|
|
|
@ -54,7 +54,7 @@ static void validate_static_string(const char *name) {
|
|
|
|
|
ESP_LOGW(TAG, "WARNING: Scheduler name '%s' at %p might be on heap (static ref at %p)", name, name, static_str);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
|
|
|
|
|
// A note on locking: the `lock_` lock protects the `items_` and `to_add_` containers. It must be taken when writing to
|
|
|
|
|
// them (i.e. when adding/removing items, but not when changing items). As items are only deleted from the loop task,
|
|
|
|
@ -82,9 +82,9 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type
|
|
|
|
|
item->callback = std::move(func);
|
|
|
|
|
item->remove = false;
|
|
|
|
|
|
|
|
|
|
#if !defined(USE_ESP8266) && !defined(USE_RP2040)
|
|
|
|
|
#ifndef ESPHOME_CORES_SINGLE
|
|
|
|
|
// Special handling for defer() (delay = 0, type = TIMEOUT)
|
|
|
|
|
// ESP8266 and RP2040 are excluded because they don't need thread-safe defer handling
|
|
|
|
|
// Single-core platforms don't need thread-safe defer handling
|
|
|
|
|
if (delay == 0 && type == SchedulerItem::TIMEOUT) {
|
|
|
|
|
// Put in defer queue for guaranteed FIFO execution
|
|
|
|
|
LockGuard guard{this->lock_};
|
|
|
|
@ -92,7 +92,7 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type
|
|
|
|
|
this->defer_queue_.push_back(std::move(item));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* not ESPHOME_CORES_SINGLE */
|
|
|
|
|
|
|
|
|
|
// Get fresh timestamp for new timer/interval - ensures accurate scheduling
|
|
|
|
|
const auto now = this->millis_64_(millis()); // Fresh millis() call
|
|
|
|
@ -123,7 +123,7 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type
|
|
|
|
|
ESP_LOGD(TAG, "set_%s(name='%s/%s', %s=%" PRIu32 ", offset=%" PRIu32 ")", type_str, item->get_source(),
|
|
|
|
|
name_cstr ? name_cstr : "(null)", type_str, delay, static_cast<uint32_t>(item->next_execution_ - now));
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
|
|
|
|
|
LockGuard guard{this->lock_};
|
|
|
|
|
// If name is provided, do atomic cancel-and-add
|
|
|
|
@ -231,7 +231,7 @@ optional<uint32_t> HOT Scheduler::next_schedule_in(uint32_t now) {
|
|
|
|
|
return item->next_execution_ - now_64;
|
|
|
|
|
}
|
|
|
|
|
void HOT Scheduler::call(uint32_t now) {
|
|
|
|
|
#if !defined(USE_ESP8266) && !defined(USE_RP2040)
|
|
|
|
|
#ifndef ESPHOME_CORES_SINGLE
|
|
|
|
|
// Process defer queue first to guarantee FIFO execution order for deferred items.
|
|
|
|
|
// Previously, defer() used the heap which gave undefined order for equal timestamps,
|
|
|
|
|
// causing race conditions on multi-core systems (ESP32, BK7200).
|
|
|
|
@ -239,8 +239,7 @@ void HOT Scheduler::call(uint32_t now) {
|
|
|
|
|
// - Deferred items (delay=0) go directly to defer_queue_ in set_timer_common_
|
|
|
|
|
// - Items execute in exact order they were deferred (FIFO guarantee)
|
|
|
|
|
// - No deferred items exist in to_add_, so processing order doesn't affect correctness
|
|
|
|
|
// ESP8266 and RP2040 don't use this queue - they fall back to the heap-based approach
|
|
|
|
|
// (ESP8266: single-core, RP2040: empty mutex implementation).
|
|
|
|
|
// Single-core platforms don't use this queue and fall back to the heap-based approach.
|
|
|
|
|
//
|
|
|
|
|
// Note: Items cancelled via cancel_item_locked_() are marked with remove=true but still
|
|
|
|
|
// processed here. They are removed from the queue normally via pop_front() but skipped
|
|
|
|
@ -262,7 +261,7 @@ void HOT Scheduler::call(uint32_t now) {
|
|
|
|
|
this->execute_item_(item.get(), now);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* not ESPHOME_CORES_SINGLE */
|
|
|
|
|
|
|
|
|
|
// Convert the fresh timestamp from main loop to 64-bit for scheduler operations
|
|
|
|
|
const auto now_64 = this->millis_64_(now); // 'now' from parameter - fresh from Application::loop()
|
|
|
|
@ -274,13 +273,15 @@ void HOT Scheduler::call(uint32_t now) {
|
|
|
|
|
if (now_64 - last_print > 2000) {
|
|
|
|
|
last_print = now_64;
|
|
|
|
|
std::vector<std::unique_ptr<SchedulerItem>> old_items;
|
|
|
|
|
#if !defined(USE_ESP8266) && !defined(USE_RP2040) && !defined(USE_LIBRETINY)
|
|
|
|
|
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%u, %" PRIu32 ")", this->items_.size(), now_64,
|
|
|
|
|
this->millis_major_, this->last_millis_.load(std::memory_order_relaxed));
|
|
|
|
|
#else
|
|
|
|
|
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%u, %" PRIu32 ")", this->items_.size(), now_64,
|
|
|
|
|
#ifdef ESPHOME_CORES_MULTI_ATOMICS
|
|
|
|
|
const auto last_dbg = this->last_millis_.load(std::memory_order_relaxed);
|
|
|
|
|
const auto major_dbg = this->millis_major_.load(std::memory_order_relaxed);
|
|
|
|
|
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64,
|
|
|
|
|
major_dbg, last_dbg);
|
|
|
|
|
#else /* not ESPHOME_CORES_MULTI_ATOMICS */
|
|
|
|
|
ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64,
|
|
|
|
|
this->millis_major_, this->last_millis_);
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* else ESPHOME_CORES_MULTI_ATOMICS */
|
|
|
|
|
while (!this->empty_()) {
|
|
|
|
|
std::unique_ptr<SchedulerItem> item;
|
|
|
|
|
{
|
|
|
|
@ -305,7 +306,7 @@ void HOT Scheduler::call(uint32_t now) {
|
|
|
|
|
std::make_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif // ESPHOME_DEBUG_SCHEDULER
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
|
|
|
|
|
// If we have too many items to remove
|
|
|
|
|
if (this->to_remove_ > MAX_LOGICALLY_DELETED_ITEMS) {
|
|
|
|
@ -352,7 +353,7 @@ void HOT Scheduler::call(uint32_t now) {
|
|
|
|
|
ESP_LOGV(TAG, "Running %s '%s/%s' with interval=%" PRIu32 " next_execution=%" PRIu64 " (now=%" PRIu64 ")",
|
|
|
|
|
item->get_type_str(), item->get_source(), item_name ? item_name : "(null)", item->interval,
|
|
|
|
|
item->next_execution_, now_64);
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
|
|
|
|
|
// Warning: During callback(), a lot of stuff can happen, including:
|
|
|
|
|
// - timeouts/intervals get added, potentially invalidating vector pointers
|
|
|
|
@ -460,7 +461,7 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c
|
|
|
|
|
size_t total_cancelled = 0;
|
|
|
|
|
|
|
|
|
|
// Check all containers for matching items
|
|
|
|
|
#if !defined(USE_ESP8266) && !defined(USE_RP2040)
|
|
|
|
|
#ifndef ESPHOME_CORES_SINGLE
|
|
|
|
|
// Only check defer queue for timeouts (intervals never go there)
|
|
|
|
|
if (type == SchedulerItem::TIMEOUT) {
|
|
|
|
|
for (auto &item : this->defer_queue_) {
|
|
|
|
@ -470,7 +471,7 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* not ESPHOME_CORES_SINGLE */
|
|
|
|
|
|
|
|
|
|
// Cancel items in the main heap
|
|
|
|
|
for (auto &item : this->items_) {
|
|
|
|
@ -495,24 +496,53 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c
|
|
|
|
|
|
|
|
|
|
uint64_t Scheduler::millis_64_(uint32_t now) {
|
|
|
|
|
// THREAD SAFETY NOTE:
|
|
|
|
|
// This function can be called from multiple threads simultaneously on ESP32/LibreTiny.
|
|
|
|
|
// On single-threaded platforms (ESP8266, RP2040), atomics are not needed.
|
|
|
|
|
// This function has three implementations, based on the precompiler flags
|
|
|
|
|
// - ESPHOME_CORES_SINGLE - Runs on single-core platforms (ESP8266, RP2040, etc.)
|
|
|
|
|
// - ESPHOME_CORES_MULTI_NO_ATOMICS - Runs on multi-core platforms without atomics (LibreTiny)
|
|
|
|
|
// - ESPHOME_CORES_MULTI_ATOMICS - Runs on multi-core platforms with atomics (ESP32, HOST, etc.)
|
|
|
|
|
//
|
|
|
|
|
// Make sure all changes are synchronized if you edit this function.
|
|
|
|
|
//
|
|
|
|
|
// IMPORTANT: Always pass fresh millis() values to this function. The implementation
|
|
|
|
|
// handles out-of-order timestamps between threads, but minimizing time differences
|
|
|
|
|
// helps maintain accuracy.
|
|
|
|
|
//
|
|
|
|
|
// The implementation handles the 32-bit rollover (every 49.7 days) by:
|
|
|
|
|
// 1. Using a lock when detecting rollover to ensure atomic update
|
|
|
|
|
// 2. Restricting normal updates to forward movement within the same epoch
|
|
|
|
|
// This prevents race conditions at the rollover boundary without requiring
|
|
|
|
|
// 64-bit atomics or locking on every call.
|
|
|
|
|
|
|
|
|
|
#ifdef USE_LIBRETINY
|
|
|
|
|
// LibreTiny: Multi-threaded but lacks atomic operation support
|
|
|
|
|
// TODO: If LibreTiny ever adds atomic support, remove this entire block and
|
|
|
|
|
// let it fall through to the atomic-based implementation below
|
|
|
|
|
// We need to use a lock when near the rollover boundary to prevent races
|
|
|
|
|
#ifdef ESPHOME_CORES_SINGLE
|
|
|
|
|
// This is the single core implementation.
|
|
|
|
|
//
|
|
|
|
|
// Single-core platforms have no concurrency, so this is a simple implementation
|
|
|
|
|
// that just tracks 32-bit rollover (every 49.7 days) without any locking or atomics.
|
|
|
|
|
|
|
|
|
|
uint16_t major = this->millis_major_;
|
|
|
|
|
uint32_t last = this->last_millis_;
|
|
|
|
|
|
|
|
|
|
// Check for rollover
|
|
|
|
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
|
|
|
this->millis_major_++;
|
|
|
|
|
major++;
|
|
|
|
|
#ifdef ESPHOME_DEBUG_SCHEDULER
|
|
|
|
|
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Only update if time moved forward
|
|
|
|
|
if (now > last) {
|
|
|
|
|
this->last_millis_ = now;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
|
|
|
|
|
return now + (static_cast<uint64_t>(major) << 32);
|
|
|
|
|
|
|
|
|
|
#elif defined(ESPHOME_CORES_MULTI_NO_ATOMICS)
|
|
|
|
|
// This is the multi core no atomics implementation.
|
|
|
|
|
//
|
|
|
|
|
// Without atomics, this implementation uses locks more aggressively:
|
|
|
|
|
// 1. Always locks when near the rollover boundary (within 10 seconds)
|
|
|
|
|
// 2. Always locks when detecting a large backwards jump
|
|
|
|
|
// 3. Updates without lock in normal forward progression (accepting minor races)
|
|
|
|
|
// This is less efficient but necessary without atomic operations.
|
|
|
|
|
uint16_t major = this->millis_major_;
|
|
|
|
|
uint32_t last = this->last_millis_;
|
|
|
|
|
|
|
|
|
|
// Define a safe window around the rollover point (10 seconds)
|
|
|
|
@ -531,9 +561,10 @@ uint64_t Scheduler::millis_64_(uint32_t now) {
|
|
|
|
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
|
|
|
// True rollover detected (happens every ~49.7 days)
|
|
|
|
|
this->millis_major_++;
|
|
|
|
|
major++;
|
|
|
|
|
#ifdef ESPHOME_DEBUG_SCHEDULER
|
|
|
|
|
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
}
|
|
|
|
|
// Update last_millis_ while holding lock
|
|
|
|
|
this->last_millis_ = now;
|
|
|
|
@ -549,58 +580,76 @@ uint64_t Scheduler::millis_64_(uint32_t now) {
|
|
|
|
|
// If now <= last and we're not near rollover, don't update
|
|
|
|
|
// This minimizes backwards time movement
|
|
|
|
|
|
|
|
|
|
#elif !defined(USE_ESP8266) && !defined(USE_RP2040)
|
|
|
|
|
// Multi-threaded platforms with atomic support (ESP32)
|
|
|
|
|
uint32_t last = this->last_millis_.load(std::memory_order_relaxed);
|
|
|
|
|
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
|
|
|
|
|
return now + (static_cast<uint64_t>(major) << 32);
|
|
|
|
|
|
|
|
|
|
#elif defined(ESPHOME_CORES_MULTI_ATOMICS)
|
|
|
|
|
// This is the multi core with atomics implementation.
|
|
|
|
|
//
|
|
|
|
|
// Uses atomic operations with acquire/release semantics to ensure coherent
|
|
|
|
|
// reads of millis_major_ and last_millis_ across cores. Features:
|
|
|
|
|
// 1. Epoch-coherency retry loop to handle concurrent updates
|
|
|
|
|
// 2. Lock only taken for actual rollover detection and update
|
|
|
|
|
// 3. Lock-free CAS updates for normal forward time progression
|
|
|
|
|
// 4. Memory ordering ensures cores see consistent time values
|
|
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
|
uint16_t major = this->millis_major_.load(std::memory_order_acquire);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Acquire so that if we later decide **not** to take the lock we still
|
|
|
|
|
* observe a `millis_major_` value coherent with the loaded `last_millis_`.
|
|
|
|
|
* The acquire load ensures any later read of `millis_major_` sees its
|
|
|
|
|
* corresponding increment.
|
|
|
|
|
*/
|
|
|
|
|
uint32_t last = this->last_millis_.load(std::memory_order_acquire);
|
|
|
|
|
|
|
|
|
|
// If we might be near a rollover (large backwards jump), take the lock for the entire operation
|
|
|
|
|
// This ensures rollover detection and last_millis_ update are atomic together
|
|
|
|
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
|
|
|
// Potential rollover - need lock for atomic rollover detection + update
|
|
|
|
|
LockGuard guard{this->lock_};
|
|
|
|
|
// Re-read with lock held
|
|
|
|
|
// Re-read with lock held; mutex already provides ordering
|
|
|
|
|
last = this->last_millis_.load(std::memory_order_relaxed);
|
|
|
|
|
|
|
|
|
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
|
|
|
// True rollover detected (happens every ~49.7 days)
|
|
|
|
|
this->millis_major_++;
|
|
|
|
|
this->millis_major_.fetch_add(1, std::memory_order_relaxed);
|
|
|
|
|
major++;
|
|
|
|
|
#ifdef ESPHOME_DEBUG_SCHEDULER
|
|
|
|
|
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
|
|
|
|
#endif
|
|
|
|
|
#endif /* ESPHOME_DEBUG_SCHEDULER */
|
|
|
|
|
}
|
|
|
|
|
// Update last_millis_ while holding lock to prevent races
|
|
|
|
|
this->last_millis_.store(now, std::memory_order_relaxed);
|
|
|
|
|
/*
|
|
|
|
|
* Update last_millis_ while holding the lock to prevent races
|
|
|
|
|
* Publish the new low-word *after* bumping `millis_major_` (done above)
|
|
|
|
|
* so readers never see a mismatched pair.
|
|
|
|
|
*/
|
|
|
|
|
this->last_millis_.store(now, std::memory_order_release);
|
|
|
|
|
} else {
|
|
|
|
|
// Normal case: Try lock-free update, but only allow forward movement within same epoch
|
|
|
|
|
// This prevents accidentally moving backwards across a rollover boundary
|
|
|
|
|
while (now > last && (now - last) < HALF_MAX_UINT32) {
|
|
|
|
|
if (this->last_millis_.compare_exchange_weak(last, now, std::memory_order_relaxed)) {
|
|
|
|
|
if (this->last_millis_.compare_exchange_weak(last, now,
|
|
|
|
|
std::memory_order_release, // success
|
|
|
|
|
std::memory_order_relaxed)) { // failure
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// CAS failure means no data was published; relaxed is fine
|
|
|
|
|
// last is automatically updated by compare_exchange_weak if it fails
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
uint16_t major_end = this->millis_major_.load(std::memory_order_relaxed);
|
|
|
|
|
if (major_end == major)
|
|
|
|
|
return now + (static_cast<uint64_t>(major) << 32);
|
|
|
|
|
}
|
|
|
|
|
// Unreachable - the loop always returns when major_end == major
|
|
|
|
|
__builtin_unreachable();
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
// Single-threaded platforms (ESP8266, RP2040): No atomics needed
|
|
|
|
|
uint32_t last = this->last_millis_;
|
|
|
|
|
|
|
|
|
|
// Check for rollover
|
|
|
|
|
if (now < last && (last - now) > HALF_MAX_UINT32) {
|
|
|
|
|
this->millis_major_++;
|
|
|
|
|
#ifdef ESPHOME_DEBUG_SCHEDULER
|
|
|
|
|
ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last);
|
|
|
|
|
#error \
|
|
|
|
|
"No platform threading model defined. One of ESPHOME_CORES_SINGLE, ESPHOME_CORES_MULTI_NO_ATOMICS, or ESPHOME_CORES_MULTI_ATOMICS must be defined."
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Only update if time moved forward
|
|
|
|
|
if (now > last) {
|
|
|
|
|
this->last_millis_ = now;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Combine major (high 32 bits) and now (low 32 bits) into 64-bit time
|
|
|
|
|
return now + (static_cast<uint64_t>(this->millis_major_) << 32);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr<SchedulerItem> &a,
|
|
|
|
|