This commit is contained in:
J. Nick Koston 2025-07-10 09:06:57 -10:00
parent 0b2a889d0e
commit 9a9aebe8b4
No known key found for this signature in database
2 changed files with 1017 additions and 19 deletions

View File

@ -3,13 +3,38 @@
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "api_pb2_size.h"
#include "proto_templates.h"
namespace esphome {
namespace api {
static const char *const TAG = "api.proto";
// Message handler registry - populated by generated code
const MessageHandler MESSAGE_HANDLERS[] = {
// Will be populated with entries like:
// {encode_message_field<HelloRequest>, size_message_field<HelloRequest>, decode_message_field<HelloRequest>},
// etc.
};
const size_t MESSAGE_HANDLER_COUNT = 0; // Will be set by generated code
const RepeatedMessageHandler REPEATED_MESSAGE_HANDLERS[] = {
// Will be populated with entries like:
// {encode_repeated_message_field<AreaInfo>, size_repeated_message_field<AreaInfo>,
// decode_repeated_message_field<AreaInfo>},
// etc.
};
const size_t REPEATED_MESSAGE_HANDLER_COUNT = 0; // Will be set by generated code
void ProtoMessage::decode(const uint8_t *buffer, size_t length) {
// Check if V3 metadata is available
const FieldMetaV3 *fields_v3 = get_field_metadata_v3();
if (fields_v3 != nullptr) {
decode_v3(buffer, length);
return;
}
// Fall back to V2
uint32_t i = 0;
bool error = false;
uint8_t *base = reinterpret_cast<uint8_t *>(this);
@ -898,6 +923,13 @@ bool decode_repeated_double_field(void *field_ptr, Proto64Bit value) {
// ProtoMessage implementations using metadata
void ProtoMessage::encode(ProtoWriteBuffer buffer) const {
// Check if V3 metadata is available
const FieldMetaV3 *fields_v3 = get_field_metadata_v3();
if (fields_v3 != nullptr) {
encode_v3(buffer);
return;
}
const uint8_t *base = reinterpret_cast<const uint8_t *>(this);
// Get V2 metadata once at the start
@ -1140,6 +1172,13 @@ void ProtoMessage::encode(ProtoWriteBuffer buffer) const {
}
void ProtoMessage::calculate_size(uint32_t &total_size) const {
// Check if V3 metadata is available
const FieldMetaV3 *fields_v3 = get_field_metadata_v3();
if (fields_v3 != nullptr) {
calculate_size_v3(total_size);
return;
}
const uint8_t *base = reinterpret_cast<const uint8_t *>(this);
// Get V2 metadata once at the start
@ -1381,6 +1420,885 @@ void ProtoMessage::calculate_size(uint32_t &total_size) const {
}
}
// V3 implementations
void ProtoMessage::decode_v3(const uint8_t *buffer, size_t length) {
uint32_t i = 0;
bool error = false;
uint8_t *base = reinterpret_cast<uint8_t *>(this);
// Get V3 metadata
const FieldMetaV3 *fields = get_field_metadata_v3();
size_t field_count = get_field_count_v3();
const RepeatedFieldMetaV3 *repeated_fields = get_repeated_field_metadata_v3();
size_t repeated_count = get_repeated_field_count_v3();
while (i < length) {
uint32_t consumed;
auto res = ProtoVarInt::parse(&buffer[i], length - i, &consumed);
if (!res.has_value()) {
ESP_LOGV(TAG, "Invalid field start at %" PRIu32, i);
break;
}
uint32_t field_type = (res->as_uint32()) & 0b111;
uint32_t field_id = (res->as_uint32()) >> 3;
i += consumed;
switch (field_type) {
case 0: { // VarInt
res = ProtoVarInt::parse(&buffer[i], length - i, &consumed);
if (!res.has_value()) {
ESP_LOGV(TAG, "Invalid VarInt at %" PRIu32, i);
error = true;
break;
}
ProtoVarInt value = *res;
bool decoded = false;
// Check regular fields
for (size_t j = 0; j < field_count; j++) {
if (fields[j].field_num == field_id && get_wire_type(fields[j].get_type()) == 0) {
void *field_addr = base + fields[j].offset;
switch (fields[j].get_type()) {
case ProtoFieldType::TYPE_BOOL:
*static_cast<bool *>(field_addr) = value.as_bool();
decoded = true;
break;
case ProtoFieldType::TYPE_INT32:
*static_cast<int32_t *>(field_addr) = value.as_int32();
decoded = true;
break;
case ProtoFieldType::TYPE_UINT32:
*static_cast<uint32_t *>(field_addr) = value.as_uint32();
decoded = true;
break;
case ProtoFieldType::TYPE_INT64:
*static_cast<int64_t *>(field_addr) = value.as_int64();
decoded = true;
break;
case ProtoFieldType::TYPE_UINT64:
*static_cast<uint64_t *>(field_addr) = value.as_uint64();
decoded = true;
break;
case ProtoFieldType::TYPE_SINT32:
*static_cast<int32_t *>(field_addr) = value.as_sint32();
decoded = true;
break;
case ProtoFieldType::TYPE_SINT64:
*static_cast<int64_t *>(field_addr) = value.as_sint64();
decoded = true;
break;
case ProtoFieldType::TYPE_ENUM:
*static_cast<uint32_t *>(field_addr) = value.as_uint32();
decoded = true;
break;
default:
break;
}
break;
}
}
// Check repeated fields if not found
if (!decoded && repeated_fields) {
for (size_t j = 0; j < repeated_count; j++) {
if (repeated_fields[j].field_num == field_id && get_wire_type(repeated_fields[j].get_type()) == 0) {
void *field_addr = base + repeated_fields[j].offset;
switch (repeated_fields[j].get_type()) {
case ProtoFieldType::TYPE_BOOL: {
auto *vec = static_cast<std::vector<bool> *>(field_addr);
vec->push_back(value.as_bool());
decoded = true;
break;
}
case ProtoFieldType::TYPE_INT32: {
auto *vec = static_cast<std::vector<int32_t> *>(field_addr);
vec->push_back(value.as_int32());
decoded = true;
break;
}
case ProtoFieldType::TYPE_UINT32: {
auto *vec = static_cast<std::vector<uint32_t> *>(field_addr);
vec->push_back(value.as_uint32());
decoded = true;
break;
}
case ProtoFieldType::TYPE_INT64: {
auto *vec = static_cast<std::vector<int64_t> *>(field_addr);
vec->push_back(value.as_int64());
decoded = true;
break;
}
case ProtoFieldType::TYPE_UINT64: {
auto *vec = static_cast<std::vector<uint64_t> *>(field_addr);
vec->push_back(value.as_uint64());
decoded = true;
break;
}
case ProtoFieldType::TYPE_SINT32: {
auto *vec = static_cast<std::vector<int32_t> *>(field_addr);
vec->push_back(value.as_sint32());
decoded = true;
break;
}
case ProtoFieldType::TYPE_SINT64: {
auto *vec = static_cast<std::vector<int64_t> *>(field_addr);
vec->push_back(value.as_sint64());
decoded = true;
break;
}
case ProtoFieldType::TYPE_ENUM: {
auto *vec = static_cast<std::vector<uint32_t> *>(field_addr);
vec->push_back(value.as_uint32());
decoded = true;
break;
}
default:
break;
}
break;
}
}
}
if (!decoded) {
ESP_LOGV(TAG, "Skipping VarInt field %" PRIu32 " at %" PRIu32, field_id, i);
}
i += consumed;
break;
}
case 2: { // Length-delimited
res = ProtoVarInt::parse(&buffer[i], length - i, &consumed);
if (!res.has_value()) {
ESP_LOGV(TAG, "Invalid length delimited size at %" PRIu32, i);
error = true;
break;
}
uint32_t field_length = res->as_uint32();
i += consumed;
if (i + field_length > length) {
ESP_LOGV(TAG, "Length delimited field %" PRIu32 " exceeds buffer", field_id);
error = true;
break;
}
ProtoLengthDelimited value(&buffer[i], field_length);
bool decoded = false;
// Check regular fields
for (size_t j = 0; j < field_count; j++) {
if (fields[j].field_num == field_id && get_wire_type(fields[j].get_type()) == 2) {
void *field_addr = base + fields[j].offset;
switch (fields[j].get_type()) {
case ProtoFieldType::TYPE_STRING: {
auto *str = static_cast<std::string *>(field_addr);
*str = value.as_string();
decoded = true;
break;
}
case ProtoFieldType::TYPE_BYTES: {
auto *str = static_cast<std::string *>(field_addr);
*str = value.as_string();
decoded = true;
break;
}
case ProtoFieldType::TYPE_MESSAGE: {
// Use message handler registry
if (fields[j].get_message_type_id() < MESSAGE_HANDLER_COUNT) {
decoded = MESSAGE_HANDLERS[fields[j].get_message_type_id()].decode(field_addr, value);
}
break;
}
default:
break;
}
break;
}
}
// Check repeated fields if not found
if (!decoded && repeated_fields) {
for (size_t j = 0; j < repeated_count; j++) {
if (repeated_fields[j].field_num == field_id && get_wire_type(repeated_fields[j].get_type()) == 2) {
void *field_addr = base + repeated_fields[j].offset;
switch (repeated_fields[j].get_type()) {
case ProtoFieldType::TYPE_STRING: {
auto *vec = static_cast<std::vector<std::string> *>(field_addr);
vec->push_back(value.as_string());
decoded = true;
break;
}
case ProtoFieldType::TYPE_MESSAGE: {
// Use repeated message handler registry
if (repeated_fields[j].get_message_type_id() < REPEATED_MESSAGE_HANDLER_COUNT) {
decoded =
REPEATED_MESSAGE_HANDLERS[repeated_fields[j].get_message_type_id()].decode(field_addr, value);
}
break;
}
default:
break;
}
break;
}
}
}
if (!decoded) {
ESP_LOGV(TAG, "Skipping length delimited field %" PRIu32 " at %" PRIu32, field_id, i);
}
i += field_length;
break;
}
case 5: { // 32-bit
if (i + 4 > length) {
ESP_LOGV(TAG, "32-bit field %" PRIu32 " exceeds buffer", field_id);
error = true;
break;
}
uint32_t raw = 0;
raw |= uint32_t(buffer[i]) << 0;
raw |= uint32_t(buffer[i + 1]) << 8;
raw |= uint32_t(buffer[i + 2]) << 16;
raw |= uint32_t(buffer[i + 3]) << 24;
Proto32Bit value(raw);
bool decoded = false;
// Check regular fields
for (size_t j = 0; j < field_count; j++) {
if (fields[j].field_num == field_id && get_wire_type(fields[j].get_type()) == 5) {
void *field_addr = base + fields[j].offset;
switch (fields[j].get_type()) {
case ProtoFieldType::TYPE_FLOAT:
*static_cast<float *>(field_addr) = value.as_float();
decoded = true;
break;
case ProtoFieldType::TYPE_FIXED32:
*static_cast<uint32_t *>(field_addr) = value.as_fixed32();
decoded = true;
break;
case ProtoFieldType::TYPE_SFIXED32:
*static_cast<int32_t *>(field_addr) = value.as_sfixed32();
decoded = true;
break;
default:
break;
}
break;
}
}
// Check repeated fields if not found
if (!decoded && repeated_fields) {
for (size_t j = 0; j < repeated_count; j++) {
if (repeated_fields[j].field_num == field_id && get_wire_type(repeated_fields[j].get_type()) == 5) {
void *field_addr = base + repeated_fields[j].offset;
switch (repeated_fields[j].get_type()) {
case ProtoFieldType::TYPE_FLOAT: {
auto *vec = static_cast<std::vector<float> *>(field_addr);
vec->push_back(value.as_float());
decoded = true;
break;
}
case ProtoFieldType::TYPE_FIXED32: {
auto *vec = static_cast<std::vector<uint32_t> *>(field_addr);
vec->push_back(value.as_fixed32());
decoded = true;
break;
}
case ProtoFieldType::TYPE_SFIXED32: {
auto *vec = static_cast<std::vector<int32_t> *>(field_addr);
vec->push_back(value.as_sfixed32());
decoded = true;
break;
}
default:
break;
}
break;
}
}
}
if (!decoded) {
ESP_LOGV(TAG, "Skipping 32-bit field %" PRIu32 " at %" PRIu32, field_id, i);
}
i += 4;
break;
}
case 1: { // 64-bit
if (i + 8 > length) {
ESP_LOGV(TAG, "64-bit field %" PRIu32 " exceeds buffer", field_id);
error = true;
break;
}
uint64_t raw = 0;
raw |= uint64_t(buffer[i]) << 0;
raw |= uint64_t(buffer[i + 1]) << 8;
raw |= uint64_t(buffer[i + 2]) << 16;
raw |= uint64_t(buffer[i + 3]) << 24;
raw |= uint64_t(buffer[i + 4]) << 32;
raw |= uint64_t(buffer[i + 5]) << 40;
raw |= uint64_t(buffer[i + 6]) << 48;
raw |= uint64_t(buffer[i + 7]) << 56;
Proto64Bit value(raw);
bool decoded = false;
// Check regular fields
for (size_t j = 0; j < field_count; j++) {
if (fields[j].field_num == field_id && get_wire_type(fields[j].get_type()) == 1) {
void *field_addr = base + fields[j].offset;
switch (fields[j].get_type()) {
case ProtoFieldType::TYPE_DOUBLE:
*static_cast<double *>(field_addr) = value.as_double();
decoded = true;
break;
case ProtoFieldType::TYPE_FIXED64:
*static_cast<uint64_t *>(field_addr) = value.as_fixed64();
decoded = true;
break;
case ProtoFieldType::TYPE_SFIXED64:
*static_cast<int64_t *>(field_addr) = value.as_sfixed64();
decoded = true;
break;
default:
break;
}
break;
}
}
// Check repeated fields if not found
if (!decoded && repeated_fields) {
for (size_t j = 0; j < repeated_count; j++) {
if (repeated_fields[j].field_num == field_id && get_wire_type(repeated_fields[j].get_type()) == 1) {
void *field_addr = base + repeated_fields[j].offset;
switch (repeated_fields[j].get_type()) {
case ProtoFieldType::TYPE_DOUBLE: {
auto *vec = static_cast<std::vector<double> *>(field_addr);
vec->push_back(value.as_double());
decoded = true;
break;
}
case ProtoFieldType::TYPE_FIXED64: {
auto *vec = static_cast<std::vector<uint64_t> *>(field_addr);
vec->push_back(value.as_fixed64());
decoded = true;
break;
}
case ProtoFieldType::TYPE_SFIXED64: {
auto *vec = static_cast<std::vector<int64_t> *>(field_addr);
vec->push_back(value.as_sfixed64());
decoded = true;
break;
}
default:
break;
}
break;
}
}
}
if (!decoded) {
ESP_LOGV(TAG, "Skipping 64-bit field %" PRIu32 " at %" PRIu32, field_id, i);
}
i += 8;
break;
}
default:
ESP_LOGV(TAG, "Unknown field type %" PRIu32 " at %" PRIu32, field_type, i);
return;
}
if (error) {
break;
}
}
}
void ProtoMessage::encode_v3(ProtoWriteBuffer buffer) const {
const uint8_t *base = reinterpret_cast<const uint8_t *>(this);
// Get V3 metadata
const FieldMetaV3 *fields = get_field_metadata_v3();
size_t field_count = get_field_count_v3();
// Regular fields
for (size_t i = 0; i < field_count; i++) {
const void *field_addr = base + fields[i].offset;
switch (fields[i].get_type()) {
case ProtoFieldType::TYPE_BOOL: {
const auto *val = static_cast<const bool *>(field_addr);
buffer.encode_bool(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_INT32: {
const auto *val = static_cast<const int32_t *>(field_addr);
buffer.encode_int32(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_UINT32: {
const auto *val = static_cast<const uint32_t *>(field_addr);
buffer.encode_uint32(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_INT64: {
const auto *val = static_cast<const int64_t *>(field_addr);
buffer.encode_int64(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_UINT64: {
const auto *val = static_cast<const uint64_t *>(field_addr);
buffer.encode_uint64(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_SINT32: {
const auto *val = static_cast<const int32_t *>(field_addr);
buffer.encode_sint32(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_SINT64: {
const auto *val = static_cast<const int64_t *>(field_addr);
buffer.encode_sint64(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_ENUM: {
const auto *val = static_cast<const uint32_t *>(field_addr);
buffer.encode_uint32(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_STRING: {
const auto *val = static_cast<const std::string *>(field_addr);
buffer.encode_string(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_BYTES: {
const auto *str = static_cast<const std::string *>(field_addr);
buffer.encode_bytes(fields[i].field_num, reinterpret_cast<const uint8_t *>(str->data()), str->size(), false);
break;
}
case ProtoFieldType::TYPE_FLOAT: {
const auto *val = static_cast<const float *>(field_addr);
buffer.encode_float(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_FIXED32: {
const auto *val = static_cast<const uint32_t *>(field_addr);
buffer.encode_fixed32(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_SFIXED32: {
const auto *val = static_cast<const int32_t *>(field_addr);
buffer.encode_sfixed32(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_DOUBLE: {
const auto *val = static_cast<const double *>(field_addr);
buffer.encode_double(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_FIXED64: {
const auto *val = static_cast<const uint64_t *>(field_addr);
buffer.encode_fixed64(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_SFIXED64: {
const auto *val = static_cast<const int64_t *>(field_addr);
buffer.encode_sfixed64(fields[i].field_num, *val, false);
break;
}
case ProtoFieldType::TYPE_MESSAGE: {
// Use message handler registry
if (fields[i].get_message_type_id() < MESSAGE_HANDLER_COUNT) {
MESSAGE_HANDLERS[fields[i].get_message_type_id()].encode(buffer, field_addr, fields[i].field_num);
}
break;
}
}
}
// Repeated fields
const RepeatedFieldMetaV3 *repeated_fields = get_repeated_field_metadata_v3();
size_t repeated_count = get_repeated_field_count_v3();
for (size_t i = 0; i < repeated_count; i++) {
const void *field_addr = base + repeated_fields[i].offset;
switch (repeated_fields[i].get_type()) {
case ProtoFieldType::TYPE_BOOL: {
const auto *vec = static_cast<const std::vector<bool> *>(field_addr);
for (bool val : *vec) {
buffer.encode_bool(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_INT32: {
const auto *vec = static_cast<const std::vector<int32_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_int32(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_UINT32: {
const auto *vec = static_cast<const std::vector<uint32_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_uint32(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_INT64: {
const auto *vec = static_cast<const std::vector<int64_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_int64(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_UINT64: {
const auto *vec = static_cast<const std::vector<uint64_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_uint64(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_SINT32: {
const auto *vec = static_cast<const std::vector<int32_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_sint32(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_SINT64: {
const auto *vec = static_cast<const std::vector<int64_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_sint64(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_ENUM: {
const auto *vec = static_cast<const std::vector<uint32_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_uint32(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_STRING: {
const auto *vec = static_cast<const std::vector<std::string> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_string(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_BYTES: {
const auto *vec = static_cast<const std::vector<std::string> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_bytes(repeated_fields[i].field_num, reinterpret_cast<const uint8_t *>(val.data()), val.size(),
true);
}
break;
}
case ProtoFieldType::TYPE_FLOAT: {
const auto *vec = static_cast<const std::vector<float> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_float(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_FIXED32: {
const auto *vec = static_cast<const std::vector<uint32_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_fixed32(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_SFIXED32: {
const auto *vec = static_cast<const std::vector<int32_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_sfixed32(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_DOUBLE: {
const auto *vec = static_cast<const std::vector<double> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_double(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_FIXED64: {
const auto *vec = static_cast<const std::vector<uint64_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_fixed64(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_SFIXED64: {
const auto *vec = static_cast<const std::vector<int64_t> *>(field_addr);
for (const auto &val : *vec) {
buffer.encode_sfixed64(repeated_fields[i].field_num, val, true);
}
break;
}
case ProtoFieldType::TYPE_MESSAGE: {
// Use repeated message handler registry
if (repeated_fields[i].get_message_type_id() < REPEATED_MESSAGE_HANDLER_COUNT) {
REPEATED_MESSAGE_HANDLERS[repeated_fields[i].get_message_type_id()].encode(buffer, field_addr,
repeated_fields[i].field_num);
}
break;
}
}
}
}
void ProtoMessage::calculate_size_v3(uint32_t &total_size) const {
const uint8_t *base = reinterpret_cast<const uint8_t *>(this);
// Get V3 metadata
const FieldMetaV3 *fields = get_field_metadata_v3();
size_t field_count = get_field_count_v3();
// Regular fields
for (size_t i = 0; i < field_count; i++) {
const void *field_addr = base + fields[i].offset;
switch (fields[i].get_type()) {
case ProtoFieldType::TYPE_BOOL: {
const auto *val = static_cast<const bool *>(field_addr);
ProtoSize::add_bool_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_INT32: {
const auto *val = static_cast<const int32_t *>(field_addr);
ProtoSize::add_int32_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_UINT32: {
const auto *val = static_cast<const uint32_t *>(field_addr);
ProtoSize::add_uint32_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_INT64: {
const auto *val = static_cast<const int64_t *>(field_addr);
ProtoSize::add_int64_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_UINT64: {
const auto *val = static_cast<const uint64_t *>(field_addr);
ProtoSize::add_uint64_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_SINT32: {
const auto *val = static_cast<const int32_t *>(field_addr);
ProtoSize::add_sint32_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_SINT64: {
const auto *val = static_cast<const int64_t *>(field_addr);
ProtoSize::add_sint64_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_ENUM: {
const auto *val = static_cast<const uint32_t *>(field_addr);
ProtoSize::add_enum_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_STRING: {
const auto *val = static_cast<const std::string *>(field_addr);
ProtoSize::add_string_field(total_size, fields[i].get_precalced_size(), *val, false);
break;
}
case ProtoFieldType::TYPE_BYTES: {
const auto *str = static_cast<const std::string *>(field_addr);
ProtoSize::add_string_field(total_size, fields[i].get_precalced_size(), *str, false);
break;
}
case ProtoFieldType::TYPE_FLOAT: {
const auto *val = static_cast<const float *>(field_addr);
ProtoSize::add_fixed_field<4>(total_size, fields[i].get_precalced_size(), *val != 0.0f, false);
break;
}
case ProtoFieldType::TYPE_FIXED32: {
const auto *val = static_cast<const uint32_t *>(field_addr);
ProtoSize::add_fixed_field<4>(total_size, fields[i].get_precalced_size(), *val != 0, false);
break;
}
case ProtoFieldType::TYPE_SFIXED32: {
const auto *val = static_cast<const int32_t *>(field_addr);
ProtoSize::add_fixed_field<4>(total_size, fields[i].get_precalced_size(), *val != 0, false);
break;
}
case ProtoFieldType::TYPE_DOUBLE: {
const auto *val = static_cast<const double *>(field_addr);
ProtoSize::add_fixed_field<8>(total_size, fields[i].get_precalced_size(), *val != 0.0, false);
break;
}
case ProtoFieldType::TYPE_FIXED64: {
const auto *val = static_cast<const uint64_t *>(field_addr);
ProtoSize::add_fixed_field<8>(total_size, fields[i].get_precalced_size(), *val != 0, false);
break;
}
case ProtoFieldType::TYPE_SFIXED64: {
const auto *val = static_cast<const int64_t *>(field_addr);
ProtoSize::add_fixed_field<8>(total_size, fields[i].get_precalced_size(), *val != 0, false);
break;
}
case ProtoFieldType::TYPE_MESSAGE: {
// Use message handler registry
if (fields[i].get_message_type_id() < MESSAGE_HANDLER_COUNT) {
MESSAGE_HANDLERS[fields[i].get_message_type_id()].size(total_size, field_addr, fields[i].get_precalced_size(),
false);
}
break;
}
}
}
// Repeated fields
const RepeatedFieldMetaV3 *repeated_fields = get_repeated_field_metadata_v3();
size_t repeated_count = get_repeated_field_count_v3();
for (size_t i = 0; i < repeated_count; i++) {
const void *field_addr = base + repeated_fields[i].offset;
switch (repeated_fields[i].get_type()) {
case ProtoFieldType::TYPE_BOOL: {
const auto *vec = static_cast<const std::vector<bool> *>(field_addr);
for (bool val : *vec) {
ProtoSize::add_bool_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_INT32: {
const auto *vec = static_cast<const std::vector<int32_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_int32_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_UINT32: {
const auto *vec = static_cast<const std::vector<uint32_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_uint32_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_INT64: {
const auto *vec = static_cast<const std::vector<int64_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_int64_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_UINT64: {
const auto *vec = static_cast<const std::vector<uint64_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_uint64_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_SINT32: {
const auto *vec = static_cast<const std::vector<int32_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_sint32_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_SINT64: {
const auto *vec = static_cast<const std::vector<int64_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_sint64_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_ENUM: {
const auto *vec = static_cast<const std::vector<uint32_t> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_enum_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_STRING: {
const auto *vec = static_cast<const std::vector<std::string> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_string_field(total_size, repeated_fields[i].get_precalced_size(), val, true);
}
break;
}
case ProtoFieldType::TYPE_FLOAT: {
const auto *vec = static_cast<const std::vector<float> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_fixed_field<4>(total_size, repeated_fields[i].get_precalced_size(), val != 0.0f, true);
}
break;
}
case ProtoFieldType::TYPE_FIXED32: {
const auto *vec = static_cast<const std::vector<uint32_t> *>(field_addr);
size_t count = vec->size();
if (count > 0) {
total_size += count * (repeated_fields[i].get_precalced_size() + 4);
}
break;
}
case ProtoFieldType::TYPE_SFIXED32: {
const auto *vec = static_cast<const std::vector<int32_t> *>(field_addr);
size_t count = vec->size();
if (count > 0) {
total_size += count * (repeated_fields[i].get_precalced_size() + 4);
}
break;
}
case ProtoFieldType::TYPE_DOUBLE: {
const auto *vec = static_cast<const std::vector<double> *>(field_addr);
for (const auto &val : *vec) {
ProtoSize::add_fixed_field<8>(total_size, repeated_fields[i].get_precalced_size(), val != 0.0, true);
}
break;
}
case ProtoFieldType::TYPE_FIXED64: {
const auto *vec = static_cast<const std::vector<uint64_t> *>(field_addr);
size_t count = vec->size();
if (count > 0) {
total_size += count * (repeated_fields[i].get_precalced_size() + 8);
}
break;
}
case ProtoFieldType::TYPE_SFIXED64: {
const auto *vec = static_cast<const std::vector<int64_t> *>(field_addr);
size_t count = vec->size();
if (count > 0) {
total_size += count * (repeated_fields[i].get_precalced_size() + 8);
}
break;
}
case ProtoFieldType::TYPE_MESSAGE: {
// Use repeated message handler registry
if (repeated_fields[i].get_message_type_id() < REPEATED_MESSAGE_HANDLER_COUNT) {
REPEATED_MESSAGE_HANDLERS[repeated_fields[i].get_message_type_id()].size(
total_size, field_addr, repeated_fields[i].get_precalced_size());
}
break;
}
}
}
}
// Message type handler implementations moved to api_pb2.cpp (generated by Python script)
} // namespace api

View File

@ -20,28 +20,28 @@ class ProtoWriteBuffer;
enum class ProtoFieldType : uint8_t {
// Varint types (wire type 0)
TYPE_BOOL = 0,
TYPE_INT32,
TYPE_UINT32,
TYPE_INT64,
TYPE_UINT64,
TYPE_SINT32,
TYPE_SINT64,
TYPE_ENUM,
TYPE_INT32 = 1,
TYPE_UINT32 = 2,
TYPE_INT64 = 3,
TYPE_UINT64 = 4,
TYPE_SINT32 = 5,
TYPE_SINT64 = 6,
TYPE_ENUM = 7,
// Length-delimited types (wire type 2)
TYPE_STRING,
TYPE_BYTES,
TYPE_MESSAGE,
TYPE_STRING = 8,
TYPE_BYTES = 9,
TYPE_MESSAGE = 10,
// 32-bit types (wire type 5)
TYPE_FLOAT,
TYPE_FIXED32,
TYPE_SFIXED32,
TYPE_FLOAT = 11,
TYPE_FIXED32 = 12,
TYPE_SFIXED32 = 13,
// 64-bit types (wire type 1)
TYPE_DOUBLE,
TYPE_FIXED64,
TYPE_SFIXED64,
TYPE_DOUBLE = 14,
TYPE_FIXED64 = 15,
TYPE_SFIXED64 = 16,
};
// Helper to get wire type from field type
@ -261,7 +261,51 @@ using RepeatedEncodeFunc = void (*)(ProtoWriteBuffer &, const void *field_ptr, u
using RepeatedSizeFunc = void (*)(uint32_t &total_size, const void *field_ptr, uint8_t precalced_field_id_size);
using RepeatedDecodeLengthFunc = bool (*)(void *field_ptr, ProtoLengthDelimited value);
// New type-based metadata structure (smaller and more efficient)
// Message handler registry entry
struct MessageHandler {
EncodeFunc encode;
SizeFunc size;
DecodeLengthFunc decode;
};
// Repeated message handler registry entry
struct RepeatedMessageHandler {
RepeatedEncodeFunc encode;
RepeatedSizeFunc size;
RepeatedDecodeLengthFunc decode;
};
// Global message handler registries (defined in proto.cpp)
extern const MessageHandler MESSAGE_HANDLERS[];
extern const size_t MESSAGE_HANDLER_COUNT;
extern const RepeatedMessageHandler REPEATED_MESSAGE_HANDLERS[];
extern const size_t REPEATED_MESSAGE_HANDLER_COUNT;
// Optimized metadata structure (4 bytes - no padding on 32-bit architectures)
struct FieldMetaV3 {
uint8_t field_num; // Protobuf field number (1-255)
uint8_t type_and_size; // bits 0-4: ProtoFieldType, bits 5-6: precalced_field_id_size-1, bit 7: reserved
union {
uint16_t offset; // For non-message types: offset in class (0-65535)
struct {
uint8_t offset_low; // For TYPE_MESSAGE: low byte of offset
uint8_t message_type_id; // For TYPE_MESSAGE: index into MESSAGE_HANDLERS
};
};
// Helper methods
ProtoFieldType get_type() const { return static_cast<ProtoFieldType>(type_and_size & 0x1F); }
uint8_t get_precalced_size() const { return ((type_and_size >> 5) & 0x03) + 1; }
uint16_t get_offset() const {
if (get_type() == ProtoFieldType::TYPE_MESSAGE) {
return offset_low; // Limited to 255 for messages
}
return offset;
}
uint8_t get_message_type_id() const { return message_type_id; }
};
// Keep V2 for now during transition
struct FieldMetaV2 {
uint8_t field_num; // Protobuf field number (1-255)
uint16_t offset; // offset of field in class
@ -440,7 +484,31 @@ class ProtoWriteBuffer {
std::vector<uint8_t> *buffer_;
};
// New type-based repeated field metadata
// Optimized repeated field metadata (4 bytes - no padding on 32-bit architectures)
struct RepeatedFieldMetaV3 {
uint8_t field_num; // Protobuf field number (1-255)
uint8_t type_and_size; // bits 0-4: ProtoFieldType, bits 5-6: precalced_field_id_size-1, bit 7: reserved
union {
uint16_t offset; // For non-message types: offset in class (0-65535)
struct {
uint8_t offset_low; // For TYPE_MESSAGE: low byte of offset
uint8_t message_type_id; // For TYPE_MESSAGE: index into REPEATED_MESSAGE_HANDLERS
};
};
// Helper methods
ProtoFieldType get_type() const { return static_cast<ProtoFieldType>(type_and_size & 0x1F); }
uint8_t get_precalced_size() const { return ((type_and_size >> 5) & 0x03) + 1; }
uint16_t get_offset() const {
if (get_type() == ProtoFieldType::TYPE_MESSAGE) {
return offset_low; // Limited to 255 for messages
}
return offset;
}
uint8_t get_message_type_id() const { return message_type_id; }
};
// Keep V2 for now during transition
struct RepeatedFieldMetaV2 {
uint8_t field_num;
uint16_t offset;
@ -468,11 +536,23 @@ class ProtoMessage {
virtual const RepeatedFieldMetaV2 *get_repeated_field_metadata_v2() const { return nullptr; }
virtual size_t get_repeated_field_count_v2() const { return 0; }
// Encode/decode/calculate_size using V2 metadata
// V3 metadata getters - for optimized implementation
virtual const FieldMetaV3 *get_field_metadata_v3() const { return nullptr; }
virtual size_t get_field_count_v3() const { return 0; }
virtual const RepeatedFieldMetaV3 *get_repeated_field_metadata_v3() const { return nullptr; }
virtual size_t get_repeated_field_count_v3() const { return 0; }
// Encode/decode/calculate_size using V2 metadata (will check for V3 first)
void encode(ProtoWriteBuffer buffer) const;
void decode(const uint8_t *buffer, size_t length);
void calculate_size(uint32_t &total_size) const;
protected:
// V3 implementations
void encode_v3(ProtoWriteBuffer buffer) const;
void decode_v3(const uint8_t *buffer, size_t length);
void calculate_size_v3(uint32_t &total_size) const;
#ifdef HAS_PROTO_MESSAGE_DUMP
std::string dump() const;
virtual void dump_to(std::string &out) const = 0;