rollover to ensure atomic update
// 2. Restricting normal updates to forward movement within the same epoch
// This prevents race conditions at the rollover boundary without requiring
// 64-bit atomics or locking on every call.
// This is the multi core with atomics implementation.
//
// The implementation handles the 32-bit rollover (every 49.7 days) by:
// 1. Using a lock when detecting rollover to ensure atomic update
// 2. Restricting normal updates to forward movement within the same epoch
// This prevents race conditions at the rollover boundary without requiring
// 64-bit atomics or locking on every call.
for (;;) {
for (;;) {
uint16_t major = this->millis_major_.load(std::memory_order_acquire);
/*
@ -650,9 +644,8 @@ for (;;) {
uint16_t major_end = this->millis_major_.load(std::memory_order_relaxed);
if (major_end == major)
return now + (static_cast<uint64_t>(major) << 32);
}
}
#endif // ESPHOME_MULTI_CORE_ATOMICS
}
bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr<SchedulerItem> &a,